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Down-regulation of β-arrestin2 
promotes tumour invasion and 
indicates poor prognosis of 
hepatocellular carcinoma
Wu-Yi Sun1,2,3,*, Shan-Shan Hu1,2,3,*, Jing-Jing Wu1,2,3, Qiong Huang1,2,3, Yang Ma1,2,3,  
Qing-Tong Wang1,2,3, Jing-Yu Chen1,2,3 & Wei Wei1,2,3

β-arrestins, including β-arrestin1 and β-arrestin2, are multifunctional adaptor proteins. β-arrestins 
have recently been found to play new roles in regulating intracellular signalling networks associated 
with malignant cell functions. Altered β-arrestin expression has been reported in many cancers, but its 
role in hepatocellular carcinoma (HCC) is not clear. We therefore examined the roles of β-arrestins in 
HCC using an animal model of progressive HCC, HCC patient samples and HCC cell lines with stepwise 
metastatic potential. We demonstrated that β-arrestin2 level, but not β-arrestin1 level, decreased 
in conjunction with liver tumourigenesis in a mouse diethylnitrosamine-induced liver tumour model. 
Furthermore, β-arrestin2 expression was reduced in HCC tissues compared with noncancerous tissues 
in HCC patients. β-arrestin2 down-regulation in HCC was significantly associated with poor patient 
prognoses and aggressive pathologic features. In addition, our in vitro study showed that β-arrestin2 
overexpression significantly reduced cell migration and invasion in cultured HCC cells. Furthermore, 
β-arrestin2 overexpression up-regulated E-cadherin expression and inhibited vimentin expression and 
Akt activation. These results suggest that β-arrestin2 down-regulation increases HCC cell migration 
and invasion ability. Low β-arrestin2 expression may be indicative of a poor prognosis or early cancer 
recurrence in patients who have undergone surgery for HCC.

Hepatocellular carcinoma (HCC) is the fifth most common type of malignancy and the third leading cause of 
cancer-related death worldwide1. The treatment options for HCC are limited. Surgical resection and liver trans-
plantation are the only curative treatments, but most patients are ineligible for surgery because they are often 
diagnosed at late stages of the disease2,3. Despite advances in HCC diagnosis and treatment in recent decades, 
the prognoses of patients with advanced HCC remain very poor, mainly due to the high rates of recurrence and 
metastasis associated with the disease4. Therefore, it is necessary to elucidate the molecular pathogenesis of HCC 
to identify novel markers with which to diagnose and treat this deadly disease, as well as to determine its prog-
nosis in affected patients5.

The arrestin family comprises the following four members: β​-arrestin1, β​-arrestin2, x-arrestin, and s-arrestin6. 
β​-arrestin1 and β​-arrestin2 have been extensively studied and are ubiquitously expressed, whereas x-arrestin 
and s-arrestin are found exclusively in the visual system. Both β​-arrestin1 and β​-arrestin2 can transduce G 
protein-coupled receptor (GPCR) signals by forming protein complexes with signalling molecules downstream 
of G protein to mediate GPCR desensitization, internalization, degradation and recycling7,8. β​-arrestins have 
recently been found to play new roles in regulating intracellular signalling networks associated with malignant 
cell functions, including the extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and phos-
phoinositide 3-kinase (PI3K)-Akt9,10. Altered β​-arrestins expression levels have been reported in many cancers, 
including lung cancer11, colorectal cancer12, ovarian cancer13, bladder cancer14, and breast cancer15.
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Although β​-arrestins can transduce multiple signals in cells, little is known about their participation in HCC 
progression. To date, no studies have reported the clinicopathologic significance of β​-arrestins in HCC. This study 
was designed to investigate the role of β​-arrestins in HCC and HCC cell invasion. Our current studies of mouse 
diethylnitrosamine (DEN)-induced liver tumour models demonstrate that gradual decreases in β​-arrestin2 
expression, but not β​-arrestin1 expression, are associated with hepatocarcinogenesis. To assess the importance of 
β​-arrestins in HCC, tumour samples from HCC patients were analysed. We found that β​-arrestin2 is expressed 
in low levels in HCC tissues compared with peritumoural tissues, and that its low expression is strongly asso-
ciated with aggressive pathologic features and is predictive of a poor prognosis in HCC patients after surgery. 
Furthermore, β​-arrestin1 and β​-arrestin2 expression in human HCC cell lines with stepwise metastatic potential 
was evaluated in vitro. The data presented herein indicate that β​-arrestin2 expression gradually decreases with 
increasing HCC cell line metastatic potential, and that β​-arrestin2 overexpression inhibits HCC cell metasta-
sis and invasion, reduces Akt activation, increases E-cadherin expression, and decreases vimentin expression. 
Altogether, these findings suggest that β​-arrestin2 acts by down-regulating the Akt pathway to inhibit HCC cell 
metastasis and invasion. β​-arrestin2 may therefore has potential as a prognostic and treatment marker in HCC.

Results
Decreases in β-arrestin2 expression in liver tumourigenesis in vivo.  To study the dynamic expres-
sion of β​-arrestin1 and β​-arrestin2 in vivo, we established a mouse DEN-induced liver tumour model to inves-
tigate the changes in the expression of these proteins during HCC progression. Significant increases in liver 
size were observed as early as 8 weeks after DEN injection, and these increases continued throughout the study 
period. Additionally, colour changes were noted in DEN-treated livers, as they became more inhomogeneous, 
spotty and paler than normal control livers. No hepatic nodules were visible in the livers of normal mice. Very few 
small nodular lesions were noted in the liver parenchyma at 16 weeks after DEN injection. However, prominent 
macroscopic nodules were noted in DEN-treated mice at 32 weeks after injection. These nodules ultimately occu-
pied most of liver surface (Fig. 1a).

Haematoxylin and eosin (H&E) staining of the livers of normal mice demonstrated anastomosing plates of 
hepatocytes radiating from the centrilobular venule towards the periphery of the hepatic lobule, as shown in 
Fig. 1b. These hepatocytes were tightly packed and exhibited pink staining and round violet nuclei containing 
prominent nucleoli. The liver sections exhibited intra-lobular inflammatory cell infiltration, and various degrees 
of fibrosis, hepatocyte injury and degeneration at 16 weeks post-DEN injection. The liver sections exhibited 
significant hepatocyte architecture loss at 32 weeks post-injection, as demonstrated by the presence of oval- 
or irregular-shaped cells. Binucleated pleomorphic and hyperchromatic large cells characterized by a central 
nucleolus and an enlarged cytoplasm could be clearly distinguished from adjacent normal parenchymal cells. 
Additionally, extensive vacuolation was noticed in the cytoplasm with masses of acidophilic material.

Western blot analysis was used to investigate β​-arrestins expression in liver tumourigenesis. The results 
showed that β​-arrestin2 protein levels decreased significantly in mouse liver tissues (24, 32, and 40 weeks) in 
conjunction with liver tumourigenesis. Furthermore, DEN-treated mice exhibited significantly lower β​-arrestin2 
expression than normal control mice (Fig. 1c). However, there was no difference in β​-arrestin1 expression 
between DEN-treated mice and normal control mice. We also observed that β​-arrestin2 expression did not 
change significantly with age in normal C57BL/6J mice (data not shown), indicating that ageing does not induce 
decreases in β​-arrestin2 expression. Altogether, our results suggest that greater mouse liver tumourigenesis is 
significantly associated with decreased β​-arrestin2 expression.

β-arrestin2 was frequently down-regulated in human HCCs.  To verify the roles of β​-arrestins in 
HCC further, we first examined the profiles of β​-arrestin1 and β​-arrestin2 expression in 19 pairs of tumour and 
adjacent noncancerous liver tissue samples via quantitative real-time reverse transcription polymerase chain 
reaction (qRT-PCR) and Western blot analysis. β​-arrestin1 and β​-arrestin2 expression bands varied across these 
samples. qRT-PCR demonstrated that β​-arrestin2 mRNA was down-regulated in HCC tissues by at least 48% 
compared with noncancerous liver tissues (Fig. 2a). However, no significant β​-arrestin1 mRNA down-regulation 
was observed in HCC tissues. Western blot analysis confirmed that β​-arrestin2 expression was significantly lower 
in HCC tissues than in noncancerous liver tissues (Fig. 2b). This finding is consistent with the abovementioned 
decreases in β​-arrestin2 mRNA expression that occur in HCC tissues. Similar levels of β​-arrestin1 protein expres-
sion were observed in all materials examined (Fig. 2b).

β-arrestin2 down-regulation was associated with aggressive tumour behaviour and poor 
patient survival.  We next investigated the association between β​-arrestin2 dysregulation and disease pro-
gression via immunohistochemical staining of paraffin embedded primary HCC tumour samples with different 
histological grades (well-differentiated, moderately differentiated, or poorly differentiated) from 75 HCC patients 
and 18 histologically normal controls. Different HCC histological grades demonstrated different β​-arrestin2 
immunoreactivity (Fig. 2d). Well-differentiated HCC exhibited higher β​-arrestin2 expression than the other HCC 
histological grades, as β​-arrestin2 expression decreased from well-differentiated to poorly differentiated HCC. 
Furthermore, β​-arrestin2 expression levels were significantly lower in HCC livers than in normal control livers 
(P <​ 0.01). Positive β​-arrestin1 staining was also observed in liver tissues. There was no significant difference 
in β​-arrestin1 expression among well-differentiated, moderately differentiated and poorly differentiated HCC 
tissues and normal liver tissues (Fig. 2c). HCC patient β​-arrestin2 expression scores are summarized in Table 1. 
Clinicopathologic analysis revealed that β​-arrestin2 down-regulation in HCC was significantly associated with 
aggressive pathologic features, including advanced tumour stage (P =​ 0.003), metastasis (P =​ 0.024), poor tumour 
cell differentiation (P =​ 0.040) and large tumour size (P =​ 0.012).
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Furthermore, to determine the prognostic significance of β​-arrestin2 down-regulation in HCC, we analysed 
the correlation between β​-arrestin2 expression in HCC and patient survival. We found that low β​-arrestin2 
expression was associated significantly with poorer 3-year overall survival rate (P =​ 0.004) and 3-year disease-free 
survival rate (P =​ 0.002) in our HCC cohort (Fig. 3). Collectively, our findings suggest that loss of β​-arrestin2 
expression may play an important role in HCC metastasis.

Low β-arrestin2 expression was significantly correlated with HCC metastasis.  According to our 
qRT-PCR results, β​-arrestin2 expression levels were negatively correlated with HCC cell line metastatic potential. 

Figure 1.  Time course analysis of the liver at different time points in DEN-induced liver tumourigenesis. 
(a) Representative photographs of liver tissue samples from control mice and from mice that developed tumours 
post-DEN injection. (b) Representative photographs of H&E staining of tissue samples from mice treated with 
DEN at different time points. (c) Time course analysis of β​-arrestin1 and β​-arrestin2 expression by Western 
blotting in DEN-treated mice. The protein quantification bar graph was plotted from no less than 3 independent 
experiments. The densitometry values in the histograms are expressed as fold changes relative to week 0, which 
was assigned a value of 1. The data from three independent experiments are shown as the mean ±​ SD. **P <​ 0.01 
compared with the week 0 group.
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HCCLM3, the HCC cell line with the highest metastatic potential, exhibited significantly lower β​-arrestin2 
expression than the other HCC cell lines and the L-02 cell line (Fig. 4a). Consistent with these qRT-PCR data, we 
observed that β​-arrestin2 protein was expressed at a higher level in immortalized normal L-02 liver cells than in 
HCC cells. β​-arrestin2 exhibited reduced expression in HepG2 and SMMC-7721 cells compared with L-02 cells 
and exhibited minimal expression in highly metastatic MHCC97H and HCCLM3 cells (Fig. 4b). β​-arrestin2 
expression and subcellular localization was confirmed via immunofluorescence confocal microscopy (Fig. 4c). 
Immunofluorescence analysis showed that β​-arrestin2 was expressed predominantly in the cytoplasm but was 
also partially expressed in the cytoplasmic membrane in L-02, HepG2 and HCCLM3 cells. These immunofluo-
rescence staining intensity results were in accordance with our qRT-PCR and Western blotting results, suggesting 
that β​-arrestin2 expression gradually decreased in conjunction with HCC development.

Figure 2.  β-arrestin1 and β-arrestin2 expression in liver tissues. (a) Transcriptional β​-arrestin1 and  
β​-arrestin2 expression in tumour tissues and non-tumour tissues. (b) Representative Western blot analysis  
results for β​-arrestin1 and β​-arrestin2 expression in HCC and noncancerous liver tissue lysates. The densitometry 
values in the histograms are expressed as fold changes relative to non-tumour group, which was assigned a 
value of 1.The data from three independent experiments are shown as the mean ±​ SD. *P <​ 0.05 vs non-tumour 
group. (c) Positive optical density values of β​-arrestin1 and β​-arrestin2 expres.sion. **P <​ 0.01 compared with 
the normal control group. (d) Immunohistochemical analysis of β​-arrestin1 and β​-arrestin2 expression in 
normal liver tissues and HCC tissues with different histological tumour grades. The top panel shows H&E 
staining of serial sections. Immunohistochemistry demonstrated relatively high β​-arrestin2 expression in well-
differentiated HCC cells, moderate expression in moderately differentiated HCC cells, and only faint or negative 
expression in poorly differentiated HCC cells (Original magnification ×​200).
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β-arrestin2 overexpression suppressed HCC cell migration and invasion in vitro.  To determine 
whether β​-arrestin2 is involved in HCC cell migration and invasion, we used small interfering RNA (siRNA) tar-
geting β​-arrestin2 mRNA to determine the effects of endogenous β​-arrestin2 expression on HCC cell migration 
and invasion. We transfected siRNA targeting β​-arrestin2 or scrambled RNA into SMMC-7721 cells and HepG2 
cells exhibiting relatively higher endogenous β​-arrestin2 expression. β​-arrestin2 protein expression was signifi-
cantly reduced, as determined by Western blot analysis (Fig. 5a). Subsequent experiments showed that when the 

Clinicopathologic features Case

β-arrestin2 expression

χ2 P− + ++ +++

Age (years) 4.108 0.250

  <​50 37 11 11 7 8

  ≥​50 38 20 7 5 6

Sex 0.191 0.979

  Male 62 25 15 10 12

  Female 13 6 3 2 2

Liver cirrhosis 2.087 0.555

  Positive 60 24 15 11 10

  Negative 15 7 3 1 4

HBsAg 0.880 0.830

  Positive 57 22 14 10 11

  Negative 18 9 4 2 3

AFP (ng/ml) 1.613 0.656

  <​400 39 15 10 5 9

  ≥​400 36 16 8 7 5

Tumor differentiation 13.190 0.040

  Well differentiation 20 3 6 4 7

  Moderate differentiation 27 11 6 6 4

  Poor differentiation 28 17 6 2 3

TNM stage 14.020 0.003

  I-II 33 9 5 9 10

  III-IV 42 22 13 3 4

Metastasis 9.403 0.024

  Yes 35 19 10 3 3

  No 40 12 8 9 11

Tumor size (cm) 10.985 0.012

  <​5 36 10 7 8 11

  ≥​5 39 21 11 4 3

Table 1.   Correlation between β-arrestin2 expression and clinicopathologic characteristics in 75 HCC 
patients. AFP, α​-fetoprotein; TNM, tumor-node-metastasis; HBsAg, hepatitis B surface antigen.

Figure 3.  Kaplan-Meier analysis of overall survival (a) and disease-free survival (b) in 75 patients based on  
β​-arrestin2 expression. High β​-arrestin2 expression was associated with longer survival and disease-free 
survival than low β​-arrestin2 expression.
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β​-arrestin2 expression was reduced by β​-arrestin2 siRNA, SMMC-7721 and HepG2 cell migration and invasion 
ability increased significantly compared with control cell migration and invasion ability (Fig. 5b,c). These results 
indicate that β​-arrestin2 down-regulation is associated with HCC cell migration and invasion.

As we observed that loss of β​-arrestin2 was closely associated with human HCC aggressiveness and metas-
tases, we postulated that β​-arrestin2 overexpression in HCC cells impedes HCC cell migration and invasion 
ability. Thus, we transfected plasmids encoding HA-β​-arrestin2 into HCCLM3 cells and SMMC-7721 cells. 
Successful β​-arrestin2 overexpression was confirmed by qRT-PCR (Fig. 6a) and Western blotting (Fig. 6b). We 
also performed a wound-healing assay of in vitro cell migration, in which a ~300 μ​m-wide linear strip of cells 
was scraped from a confluent monolayer using a pipette tip. Wound closure was quantified from serial micro-
graphs, as shown in Fig. 6c. The wound-healing assay showed that wound closure was significantly decreased in 
β​-arrestin2-transfected cells compared with control tumour cells at 24 h after wound infliction (Fig. 6c). In vitro 
tumour cell invasion analysis was performed via transwell invasion assay. Figure 6d shows that β​-arrestin2 over-
expression suppressed HCC cell invasion ability, as demonstrated by decreases in migrated cells. Our results indi-
cate that β​-arrestin2 suppresses HCC metastasis by negatively regulating HCC cell migration and invasion ability.

β-arrestin2 inhibited HCC cell migration and invasion through Akt pathway down-regulation.  
To investigate the effects of β​-arrestin2 on epithelial-to-mesenchymal transition (EMT), we assessed the 
expression of two EMT markers: E-cadherin and vimentin16. E-cadherin was up-regulated, and vimentin was 
down-regulated in conjunction with β​-arrestin2 overexpression in HCCLM3 cells and SMMC-7721 cells, as 
demonstrated by Western blot analysis (Fig. 7a).

Previous studies have shown that the ERK/MAPK and Akt signalling pathways are important for cancer devel-
opment and cancer cell invasion17–20. It has also been reported that β​-arrestin2 plays a critical role in MAPK and 
Akt pathway regulation21,22. We therefore examined whether these proteins participate in β​-arrestin2-mediated 
inhibition of HCC cell migration and invasion. We introduced expression vectors carrying β​-arrestin2 into 

Figure 4.  β-arrestin1 and β-arrestin2 expression in HCC cell lines with stepwise metastasis potential.  
(a) qRT-PCR analysis of relative β​-arrestin1 and β​-arrestin2 mRNA levels in different cell lines. (b) Western blot 
analysis of β​-arrestin1 and β​-arrestin2 protein expression in the immortalized normal liver cell line, L02; the 
HCC cell lines, HepG2, SMMC-7721 and MHCC97L, MHCC97H, HCCLM3. The densitometry values in the 
histograms are expressed as fold changes relative to the L-02 group, which was assigned a value of 1. The data 
from three independent experiments are shown as the mean ±​ SD (a: P <​ 0.05 compared with L-02; b: P <​ 0.05 
compared with HepG2, SMMC-7721; c: P <​ 0.05 compared with MHCC97L). (c) β​-arrestin2 subcellular 
localization examined by immunofluorescence confocal microscopy. Nuclei were stained with DAPI.
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HCCLM3 cells and SMMC-7721 cells via transfection. Forty-eight hours after transfection, we examined 
ERK1/2 and Akt expression and phosphorylation. Decreased Akt phosphorylation (pAkt) was observed in 
β​-arrestin2-overexpressing cells compared with empty vector-transfected cells. By contrast, ERK phosphorylation 
was detected in all cells overexpressing β​-arrestin2 and cells transfected with the empty vector (Fig. 7b). These 
results suggest that β​-arrestin2 inhibits HCC cell migration and invasion via Akt signalling pathway inhibition.

Discussion
HCC is one of the most common fatal malignancies worldwide1. The high mortality rate associated with HCC is 
related mainly to its presentation at advanced disease stages, as well as its frequent metastasis and recurrence after 
surgical resection. Tumour invasion and metastasis is the major cause of HCC tumour recurrence, but promising 
HCC metastasis therapies are not available3. Hence, identifying the factors associated with tumour metastasis and 
the molecular mechanisms underlying tumour progression is very important23.

β​-arrestin1 and β​-arrestin2, the main members of the arrestin family, are ubiquitously expressed. β​-arrestins 
are classically known to regulate GPCR signalling through receptor desensitization and internalization24. Many 
recent studies have demonstrated that β​-arrestins unexpectedly function as scaffold proteins for many signalling 
molecules in the cytoplasm and nucleus, thus regulating gene expression and cellular responses25. Mounting 
evidence indicates that aberrant β​-arrestins expression are involved in several types of tumours. β​-arrestins have 
been implicated in cell survival26, apoptosis27, migration15, and tumour growth11, but their clinical relevance in 
terms of HCC progression and metastasis has never been elucidated. Our studies are designed to examine the 

Figure 5.  β-arrestin2 knockdown by siRNA increases HCC cell migration and invasion. (a) β​-arrestin2 
knockdown in SMMC-7721 cells and HepG2 cells, as confirmed by Western blot analysis. β​-arrestin2 band 
intensity was quantified by densitometry and normalized to β​-actin. The densitometry values in the histogram 
are expressed as fold changes relative to the control group, which was assigned a value of 1. The data from  
three independent experiments are shown as the mean ±​ SD. **P <​ 0.01 compared with the control group.  
(b) Representative photographs and a bar graph of the wound-healing assay are shown. The black line was used 
to mark the ranges of the scratches. (c) Transwell Matrigel invasion assays showed that the number of invasive 
cells in the β​-arrestin2 siRNA-treated group increased significantly compared with the number of invasive cells 
in the control group. **P <​ 0.01 compared with the control group.
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role of β​-arrestin2 in hepatocarcinogenesis. The data presented in this work demonstrate that β​-arrestin2 plays 
a crucial role in tumour growth, invasion, and metastasis. First, we demonstrated that β​-arrestin2 expression 
was decreased in mouse DEN-induced liver tumour tissues compared with normal control tissues via Western 
blotting analysis. Second, we showed that β​-arrestin2 expression was decreased in HCC patient tissues compared 
with noncancerous liver tissues via qRT-PCR, Western blotting and immunohistochemical staining analyses and 
demonstrated that its low expression is significantly associated with aggressive pathologic features and is pre-
dictive of poor HCC patient prognoses after surgery. Third, we confirmed that β​-arrestin2 expression gradually 
decreases in conjunction with increases in HCC cell line metastatic potential. Finally, the results of our in vitro 
depletion and overexpression experiments indicate that β​-arrestin2 can inhibit HCC cell metastasis and invasion 
by down-regulating Akt activation and vimentin expression and up-regulating E-cadherin expression.

Several preclinical models have been used to elucidate the molecular and cellular bases of HCC in patients, 
including rodent DEN treatment models. DEN is a carcinogen commonly used to induce HCC in rodent models. 
A single dose of DEN causes DNA damage and acute hepatitis development in 2-week-old mice, which ultimately 
leads to HCC development in these mice at approximately 8–10 months of age. DEN induces DNA adducts in 
hepatocytes undergoing cell division, eventually leading to HCC development28. The DEN rodent model has 
several advantages, as it induces HCC at a high rate and is highly reproducible29. Furthermore, DEN treatment 
facilitates the study of important molecular and cellular pathways involved in HCC development and is a valuable 
tool for investigating the ability of particular molecules to inhibit or promote liver cancer formation30–32. We used 
the DEN-induced liver tumour model in this study, employing Western blotting to detect dynamic β​-arrestin1 

Figure 6.  β-arrestin2 overexpression suppressed HCC cell migration and invasion. β​-arrestin2 was 
overexpressed in the HCCLM3 and SMMC-7721 cell lines via HA-β​-arrestin2-encoding plasmid transfection. 
Successful β​-arrestin2 overexpression was confirmed by qRT-PCR (a) and Western blotting (b). β​-arrestin2 
expression values were calculated as fold changes relative to the control, which was assigned a value of 1. (c) β​- 
arrestin2 overexpression significantly impeded HCCLM3 and SMMC-7721 cell migration ability. (d) Transwell 
Matrigel invasion assays showed that the number of invasive cells in the β​-arrestin2-overexpression group 
decreased significantly compared with the number of invasive cells in the control group. **P <​ 0.01 compared 
with the control group.
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Figure 7.  Effects of β-arrestin2 overexpression on E-cadherin and vimentin expression and the ERK 1/2 
and Akt signalling pathways. (a) The EMT biomarkers E-cadherin and vimentin were detected by Western 
blotting. E-cadherin expression increases and vimentin expression decreases after pcDNA3/β​-arrestin2-HA 
transfection are shown. (b) β​-arrestin2 overexpression inhibited Akt activation but had no effect on ERK 1/2 
phosphorylation. Columns represent the ratios of phospho-ERK1/2 to total ERK1/2 and phospho-Akt to 
total Akt. Data were normalized to the ratio of the control, which was assigned a value of 1 in the graphical 
presentation. In immunoblotting assay, gels were run under the same experimental conditions. **P <​ 0.01 
compared with the control group.
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and β​-arrestin2 expression in mouse liver tissue samples. Our results indicated that β​-arrestin2 protein expression 
was lower in mice liver tumour tissues than in normal liver tissues.

Some studies have shown that aberrant β​-arrestin2 protein expression is associated with various types of 
human malignancies33. For instance, β​-arrestin2 is highly expressed in the highly metastatic MDA-MB-231 breast 
cancer cell line and breast cancer tumours, and β​-arrestin2 mediates human breast cancer cell migration and 
invasion15. A recent investigation revealed that β​-arrestin2 is essential for the initiation and growth of intestinal 
tumours exhibiting elevated Wnt pathway activity34. By contrast, an increasing number of studies have indi-
cated that β​-arrestin2 expression is decreased in tumours. β​-arrestin2 depletion promoted tumour growth and 
angiogenesis in a murine model of lung cancer11. Moreover, serum β​-arrestin2 levels were significantly lower 
in non-small cell lung cancer (NSCLC) patients than in healthy controls, and NSCLC patients with high serum 
β​-arrestin2 levels had better prognoses than patients with lower levels35. In addition, β​-arrestin2 acts as a core-
pressor of androgen receptor (AR) signalling in prostate cancer, and AR expression and activity was negatively 
correlated with β​-arrestin2 expression in human prostate tissues36. However, no clinical studies regarding the 
association between β​-arrestin2 expression and HCC tumour metastasis and progression have been reported. 
In this study, we investigated the association between β​-arrestin2 expression and HCC clinicopathologic char-
acteristics. We found that β​-arrestin2 expression was down-regulated in advanced HCC and that β​-arrestin2 
down-regulation was significantly correlated with HCC tumour invasive features, including advanced tumour 
stage, metastasis, poorer tumour cellular differentiation and larger tumour size. In addition, decreased β​-arrestin2 
expression in HCC tissues was significantly associated with poor overall survival in HCC patients. The results 
suggest that loss of β​-arrestin2 expression may play an important role in HCC metastasis. Our in vitro studies 
support these findings and provide additional evidence that β​-arrestin2 expression gradually decreases in con-
junction with increases in HCC cell metastatic potential. Thus, low β​-arrestin2 expression may be a potential 
biomarker for HCC metastasis and poor patient survival.

β​-arrestin1 and β​-arrestin2, the main members of the arrestin family, are expressed ubiquitously. We also 
measured β​-arrestin1 expression in a DEN-induced liver tumour model and HCC patients. Intriguingly, the 
results showed that β​-arrestin1 expression did not change significantly during hepatocarcinogenesis and that 
β​-arrestin1 expression also did not vary significantly among HCC patients with tumours of different histological 
grades (well-differentiated, moderately differentiated, or poorly differentiated) and normal controls. Additional 
in vitro studies showed that no significant differences in β​-arrestin1 expression were observed among HCC 
cell lines with different metastatic potential and normal liver L-02 cells. Structural and functional differences 
between β​-arrestin1 and β​-arrestin2 may account for this divergence37. Although the structures of β​-arrestin1 
and β​-arrestin2 are highly homologous, the N-terminal domain and the conformation of β​-arrestin1 are different 
from those of activated β​-arrestin238,39.

Metastasis has always been a bottleneck with respect to tumour prognosis and therapy. Metastasis, both 
intrahepatic and extrahepatic, is particularly concerning and occurs in more than half of HCC cases. EMT, 
which is characterized by epithelial marker (E-cadherin) down-regulation or loss and mesenchymal marker 
(vimentin) up-regulation, is a crucial step in tumour invasion and metastasis. In a broad spectrum of cancers, 
including HCC17, invasion and metastasis progression may also involve localized EMT occurrences40, during 
which “abnormal epithelial cells” gradually display mixed epithelial and mesenchymal cell signatures character-
ized by loss of or decreases in cell-cell adhesion and polarity, as well as decreases in intercellular interactions, to 
rapidly transition into an aggressive phenotype to adapt microenvironments and ultimately establish secondary 
tumour lesions41. E-cadherin is a cell-cell adhesion protein that is thought to be a tumour suppressor and the 
primal factor governing EMT because it is silenced in many malignancies. In HCC patients, E-cadherin expres-
sion loss is correlated with a poor prognosis. Moreover, reduced E-cadherin expression is significantly asso-
ciated with intrahepatic metastasis42. Vimentin has been recognized as a very important EMT marker, and its 
overexpression has been strongly associated with metastatic phenotypes and poor prognoses43. Here, we found 
that elevated E-cadherin and decreased vimentin expression are associated with β​-arrestin2 overexpression. 
These results may have important implications regarding the role of β​-arrestin2 in tumour progression, as they 
indicate that β​-arrestin2 up-regulates E-cadherin expression and down-regulates vimentin expression, thereby 
participating in EMT.

The ERK pathway is activated in many types of human cancer and is recognized as a driving force for tumour 
initiation and progression19. Previous research also indicates that the PI3K/Akt pathway is involved in the patho-
genesis of several human tumours, including HCC. The Akt and ERK signalling pathways were recently reported 
to play a key role in cancer EMT. Hepatitis B virus X protein represses miRNA-148a to enhance tumourigen-
esis by mediating HCC EMT through the Akt and ERK signalling pathways44. ERK/Akt also regulates EZH2 
and E-cadherin to influence EMT in cancer45. TAAC3 promotes EMT through PI3K/Akt and ERK signalling 
pathway activation46. Hong KO and colleagues found that EMT can be reversed, as Akt inhibition restores 
E-cadherin expression and slows EMT in oral squamous cell carcinoma47. However, the relationships between 
β​-arrestin2-mediated HCC metastasis and invasion inhibition and Akt and ERK1/2 signalling have not been 
elucidated. Therefore, we examined the changes in Akt and ERK1/2 activation in HCCLM3 cells and SMMC-
7721 cells overexpressing β​-arrestin2. Our results demonstrated that when we enhanced β​-arrestin2 expression in 
HCC cells, E-cadherin expression increased, and vimentin expression and Akt activation decreased. By contrast, 
ERK phosphorylation did not change significantly. Our finding that β​-arrestin2 mediates metastasis and invasion 
inhibition by altering E-cadherin, vimentin and p-Akt expression raised the possibility that β​-arrestin2 prohibits 
Akt signalling activation and suppresses EMT, thereby reducing HCC cell invasion and metastasis.

In summary, we have provided evidence that β​-arrestin2 is down-regulated in HCC and that β​-arrestin2 
overexpression impedes HCC migration and metastasis through Akt pathway inhibition. Our results show that 
β​-arrestin2 plays an important role in HCC progression and metastasis. Future studies regarding the relation-
ship between β​-arrestin2 dysregulation and HCC metastasis may improve our understanding of the complicated 
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mechanisms underlying HCC progression and may also facilitate the development of novel strategies for treating 
advanced HCC.

Methods
Mice and liver tumourigenesis.  All mouse experiments were performed in accordance with the guidelines 
of the Animal Care and Use Committee of Anhui Medical University and were approved by the Ethics Review 
Committee for Animal Experimentation of the Institute of Clinical Pharmacology, Anhui Medical University. 
C57BL/6J mice were obtained from the Animal Center of Anhui Medical University. These mice were housed in 
a pathogen-free animal facility under a standard 12-h light/12-h dark cycle and provided ad libitum water and 
chow.

The DEN-induced mouse liver tumour model was established as described previously48. For long-term stud-
ies of liver tumour development and survival, mice at postnatal day 14 were administered single intraperitoneal 
injections of the genotoxic hepatocarcinogen DEN (Sigma-Aldrich, St. Louis, MO), which was dissolved in saline 
at a dose of 20 mg/kg body weight, and then weaned and maintained on regular chow. Littermates used as con-
trols were injected with equal volumes of saline. The mice were sacrificed at 8, 16, 24, 32, and 40 weeks after DEN 
injection. Immediately after euthanasia, their livers were excised and photographed. These liver specimens were 
snap-frozen in liquid nitrogen for protein isolation or rapidly fixed in buffered 10% formalin for 16 h for histo-
logic analysis.

Patients and clinical specimens.  Tumour specimens used for immunohistochemical staining were 
obtained from 75 HCC patients who underwent surgery for tumour resection between 2005 and 2008 in the 
Affiliated Hospital of Anhui Medical University. The clinicopathologic characteristics of these 75 patients are 
summarized in Table 1. Metastasis defined as intrahepatic metastasis and hepatic hilar lymph node metastasis. 
Normal liver samples were collected from 18 patients with intrahepatic biliary lithiasis. Nineteen samples each 
of tumour tissue and adjacent noncancerous liver parenchyma used for qRT-PCR assay and Western blot anal-
ysis were randomly collected from HCC patients who underwent surgical resection at the Affiliated Hospital of 
Anhui Medical University, Hefei, China. All tissues were collected immediately upon tumour resection in the 
operating theatre, snap-frozen in liquid nitrogen and then stored at −​80 °C until use. This study was approved by 
the research ethics committee of Anhui Medical University, and all patients provided written informed consent 
to participate. The study was performed in accordance with the guidelines established by the Science Council of 
China.

Cell lines.  HCC cell lines with stepwise metastatic potential (MHCC97L, MHCC97H, and HCCLM3, which 
are hepatitis B virus [HBV]-positive cell lines with the same genetic background but different lung metastatic 
potentials)49, were purchased from Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 
China. The normal liver cell line L-02 and the HCC cell lines with relatively low metastatic potential HepG2 and 
SMMC-7721 were obtained from the Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 
Shanghai, China. These 3 cell lines were HBV negative. All cell lines were maintained in high glucose DMEM 
(Life Technologies Inc., USA), supplemented with 10% FCS (Hyclone, Logan, UT), 100 IU/mL penicillin and 
100 mg/mL streptomycin in humidified atmosphere of 5% CO2 at 37 °C.

Histology and immunostaining.  Formalin-fixed, paraffin-embedded liver tissues were sectioned at a 
thickness of 4 μ​m. For histological evaluation, H&E staining was performed using standard protocols. For immu-
nohistochemical staining, tissue sections were deparaffinized in xylene and rehydrated using a graded series of 
ethanol/water solutions. These sections were retrieved in 10 mmol/L sodium citrate buffer (pH 6.0) in a micro-
wave oven (300 W) for 10 min at 100 °C and then cooled to room temperature before being stained. Endogenous 
peroxidase activity was quenched by treatment with 3% H2O2 in methanol for 10 min. The sections were blocked 
in 0.25% normal goat serum in TBS for 1 h at room temperature and then incubated with primary antibodies to 
β​-arrestin1 and β​-arrestin2 (Santa Cruz Biotechnology, Santa Cruz, CA) for 1 h at 37 °C. Immunoreactivity was 
visualized using the streptavidin/peroxidase (SP) method (Zhongshan Goldenbridge Biotechnology Co., LTD, 
Beijing, China), according to the manufacturer’s protocol, and diaminobenzidine (DAB) was used as the chro-
mogen. The nuclei were lightly counterstained with haematoxylin solution. A negative control was prepared using 
the same staining procedure but was not incubated with the abovementioned primary antibodies. Images were 
obtained using an Olympus BX53 microscope, and semiquantitative analysis was conducted using Image-Pro 
Plus software. Five random fields were analysed per slide, and the relative intensities of β​-arrestin1 and β​-arrestin2 
expression were reflected by optical density values. To determine the correlation between β​-arrestin2 expression 
and HCC patient clinicopathologic characteristics, β​-arrestin2 protein staining intensity was scored semiquan-
titatively using a Quick-score (Q-score) method based on intensity and heterogeneity50,51. Staining intensity was 
scored as 0 (negative), 1 (weak), 2 (moderate), or 3 (strong). For heterogeneity scoring, the percentages of positive 
cells were divided into the following 4 grades: 0 (<​10%), 1 (10–33%), 2 (34–65%), and 3 (66–100%). The Q-score 
of a given tissue sample was the sum of its intensity and heterogeneity scores and ranged from 0 to 6. β​-arrestin2 
positivity was determined using the following criteria:-(Q-score <​1), + ​(Q-score =​ 1–2), +​+​ (Q-score =​ 3–4), 
and +​+​+​ (Q-score =​ 5–6). Immunohistochemical scoring was performed by 3 independent pathologists without 
knowledge of the patient characteristics.

Immunofluorescence.  Cells were plated on poly-D-lysine-coated coverslips in a 6-well dish. After 24 h, the 
cells were rinsed 3 times with PBS and fixed with 4% paraformaldehyde in PBS at room temperature for 20 min. 
The cells were then rinsed 3 times with PBS, permeabilized with 0.1% Triton X-100/PBS for 5 min at room tem-
perature, and then blocked with 1% bovine serum albumin in PBS for 1 h at room temperature. The samples were 
then incubated with primary antibodies to β​-arrestin2 (1:100 dilution) for 1 h before being washed with PBS, 
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incubated with Alexa Fluor 555-conjuated mouse secondary antibodies for 1 h at room temperature, washed 
again with PBS, and mounted with Vectashield. Immunofluorescence images were obtained using a Leica laser 
scanning confocal microscope (TCS SP5).

DNA transfection and siRNA transfection.  For transient wild-type β​-arrestin2 expression, we used 
a pcDNA3 expression plasmid encoding HA-β​-arrestin2, which was kindly provided by Dr. Pei G. (Shanghai 
Institute for Biological Sciences, China). For transfection in six-well plates, HCCLM3 cells and SMMC-7721 
cells were transiently transfected with the above β​-arrestin2 vector using Lipofectamine 2000, according to the 
manufacturer’s recommendations (Invitrogen Life Technologies, Carlsbad, CA). Five micrograms of DNA was 
used per well.

For β​-arrestin2 knockdown, SMMC-7721 cells and HepG2 cells were transfected with siRNA duplexes 
(GenePharma Co, China) featuring the following sequences specifically targeting β​-arrestin2 RNA: (sense) 
CCAACCUCAUUGAAUUUGATT and (antisense) UCAAAUUCAAUGAGGUUGGTT. A scrambled RNA 
duplex was used as a negative control. The cells were allowed to grow for 48 h after transfection before being har-
vested for migration and invasion assays. Cell pellets were made using control and β​-arrestin2-transfected cells 
48 h after transfection. siRNA-mediated target knockdown was confirmed by Western blotting.

Western blot analysis.  For Western blot analysis, total protein was prepared from the HCC tissue samples 
and cell lines. Western blot was performed as described previously using several antibodies52. Briefly, liver tissue 
was homogenized in a homogenizing buffer containing 20 mM Tris-HCl (pH 7.4), 5 mM EDTA, 2 mM EGTA, 
1.5 mM pepstatin, 2 mM leupeptin, 0.2 U/ml aprotinin, 0.5 mM phenylmethylsulfonyl fluoride, and 2 mM dithio-
threitol, using a Polytron homogenizer. Cells were washed twice with ice-cold PBS and lysed in lysis buffer (0.5% 
NP-40, 50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM sodium 
orthovanadate, 10 μ​g/mL aprotinin and 10 μ​g/mL leupeptin) for 20 to 30 min on ice. Protein concentration was 
determined by the Bradford assay. The proteins were resolved by sodium dodecyl-sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and then transferred to polyvinylidene fluoride (PVDF) membranes (Millipore, 
Bedford, MA). The membranes were blocked with 5% non-fat dry milk in 0.05% Tween 20–PBS for 2 h and then 
incubated overnight at 4 °C with primary antibodies against β​-arrestin1, β​-arrestin2, E-cadherin (Santa Cruz 
Biotechnology, Santa Cruz, CA), vimentin, p-ERK1/2, ERK1/2, p-Akt, Akt (Cell Signaling, Danvers, MA), and 
β​-actin. Immunoblot was done with the indicated primary antibody followed by the appropriate horseradish 
peroxidase (HRP)-conjugated secondary antibody for 2 h and visualized by ECL detection kit (Pierce Chemical, 
Rockford, IL). Autoradiographs were scanned using a Image-Pro Plus Imaging analysis software (Media 
Cybernetics, USA). All the experiments reported in this study were performed three times and the results were 
reproducible.

Quantitative real-time PCR.  Real-time PCR was carried out to determine β​-arrestin1 and β​-arrestin2 
gene expression in tumour and nontumour liver tissue samples and HCC cell lines with stepwise metastatic 
potential. Total RNA was isolated using Trizol reagent (Invitrogen, Carlsbad, CA), and complementary DNA 
(cDNA) was synthesized using a RevertAid First Strand cDNA Synthesis Kit (Fermentas, Vilnius, Lithuania), 
according to the manufacturer’s instructions. Real-time PCR was carried out using a Real-time PCR Detection 
System (ABI 7500) using an SYBR GreenER qPCR SuperMix Universal Kit (Invitrogen, Carlsbad, CA), according 
to the manufacturer’s instructions. GAPDH cDNA amplification was used as an internal control for all real-time 
PCR amplification reactions. The primer sequences for each gene were as follows: β​-arrestin1, forward primer:  
5′​-GGTAATAGATCTCCTTATCC-3′​ and reverse primer: 5′​-CCACAAGCGGAATTCTGTG-3′​; β​-arrestin2, for-
ward primer: 5′​-CCACGTCACCAACAATTCTG-3′​ and reverse primer: 5′​-TTGGTGTCTTCGTGCTTGAG-3′​;  
and GAPDH, forward primer: 5′​-TCAAGAAGGTGGTGAAGCAG-3′​ and reverse primer: 5′​-AGGT 
GGAAGAATGGGAGTTG-3′​. The cycle threshold value was defined as the PCR cycle number at which the 
reporter fluorescence crossed the threshold. The cycle threshold value of each product was determined and nor-
malized against that of the internal control, GAPDH.

Wound-healing assay.  Cells were seeded in six-well plates and incubated overnight in starvation medium. 
The cells were then transfected with the indicated pcDNA3/β​-arrestin2-HA or β​-arrestin2 siRNA for 48 h. The 
cell monolayers were subsequently wounded with a sterile 200 μ​L pipette tip and washed with starvation medium 
to remove detached cells. Wound closure was followed via microscopy at 24 h after wound infliction. The cells 
were photographed using an Olympus IX-71 inverted microscope. Wound healing was quantified as the mean 
percentage of the wound closure area relative to the area of the initial wound using Image J software.

Invasion assay.  Cell invasion was analysed using a modified Boyden chamber (Corning Costar, Rochester, 
NY, USA) containing a gelatin-coated polycarbonate membrane filter (6.5 mm diameter, 8 μ​m pore size). The 
upper surface of the filter was coated with 20 μ​L of Matrigel (BD Biosciences, Bedford, MA, USA). The cells 
were transfected with the indicated pcDNA3/β​-arrestin2-HA or β​-arrestin2 siRNA for 48 h. Then, the cells were 
trypsinized, 5 ×​ 104 cells in culture medium supplemented with 1% FBS were added to the upper chamber, and 
medium containing 10% FBS as a chemoattractant was added to the lower chamber. The cells were then incubated 
at 37 °C in 5% CO2. Noninvading cells were subsequently removed from the upper surface via scrubbing with a 
cotton swab, whereas cells that migrated to the lower surface of the filter were fixed with 3.7% (w/v) paraformal-
dehyde, stained with 0.5% (w/v) crystal violet, and counted using a light microscope.

Statistical analysis.  Statistical analyses were performed using SPSS software version 15.0 (SPSS, Chicago, 
IL). Cumulative survival time was calculated by the Kaplan-Meier method and analyzed by the log-rank test. 
Univariate and multivariate analyses were based on the Cox proportional hazards regression model. Values in 
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figures are given as means and standard deviation of the mean if not otherwise indicated. The analysis of variance 
(ANOVA) and Student’s t-test are used in the SPSS software to determine significant differences between groups. 
Values of P less than 0.05 were considered to be significant.
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