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Folylpolyglutamate synthase is a 
major determinant of intracellular 
methotrexate polyglutamates in 
patients with rheumatoid arthritis
Tatsuhiro Yamamoto, Kotaro Shikano, Toshihiro Nanki & Shinichi Kawai

We investigated major determinants of the intracellular concentrations of methotrexate 
polyglutamates (MTXPGs) in patients with rheumatoid arthritis (RA). In 271 RA patients on stable 
oral low dose weekly pulse MTX therapy, the concentrations of MTXPGs in red blood cells (RBCs) were 
measured by liquid chromatography-electrospray ionization-tandem mass spectrometry. Polymerase 
chain reaction-restriction fragment length polymorphism analysis was performed to determine the 
genotypes of solute carrier family 19 member 1 (SLC19A1), folylpolyglutamate synthase (FPGS), and 
gamma-glutamyl hydrolase (GGH). The mean total MTXPG concentration and the concentrations of 
individual MTXPGs increased dose-dependently, but reached a plateau at MTX doses >10 mg weekly. 
The MTXPG3-5/1-2 ratio was lower in patients with adverse events related to MTX than in patients 
without adverse events. Three polymorphisms of FPGS significantly influenced the MTXPG3-5/1-2 ratio 
in RBCs, while polymorphisms of SLC19A1 and GGH had no impact. The minor allele frequencies of 2 
FPGS genotypes were significantly increased in our patients compared with a Caucasian population. 
FPGS may have a major role in regulating intracellular polyglutamation of MTX in RA patients receiving 
low-dose weekly MTX therapy.

Methotrexate (MTX) is recommended as first-line therapy in the recent American1, European2, and Japanese3 
recommendations and/or guidelines regarding the treatment of rheumatoid arthritis (RA). MTX is the most fre-
quently used disease-modifying antirheumatic drug (DMARD), and is essential for treatment of RA as both mon-
otherapy and combined with low molecular weight or biologic DMARDs. There is substantial evidence regarding 
the efficacy of MTX for RA, but the response to this drug is known to vary among patients.

MTX binds to a folate transporter (solute carrier family 19, member 1 [SLC19A1], also known as reduced 
folate carrier 1) in order to enter target cells4. Inside the cells, folylpolyglutamate synthetase (FPGS) converts 
MTX into MTX polyglutamates (MTXPGs), which show long-term persistence in target cells. Gamma-glutamyl 
hydrolase (GGH) is involved in removing glutamates from MTXPGs. After MTXPGs are converted back to MTX 
by GGH, the drug is removed from cells by adenosine triphosphate (ATP)-binding cassette transporters.

MTXPGs have a higher binding affinity for dihydrofolate reductase (DHFR) than MTX, and binding with 
MTXPGs inhibits DHFR activity5 to suppress tetrahydrofolate production. Tetrahydrofolate is required for DNA 
synthesis and plays a vital role as an essential coenzyme in various aspects of amino acid metabolism, such as 
serine–glycine conversion and methionine synthesis. MTXPGs also inhibit aminoimidazole carboxamide ribo-
nucleotide transformylase (ATIC), causing the intracellular accumulation of aminoimidazole carboxamide rib-
onucleotide, which in turn inhibits adenosine-metabolizing enzymes. Additionally, intracellular MTXPGs are 
known to show greater binding affinity for ATIC6 compared with MTX. Therefore, intracellular MTXPGs are 
considered to have a major role in suppressing both cell-mediated immunity and humoral immunity, as well as 
exerting anti-inflammatory and immunosuppressive effects through inhibition of DNA synthesis or amino acid 
metabolism.

The treatment regimen of MTX for RA is low-dose weekly pulse administration in global guidelines1–3. Since 
the efficacy of therapy for RA is maintained during several weeks, the half-life of MTX in the blood which was 
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reported to be 4.9–7.3 hours7,8 does not directly reflect the therapeutic efficacy in RA patients8. For that reason 
and because of its known mechanism of action, attention has been directed toward the intracellular MTXPG 
concentration as a potential predictor of the response to MTX treatment.

In general, the cells that are considered to be direct targets of MTX (such as peripheral blood lymphocytes) are 
difficult to collect an adequate quantity, and therefore measurement of the MTX concentration in these cells is not 
easy in human studies9. Instead, researchers have measured the MTXPG concentration in red blood cells (RBCs) 
and have investigated its association with the clinical response to MTX9,10. In the present study, we used liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) to measure the concentrations of individual MTXPGs 
in RBCs and explored the association of each MTX derivative with clinical indicators. We also investigated pol-
ymorphism of the SLC19A1, FPGS, and GGH genes, which play a vital role in intracellular metabolism of MTX.

Results
Concentrations of MTXPGs. MTX has 1 glutamate moiety and is thus referred to as MTXPG1. Figure 1 
shows the concentrations of MTXPG1, MTXPG2, MTXPG3, MTXPG4, and MTXPG5 in RBCs harvested from 
patients with RA categorized by the weekly MTX dose. The mean total MTXPG concentration and the concentra-
tions of individual MTXPGs increased dose-dependently. However, concentrations of the MTXPGs were nearly 
constant in patients receiving MTX at doses of equal and more than 10 mg per week. MTXPG6 was not detected 
in any of the samples.

Adverse events. We used criteria of the adverse events which were defined by the Japanese Pharmaceuticals 
and Medical Devices Agency. As shown in Table 1, the average dose of MTX administered in the AE (− ) group 
was 9.5 mg/week, which was significantly higher than the average dose of the AE (+ ) group (6.9 mg/week). There 
was no significant difference of RA disease activity (Disease Activity Score of 28 joints-erythrocyte sedimenta-
tion rate (DAS28-ESR)11, Clinical Disease Activity Index (CDAI)12, Simplified Disease Activity Index (SDAI)13) 
between the AE (− ) and AE (+ ) groups. However, a significantly higher percentage of patients received other 
DMARDs and the biological agents in the AE (+ ) group than in the AE (− ) group.

The following adverse events were observed in the AE (+ ) group: elevation of liver enzymes (68 events), 
dyspepsia and/or oral aphthous ulcers (12 events), decreased white blood cell count (15 events), and others  
(5 events). None of these events were severe and they improved with reduction of the MTX dose, which was sub-
sequently maintained for at least more than 3 months before collection of blood samples.

When the RBC concentration of MTXPG was evaluated in the AE (− ) and AE (+ ) groups, there was no sig-
nificant difference between the two groups (p =  0.218, Fig. 2A). In contrast, the RBC MTXPG3-5/1-2 ratio was 
significantly lower in the AE (+ ) group than in the AE (− ) group (p =  0.036, Fig. 2B).

Correlation between MTXPG concentration and clinical parameters. Correlations between RBC 
concentrations of total MTXPGs and variable clinical parameters (sex, disease duration, age, disease progression 
category (stage), and DAS28-ESR) in patients with RA receiving MTX therapy were evaluated by univariate and 
multivariate analyses (Table 2). Associations between the total MTXPG concentrations in RBCs with clinical 
parameters in RA patients were not significant with various parameters except for dose of MTX in both analyses 
(p <  0.000).

Polymorphism of SLC19A1, FPGS, and GGH. To examine the association between the MTXPG con-
centration in RBC and polymorphism of the genes for enzymes involved in intracellular MTX metabolism, we 
investigated polymorphisms of SLC19A1, FPGS, and GGH (Table 3). The total intracellular MTX concentration 
and the levels of MTXPG1-2 and MTXPG3-5 were not significantly different among the 3 genotypes for a SNP 
of SLC19A1 or for 5 SNPs of GGH (data not shown). The MTXPG3-5/1-2 ratio also showed no significant dif-
ference among the 3 genotypes for the SNPs of SLC19A1 or GGH. Although the total intracellular MTXPG1-5 
concentration and the concentrations of MTXPG1-2 and MTXPG3-5 were not significantly different among 
the 3 genotypes for 3 SNPs of FPGS (data not shown), the MTXPG3-5/1-2 ratio showed significant differences 

Figure 1. Concentrations of methotrexate polyglutamates in red blood cells of patients with rheumatoid 
arthritis on methotrexate therapy. MTX =  methotrexate, PG =  polyglutamate, RBC =  red blood cells.
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(n = 271)

AE (−) group AE (+) group

P value(n = 188) (n = 83)

Age (years) 60.4 ±  12.6 60.0 ±  13.2 61.4 ±  13.8 P =  0.464

No. of men/women 59/212 48/140 11/72 P =  0.031

Duration (months) 107.3 ±  96.0 103.0 ±  93.9 117.0 ±  98.2 P =  0.176

Dose of MTX (mg/week) 8.7 ±  3.1 9.5 ±  3.0 6.9 ±  2.5 P <  0.001

Stage (I/II/III/IV) (90/61/46/74) (68/42/31/47) (22/19/15/27)

CRP (mg/dl) 0.22 ±  0.13 0.23 ±  0.35 0.19 ±  0.22 P =  0.942

ESR (mm/hour) 15.8 ±  13.3 15.4 ±  13.0 16.5 ±  15.6 P =  0.671

DAS28-ESR 2.29 ±  1.05 2.35 ±  1.09 2.17 ±  0.95 P =  0.227

CDAI 3.30 ±  4.26 3.80 ±  5.03 3.20 ±  4.88 P =  0.618

SDAI 5.51 ±  5.27 5.12 ±  6.74 5.14 ±  5.45 P =  0.881

BMI 22.0 ±  3.4 21.6 ±  3.6 22.6 ±  3.9 P =  0.889

BW(kg) 55.5 ±  11.2 56.4 ±  9.2 53.4 ±  10.8 P =  0.926

No. of patients using: 
Prednisolone 83(30.6%) 53(28.2%) 30(36.1%) P =  0.195

Other DMARDs 51(18.8%) 24(12.8%) 27(32.5%) P <  0.001

Biological agents 134(49.4%) 82(43.6%) 52(62.7%) P <  0.001

Table 1.  Demographic profile of the study population. Data are the mean± SD, n  =   number of patients  
P values for comparison between the AE (− ) and AE (+ ) groups were evaluated by the Mann-Whitney U test and 
Fisher’s exact test. MTX: methotrexate, stage: Steinblocker’s classification of progression, CRP: C-reactive protein, 
ESR: erythrocyte sedimentation rate, DAS: disease activity score, CDAI: clinical disease activity index, SDAI: 
simplified disease activity index, BMI: body mass index, DMARDs: disease-modifying anti-rheumatic drugs.

Figure 2. Total methotrexate concentration and MTXPG3-5/1-2 ratio in red blood cells of rheumatoid 
arthritis patients with or without adverse events during methotrexate therapy. (A) Total methotrexate 
concentration. (B) MTXPG3-5/1-2 ratio.

Total MTXPGs

Univariate model Multivariate model

β p value R2 β p value

Sex 0.019 0.761 0.019 − 0.014 0.822

Duration 0.012 0.842 0.012 0.127 0.095

Dose of methotrexate 0.399 0.000 0.156 0.421 0.000

Age 0.102 0.099 0.007 0.162 0.081

Stage 0.102 0.112 0.112 − 0.019 0.802

DAS28-ESR 0.091 0.147 0.004 0.049 0.432

R2 0.180

Table 2.  Correlations between RBC concentrations of total MTXPGs and variable clinical parameters 
in patients with RA receiving MTX therapy. β : regression coefficient; Stage; Steinblocker’s classification of 
progression; DAS28-ESR: disease activity score-erythrocyte sedimentation rate; R2: coefficient of determination.
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among these 3 genotypes for 3 different SNPs of FPGS (Table 3). These results indicate that, among the enzymes 
involved in intracellular conversion of MTX to MTXPGs, polymorphisms of the FPGS gene are determinants of 
the intracellular levels of MTXPGs.

We also examined the relations between polymorphisms of SLC19A1, FPGS, or GGH and adverse events, but 
there were no significant differences in the distribution of SLC19A1, FPGS, and GGH genotypes between the AE 
(− ) and AE (+ ) groups (Table 4).

Allele frequencies of SLC19A1, FPGS, and GGH. Table 5 shows the allele frequencies of several 
SLC19A1, FPGS, and GGH genotypes in our RA patients and in the general Japanese and Caucasian popula-
tions [cited from the International HapMap project (http://hapmap.ncbi.nlm.nih.gov/)]. There were no signif-
icant differences in the allele frequencies of a SNP of SLC19A1 (rs1051266) and 3 SNPs of GGH (rs1800909, 
rs3758149, and rs11545078) between our patients and the Japanese population (HapMap project) (data not 
shown). However, the distributions of 2 SNPs of FPGS (rs10106 and rs154410) and 2 SNPs of GGH (rs719235 and 
rs12681874) showed significant differences between Caucasians and our patients.

Discussion
Because this study was performed in the clinical practice setting experience, the weekly dose of MTX was deter-
mined by the attending physician of each patient. Therefore, the total MTXPG concentration in RBCs and the 
individual concentrations of MTXPG1-5 were analyzed after stratification by the weekly dose. This analysis 
revealed that the MTXPG concentration increased in a dose-dependent manner, but almost showed a plateau in 
patients administered equal and more than 10 mg of MTX weekly. The small changes of MTXPG concentrations 
in our patients on higher MTX doses were similar to the results reported by Stamp14, who found stable MTXPG 
levels at MTX doses more than 15 mg weekly.

Direct targets of MTX therapy are supposed as immune-related cells such as lymphocytes. In fact, lymphocyte 
counts are approximately 2,000/μ L, while RBC counts are 4 million/μ L of whole blood. We used 6 mL of whole 
blood to measure the concentration of MTXPGs in which almost all cellular components are RBCs. If we measure 
the MTXPGs in lymphocytes using our system, we need approximately 12 L of whole blood. From ethical point 
of view, we measured the MTXPGs in RBCs as a surrogate marker represented with the immune-related cells.

SNP rs No. genotype n

Intracellular MTXPG3-5/1-2 ratio

P valueMean ± SD Median [IQR]

SLC19A1 rs1051266

GG 94 0.479 ±  0.356 0.367 [0.250–0.607]

p =  0.475AG 130 0.556 ±  0.466 0.427 [0.234–0.794]

AA 47 0.445 ±  0.334 0.338 [0.157–0.707]

FPGS

rs10106

AA 130 0.457 ±  0.375 0.345 [0.201–0.567]

p =  0.006AG 115 0.503 ±  0.394 0.396 [0.235–0.656]

GG 26 0.714 ±  0.465 0.672 [0.364–0.957]

rs1054774

TT 113 0.555 ±  0.404 0.428 [0.264–0.788]

p =  0.008AT 122 0.463 ±  0.396 0.350 [0.201–0.562]

AA 36 0.417 ±  0.362 0.319 [0.161–0.568]

rs1544105

CC 128 0.454 ±  0.372 0.347 [0.202–0.565]

p =  0.003CT 120 0.506 ±  0.391 0.396 [0.235–0.700]

TT 23 0.747 ±  0.489 0.634 [0.385–1.030]

GGH

rs719235

CC 216 0.501 ±  0.389 0.385 [0.238–0.652]

p =  0.862CT 47 0.486 ±  0.378 0.385 [0.184–0.633]

TT 8 0.645 ±  0.702 0.382 [0.205–0.859]

rs1800909

CC 223 0.495 ±  0.397 0.397 [0.220–0.634]

p =  0.882CT 36 0.524 ±  0.401 0.255 [0.255–0.668]

TT 12 0.444 ±  0.229 0.375 [0.297–0.710]

rs3758149

GG 232 0.498 ±  0.401 0.383 [0.234–0.616]

p =  0.889GT 27 0.552 ±  0.422 0.381 [0.240–0.869]

TT 12 0.441 ±  0.241 0.385 [0.274–0.697]

rs11545078

TT 233 0.495 ±  0.391 0.376 [0.234–0.634]

p =  0.321CT 37 0.558 ±  0.437 0.430 [0.232–0.702]

CC 1 0.151 0.151

rs12681874

GG 81 0.452 ±  0.332 0.362 [0.235–0.604]

p =  0.070AG 134 0.600 ±  0.472 0.442 [0.254–0.812]

AA 60 0.493 ±  0.418 0.345 [0.197–0.687]

Table 3.  Relationship between Polymorphisms of SCL19A1, FPGS, or GGH and the Intracellular 
MTXPG3-5/1-2 Ratio. n  =   number of patients p values for comparisons among 3 groups were evaluated by the 
Kruskal-Wallis test. SLC19A1: reduced folate carrier 1, FPGS: folylpolyglutamyl synthase, GGH: gamma-glutamyl 
hydrolase.

http://hapmap.ncbi.nlm.nih.gov/
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The MTXPG3-5/1-2 ratio at an MTX dose of 10 mg weekly was 0.639 in our study, whereas it was more than 
1.0 according to Stamp, which is considerably higher than in the present investigation. There was no difference in 
the duration of MTX treatment (5.8 vs. 4.5 years, respectively) between the two studies. Since MTXPG3-5/1-2 is 
affected by the enzymatic potencies of glutamation (FPGS) and deglutamation (GGH) for MTX and/or MTXPGs, 
it is suspected that polymorphism of genes encoding enzymes related to metabolism of MTX might explain the 
differences of polyglutamation in these different ethnic cohorts.

In this study, we found that the MTXPG3-5/1-2 ratio was significantly influenced by 3 different SNPs of FPGS, 
but we did not find any relationship between the MTXPG3-5/1-2 ratio and SNPs of SLC19A1 or GGH. These 
results strongly suggested that FPGS enzyme activity, rather than GGH activity or SLC19A1 transport function, 
was a major determinant of intracellular conversion of MTX to MTXPG3-5.

In patients with acute leukemia, it was reported that the activity of GGH and FPGS in blast cells is a good 
predictor of the relative levels of MTXPG3-5, with lower FPGS and/or higher GGH activity leading to reduced 
MTX polyglutamation15. In addition, the mutation Cys346Phe of FPGS gene reduces enzyme activity in several 
human leukemia cell lines16.

As shown in Table 5, there were significant differences in the minor allele frequencies of 2 SNPs of FPGS 
(rs10106 and rs1544105) between our Japanese RA patients and the general Caucasian population. Since the 
MTXPG3-5/1-2 ratio was higher in our patients with 1994GG, 11694TT, 2572TT of FPGS compared to other 
genotypes, respectively (Table 3), the increased frequency of 1994GG and 2572TT of FPGS in Caucasians might 
have been associated with higher FPGS activity and possively with the elevation of the MTXPG3-5/1-2 ratio. In 

genotype AE(−) group AE (+) group P value

SLC19A1 rs1051266 80G > A

GG/AG/AA GG/AG/AA
p =  0.139

68/93/27 26/37/20

FPGS

rs10106 1994A >  G
AA/AG/GG AA/AG/GG

p =  0.952
91/78/19 39/37/7

rs1054774 11694T >  A
TT/AT/AA TT/AT/AA

p =  0.289
73/89/26 40/38/10

rs1544105 2572C >  T
CC/CT/TT CC/CT/TT

p =  0.327
93/80/15 35/40/8

GGH

rs719235 452C >  T
CC/CT/TT CC/CT/TT

p =  0.688
151/32/5 65/15/3

rs1800909 − 401C >  T
CC/CT/TT CC/CT/TT

p =  0.477
7/22/159 5/14/64

rs3758149 − 354G >  T
GG/GT/TT GG/GT/TT

p =  0.125
121/61/6 56/23/4

rs11545078 16T >  C
TT/CT/CC TT/CT/CC

p =  0.582
163/25/0 70/12/1

rs12681874 14269G >  A
GG/AG/AA GG/AG/AA

p =  0.174
61/92/39 20/42/21

Table 4.  Relationships between Polymorphisms of SLC19A1, FPGS, or GGH and adverse events stratified 
by genotype. p values for comparisons between the AE (+ ) and AE (− ) groups were evaluated by the Kruskal-
Wallis test. SLC19A1: reduced folate carrier 1, FPGS: folylpolyglutamyl synthase, GGH: gamma-glutamyl 
hydrolase.

SNPs No of rs genotype

Minor Allele Frequency

P valueOur study Japanese Caucasian

SLC19A1 rs1051266 80G >  A 0.698/0.302 0.512/0.488 0.438/0.562 p =  0.210

FPGS

rs10106 1994A >  G 0.693/0.307 0.727/0.273 0.450/0.550 p <  0.01

rs1054774 11694T >  A 0.360/0.640 0.330/0.670 0.342/0.658 p =  0.471

rs1544105 2572C >  T 0.717/0.283 0.727/0.273 0.342/0.658 p <  0.01

GGH

rs719235 452C >  T 0.892/0.108 0.895/0.105 0.677/0.323 p <  0.01

rs1800909 − 401C >  T 0.850/0.150 0.727/0.273 0.342/0.658 p =  0.478

rs3758149 − 354G >  T 0.799/0.201 0.640/0.360 0.692/0.308 p =  0.549

rs11545078 16T >  C 0.952/0.048 0.856/0.144 0.925/0.075 p =  1

rs12681874 14269G >  A 0.638/0.362 0.533/0.467 0.890/0.110 p <  0.01

Table 5.  Allele frequency in several genotypes of SLC19A1 FPGS and GGH in our patients with 
rheumatoid arthritis and in general populations of Japanese and Caucasian. *p values between our patients 
and Caucasian data were analyzed by Fisher’s test. SLC19A1: reduced folate carrier 1, FPGS: folylpolyglutamyl 
synthase, GGH: gamma-glutamyl hydrolase.
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addition, we cited the minor allele frequencies of Japanese general populations from HapMap project (Table 5). 
There was no significant difference in minor allele frequencies of SLC19A1, FPGS and GGH between our Japanese 
RA patients and Japanese general populations. Although we do not have the data of these allele frequencies in 
Caucasian RA patients, it is suggested that these genotypes might not be influenced by RA itself.

The average weekly dose of MTX was 8.7 mg in our study, while the average weekly dose of MTX was reported 
as 5.2 and 7.2 mg in other Japanese RA cohorts17, 18. However, the average weekly dose of MTX was 15 mg in 
studies from the USA19 and the Netherlands20. While part of the difference in MTX doses is probably attributable 
to differences of body weight, the differing minor allele frequencies of FPGS polymorphisms might also be a con-
tributing factor for the higher tolerability of MTX therapy in Caucasians.

It has been reported that higher MTXPG4-5 concentrations were significantly associated with adverse events 
in patients with inflammatory bowel disease receiving MTX21. In patients with juvenile idiopathic arthritis, 
MTXPG3–5 concentrations were positively correlated with elevation of liver function parameters and gastro-
intestinal adverse events22. On the contrary, other studies conducted in RA patients14, 19 showed no association 
between MTXPG concentrations and adverse events. We also found that the concentrations of MTXPGs in RBCs 
did not related with disease activities and did not differ between the AE (− ) and AE (+ ) groups. Since our present 
study is a cross-sectional examination which might be influenced by many other factors such as other therapeutic 
agents, we could not conclude whether the measurement of the intracellular MTXPGs was a proper index for 
therapeutics or not. We then focused to the detailed mechanisms of the intracellular metabolism of MTX. To 
clarify the relationship between MTXPG concentrations and efficacy or safety of MTX, a prospective study in the 
RA patients who were started with MTX therapy will be necessary.

We found that the MTXPG3-5/1-2 ratio decreased significantly in the AE (+ ) patients in whom dose of MTX 
was reduced by the attending physician due to the non-severe adverse events. Thus, it could be suggested that 
relatively high MTXPG1-2 levels might be a contributor to dose-dependent non-severe adverse events. MTXPGs 
inhibit DHFR and ATIC more strongly than MTX itself 5,6, suggesting a major role in the actions of MTX, but 
the mechanisms underlying dose-dependent adverse events have not been clarified yet. The results of the present 
study suggested that reduced polyglutamation of MTX might be associated with a higher incidence of adverse 
events.

Many previous studies have explored how polymorphisms of MTX target molecules are related to the treat-
ment response and adverse events. Polymorphisms of the methylenetetrahydrofolate reductase and ATIC genes 
have been suggested to have an important influence on the clinical response to MTX23, but our study focused on 
intracellular MTX metabolism so we did not investigate these SNPs. It is possible that combined assessment of 
the polymorphisms of target molecules and enzymes involved in MTX metabolism might provide more useful 
information for clinical management of MTX therapy.

Methods
Patients. The subjects were 271 patients with RA on stable oral MTX pulse therapy at Toho University 
Omori Medical Center Hospital (Table 1). Only patients who met the 2010 American College of Rheumatology/
European League Against Rheumatism criteria for rheumatoid arthritis were included in this study. Among them, 
188 patients had no adverse events at the MTX dose being administered at the time of blood collection and they 
were assigned to the AE (− ) group. We used criteria of the adverse events which were defined by the Japanese 
Pharmaceuticals and Medical Devices Agency for evaluation of adverse events in our study. All patients received a 
stable dose of MTX orally for at least more than 3 months before blood sample collection. They all took folic acid 
(5 mg/week) at 48 hours after MTX administration.

Demographic and clinical details were collected by using standard data collection forms. Disease activity was 
assessed from the swollen joint count, tender joint count, and physician’s global assessment of disease activity, 
and patient’s assessment of pain and global assessment of disease activity, which were measured by 100 mm visual 
analog scales (VAS). DAS28-ESR (0.56 ×  √ (tender joint count) +  0.28 ×  √ (swollen joint count) +  0.7 ×  LN(ESR) 
+  0.014 ×  (VAS))11 was calculated, as were CDAI (tender joint count +  swollen joint count +  patient’s VAS +  phy-
sician’s VAS)12 and SDAI (CDAI +  C-reactive protein)13.

The protocol of this study was approved by the Institutional Review Board for Genetic Research of Toho 
University (approval number: 24-2) and written informed consent was obtained from all of the patients prior to 
enrollment. This study was carried out in accordance with Ethical Guidelines for Human Genome/Gene Analysis 
Research by Ministries of Education, Culture, Sports, Science and Technology; Health, Labour and Welfare; and 
Economy, Trade and Industry of the Japanese Government.

Determination of MTXPG in RBCs. Whole blood sample was drawn at various timing from the day of oral 
MTX administration, however, no patient received MTX just the same day of the sampling. A sample of whole 
blood (6 ml) was collected in a tube containing EDTA. After removing 0.3 mL of whole blood for genetic testing, 
RBCs and plasma were immediately separated by centrifugation for 10 min, and then were stored at − 80 °C until 
analysis.

MTXPGs were measured in aliquots of the cell pellet with an LC-MS/MS assay system by the method of den 
Boer et al.24 with slight modifications. Briefly, analyses were performed on a LC-MS/MS system consisting of a 
UFLC/TSQ Quantum Ultra (Shimadzu, Kyoto, Japan) triple quadrupole mass spectrometer with an electros-
pray ionization source. MTXPG1-6 standards were purchased from Schircks Laboratories (Jona, Switzerland). 
LC-MS-grade methanol, ammonium bicarbonate, and perchloric acid were obtained from Wako Junyaku (Tokyo, 
Japan), while ammonium hydroxide was purchased from Sigma-Aldrich (St. Louis, MI). Chromatography was 
performed after partial-loop injection of a 10 μ L sample, using a YMC-Triart C18 column (2.0 ×  100 mm, 3.0 μ m) 
(YMC, Kyoto, Japan) at 40 °C. The mobile phase consisted of (A) 10 mM ammonium bicarbonate adjusted to pH 
10 with 25% ammonium hydroxide and (B) acetonitrile at a flow rate of 0.4 mL/min. Elution was done according 
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to the following program: isocratic hold with 2% B for 0–4.5 min, a linear gradient to 40% B from 4.5–5.1 min; 
a linear gradient to 95% B from 5.1–6.1 min; and isocratic hold with 98% B from 6.1–11.00 min. The electros-
pray ionization source was operated in the positive mode with the following fixed settings and capillary voltage, 
1.00 kV; dissolution temperature of 220 °C, nitrogen gas flow rate of 1,000 L/hour, and cone gas (nitrogen) flow 
rate of 50 L/hour. Argon was used as the collision gas at a flow rate of 0.20 mL/min. The specific settings for each 
MTXPG were as follows: dwell time was 0.1 second for all MTXPGs, while the cone voltage was 30, 30, 50, 60, 
55, and 55 V for MTXPG1 to MTXPG6, respectively. Collision energy was set at 20, 20, 40, 40, 50, and 50 eV for 
MTXPG1 to MTXPG 6, respectively.

Genetic analysis. Samples of whole blood (0.3 mL) were stored at − 80 °C until DNA was extracted with a 
Maxwell 16 DNA Purification Kit (Promega, IL). Then single nucleotide polymorphisms (SNPs) of the SLC19A1 
(rs1051266), FPGS (rs10106, rs1054774, rs1544105), and GGH (rs719235, rs1800909, rs3758149, rs11545078, 
rs12681874) genes were determined by the polymerase chain reaction-restriction fragment length polymorphism 
assay using a TaqMan kit (Applied Biosystems, Foster City, CA) according to the manufacturer’s protocol.

Statistical analysis. Stastical analysis was performed with Prism ver. 5.0 software (Graphpad Software, San 
Diego, CA). Numerical data are expressed as both the mean ±  SD and the median with interquartile range (IQR). 
The Mann-Whitney U test and the chi-square test (or Fisher’s exact test) were used to compare categorical data 
between two groups, while the Kruskal-Wallis test was applied to compare numerical data among three groups. 
Simple linear regression analysis was used to assess correlations between RBC MTXPGs concentrations and 
patient characteristics. Stepwise forward multiple regression analysis was also performed. The level of significance 
was set at P <  0.05 for all analyses.
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