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The generalized harmonic potential 
theorem in the presence of a time-
varying magnetic field
Meng-Yun Lai & Xiao-Yin Pan

We investigate the evolution of the many-body wave function of a quantum system with time-varying 
effective mass, confined by a harmonic potential with time-varying frequency in the presence of a 
uniform time-varying magnetic field, and perturbed by a time-dependent uniform electric field. It is 
found that the wave function is comprised of a phase factor times the solution to the unperturbed 
time-dependent Schrödinger equation with the latter being translated by a time-dependent value that 
satisfies the classical driven equation of motion. In other words, we generalize the harmonic potential 
theorem to the case when the effective mass, harmonic potential, and the external uniform magnetic 
field with arbitrary orientation are all time-varying. The results reduce to various special cases obtained 
in the literature, particulary to that of the harmonic potential theorem wave function when the effective 
mass and frequency are both static and the external magnetic field is absent.

The harmonic potential theorem (HPT)1 concerning the many-body system trapped in an external harmonic 
potential describes the evolution of the wave function (WF) under the influence of an arbitrary external uniform 
electric field. It plays a significant role in time-dependent (TD) phenomena of quantum many-body systems. In 
particular, in the TD theories such as the TD density functional theory2–5, TD quantal density functional theory6,7 
and also in Bose-Einstein condensation(BEC)8. Soon after being discovered, the theorem was investigated in the 
presence of a static magnetic field but in the absence of harmonic potential by Vignale9, whereby he proved the 
theorem by the observation that an applied uniform TD electric field can be eliminated by transforming the static 
harmonically trapped system to an accelerated reference frame according to the classical equation of motion of 
the mass center. Furthermore, he stated that HPT is valid even in the case when the uniform magnetic field is 
time-varying(TV) and gave the explicit form of the TD potential in the accelerated frame. Recently, there has 
been considerable interest in the study of the theorem itself10. It has been generalized to the harmonic potential 
whose frequencies are TV11, the explicit form of the HPT WF in the presence of a perpendicular static magnetic 
field is also obtained12.

In the meantime, a TV effective mass could simulate the input or removal of energy from the system13. If 
quantum many-body systems interact with TV environment such as temperature, pressure, stress and energy, the 
effective masses will be modified. Thus, if the environment changes as time goes by, one would have a system with 
TV effective masses14. Thus, the study of harmonically trapped quantum systems with TV masses, particularly the 
model of TD harmonic oscillators (TDHO)15,16 has been extensively investigated (see, e.g.17–29). Moreover, there 
has been considerable interest in the quantum systems in a TV electromagnetic field18,30–38. The quantum prob-
lems that combine a TV effective mass and a TV external magnetic field have also been investigated. For instance, 
the Feynman’s propagator for a charged particle with TV mass in a TV magnetic or electromagnetic field were 
obtained39,40. Nevertheless, these studies all focused on the single-particle problems.

Besides its tremendous theoretical interest, the model of TDHO can be mapped to (i) a system of electric 
and magnetic fields in the interior of a Fabry-pérot cavity41–43, or (ii) in a cavity filled with a medium with TV 
dielectric constant44, or (iii) Paul traps systems45–47 where atomic particles are trapped in TV electromagnetic 
fields, or (iv) the effective Hamiltonian for dissipative systems24,48 confined in quantum dots49, if one applies TV 
electromagnetic fields to some of above mentioned systems, say the dissipative systems in quantum dots50, then 
one will obtain the model Hamiltonian (see eq. (1) below), or (v) a Bose-Einstein condensate subject to a rotating 
harmonic potential51 (see the Discussion below).
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In light of above facts, in this work we try to investigate the HPT in the most general form, i.e. the case when 
the effective mass, confining frequencies, and the external uniform magnetic field are all TV. After stating the 
generalized HPT, we then give the proof via two different approaches, i.e. the operator method and the accelerated 
frame approach9. We show that the WF is still comprised of a phase factor times the solution to the unperturbed 
TD Schrödinger equation with the latter being translated by a TD value that satisfies the classical driven equation 
of motion.

Results
Hamiltonian and the generalized HPT.  Consider a system of N identical particles with a TV effective 
mass m =​ m(t) under an external TV magnetic field with arbitrary orientation B(t) =​ (B1(t), B2(t), B3(t)), confined 
in an external TD harmonic potential = ⋅ ⋅v t tr r K r( , ) ( )1

2
, with K(t) an symmetric positive 3 ×​ 3 matrix. The 

TD harmonic potential can be used to describe many experimental situations. For instance in BEC experiments, 
it can describe rotating the quadratic trap51, modulated trapping52, or reflecting fact that the trap is perturbed to 
obtain the response spectrum of the condensate53–55. The two-body interaction between the particles u(ri −​ rj) can 
be of arbitrary form. A uniform TD driving electric field E(t) =​ f(t)/q is turned on at time t =​ 0 with q =​ −​e the 
charge of an electron. Thus, in the coordinate representation the Hamiltonian reads

∑… = + ⋅=
ˆ ˆH t H t e tr r r E r( , , , ; ) ( ) ( ) ,
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jE1 2 0

where the unperturbed component is
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with ri the transpose of the position vector ri. π̂i is the physical momentum operator

π = − ∇ − .ˆ i q
c

tA r( , ) (3)i i i

Choosing the symmetry gauge such that the vector potential A(ri, t) =​ (B(t) ×​ ri)/2, and substituting eq. (3) 
into eq. (2) yields
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where L̂i is the angular momentum operator of the i-th particle, and
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is still a 3 ×​ 3 real positive symmetric matrix with
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The model above considered is obvious an open system. Generally there exist two main approach for such 
systems. The first is so called system-plus-bath approach56–58, and the second one is the effective Hamiltonian 
approach24,59,60. The effective Hamiltonian usually has a TV mass that arises due to the interaction between the 
system and the bath48, and governed by the TD Schrödinger equation within the adiabatic approximation. Hence, 
the Hamiltonian of eq. (1) can be regarded as an effective Hamiltonian for some open system and obey the fol-
lowing TD Schrödinger equation,


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t
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N
N N

1 2
1 2 1 2

The core of the generalized HPT is the solution to the TD Schrödinger equation eq. (7). We refer to this solu-
tion as HPT WF. The generalized HPT states that the following WF
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satisfies eq. (7), where Ψ​0(r1, r2, …​, rN; t) is the solution of the following unperturbed Schrödinger equation:
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
∂Ψ …

∂
= Ψ … .=

ˆi t
t

H t tr r r r r r( , , , ; ) ( ) ( , , , ; ) (9)
N

NE
0 1 2

0 0 1 2

Note that the phase factor in eq. (8) has the form similar to classical action. In eq. (8), M(t) =​ Nm(t), ξ(t) is the 
translation vector, Pξ(t) the corresponding momentum vector (see eq. (26) below), and = ∑ NR r /i i  the center of 
mass coordinate. The translation vector ξ(t) satisfies the classical equation of motion
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with γ =t( ) d M t
dt

[ln ( ) ] , ωL(t) =​ NeB(t)/(M(t)c) =​ eB(t)/(m(t)c) the cyclotron frequency, and F(t) =​ Nf(t). Eq. (10) 
is just the classical equation of motion for a harmonically trapped particle with a TV mass in the presence of TV 
external magnetic field B(t), perturbed by an external force F(t).

Proof of the theorem via derivation.  Next we prove the generalized HPT by derivation. Using the center 
of mass (CM) and relative coordinates and momentums61–63
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and similarly for Y(2), …​Y(N), Z(2), …​Z(N), and P(2), …​P(N), the Hamiltonian of eq. (1) can be decomposed into the 
CM and relative motion parts,
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is the perturbation term due to the external electric field, and L̂R the angular momentum operator for the CM 
coordinate R. The relative motion part Ĥ t( )rel  contains only the relative coordinates, hence =ˆ ˆH t H t[ ( ), ( )] 0cm rel . 
Consequently, the CM motion and the relative motion are separable. Therefore, the total WF of the Hamiltonian 
is the product of the WFs of CM motion and relative motions:

ϕΨ … = Φ … .t t tr r r R R R( , , , ; ) ( , ) ( , , ; ) (17)N rel
N

1 2
(2) ( )

The relative motion WF ϕ … tR R( , , ; )rel
N(2) ( )  and the CM motion WF Φ​(R, t) satisfy their own Schrödinger 

equations, respectively, with certain initial conditions. In the following, we shall focus on the CM motion 
Hamiltonian of eq. (14), and try to find its WF Φ​(R, t). Similar to the structure of the HPT WF, let us assume

ξΦ = Φ −t e t tR R( , ) ( ( ), ), (18)iS tR( , )
0

where Φ​0(R, t) is the WF for the unperturbed CM motion Hamiltonian, i.e. which satisfies the following 
Schrödinger equation,

∂Φ
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t

H t tR R( , ) ( ) ( , ) (19)
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0 0

Next, we shall seek the analytical expressions for S tR( , ) and determine the translated vector ξ(t) which leads 
Φ​(R, t) to satisfy its own Schrödinger equation,
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Inserting eq. (18) into eq. (20) and using eq. (14), we have
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 since R now is the eigenvalue of the coordinate operator R̂, whose 
hat has been dropped since we work in the coordinate representation. With the ansatz that the phase factor can be 
cast into the following form,
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Making use of the following expression
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and inserting eqs (23) and (24) into eq. (21) yields
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By comparing the coefficients of ∇R on both sided of eq. (25), we have
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Inserting eq. (26) into eqs (27) and (28), we immediately find that the translation vector satisfies eq. (10). Note 
that ω ξ×
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 is the induced electric force by the TV magnetic field, and
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is just the classical action without the electric field term. Hence, from eqs (17), (18), (22), (10) and (29), we obtain 
the final WF of eq. (8). In other words, we have proved via derivation that the HPT WF eq. (8) is the solution of 
the TD Schrödinger equation eq. (7).
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The HPT WF is the key result of this paper. Note that if one requires that the initial state is the eigenstate of the 
unperturbed Hamiltonian, i.e. Ψ​(t =​ 0) =​ Ψ​0(t =​ 0), then usually one has the initial conditions: ξ(0) =​ 0, ξ =(0) 0. 
We stress that the HPT WF can reduce to various special cases existed in literature1,9–12. Thus, we have extended 
the HPT to the case when the quantum systems have a TV effective mass and TV confining frequencies, in the 
presence of a uniform TV magnetic field with arbitrary orientation.

The Hamiltonian and wave function in the accelerated frame.  Inspired by the method of Vignale9, 
we next show that our results can also be obtained by transforming the system to an accelerated reference frame. 
Making the acceleration transformations

ξ→ ′ = + = ′t t tr r r ( ); (30)i i i

on the system with ξ(t) governed by eq. (10), hence the connection between the original WF Ψ​(t) and the accel-
erating WF Ψ​′​(t) is

Ψ′ = Ψ .ξ
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The WFs Ψ​(t) and Ψ​′​(t) in the above equation satisfy the following Schrödinger equations respectively:
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From eqs (8), (31) and (33), the connection of the accelerating WF and the WF in the absence of the external 
electric field can be written in a simpler form as
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Applying ξÛ t( ) to the Schrödinger equation eq. (32), yields the explicit expression of the accelerating 
Hamiltonian,
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after a long calculation, above Hamiltonian can be recast into the following form

′ = +=


ˆ ˆH t H t i A t( ) ( ) ( ), (36)E 0 0

thus we immediately recognized that the WFs for ′Ĥ t( ) and =Ĥ t( )E 0  only differ by a phase which is exactly 
eq. (34). On the other hand, from eqs (34) and (36), one can readily see that the uniform time dependent electric 
field is eliminated by performing the acceleration transformations. This proves again the generalized harmonic 
potential theorem.

Discussion
In summary, we have presented the detailed analytical form of the evolution of the WF for an quantum system 
with TV effective mass trapped in a harmonic potential with TV frequency, in the presence of a TV uniform 
magnetic field with arbitrary orientation, and driven by a TD uniform electric field. It is found that the WF 
is comprised of a phase factor times the solution to the unperturbed TD Schrödinger equation with the latter 
being translated by a TD value that satisfies the classical equation of motion for a driven harmonic oscillator 
with TV mass in the presence of an external TV magnetic field. The analytical form of the phase is also given. 
The results can reduce to various special cases existed in the literature. We also show that our results can be 
obtained by transforming the system to an accelerated frame. Moreover, we stress that our results are applicable 
to both the fermionic and bosonic systems with general effective masses and external magnetic fields that can 
be described by some smooth functions of time, since the derivations do not rely on the statistical properties of 
the WF or any specifically choice of the TD terms and parameters. However, the external TD electric field must 
be uniform.
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Finally, we briefly discuss some real physical systems that our results might shed lights on. Notice that if one 
identifies the angular velocity Ω = e

m t c
B t( )

2 ( )
 and the gravity with the external driving force, then the model 

Hamiltonian of eq. (1) can be used to describe atoms trapped in a harmonic potential rotating instantaneous 
around the z axis51, the related experiment has been done at ENS65. In above case of a vertical axis of rotation, the 
only effect of gravity is a displacement of the equilibrium position66 thus can be ignored. When the axis of rotation 
was titled away from the trap axis such those experiments done in refs 67,68, the effect of gravity must be taken 
into account. For instance, in a uniformly rotating trap, it can causes resonances hence the escape of the center of 
mass for a collection of interacting particles from the trap66. Our results implies that even the rotation is titled and 
TV, the effect of gravity is solely to transport rigidly the center of mass, or density distribution of the system. This 
is expected to be confirmed experimentally.
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