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NMR based serum metabolomics 
reveals a distinctive signature in 
patients with Lupus Nephritis
Anupam Guleria1, Avadhesh Pratap2, Durgesh Dubey1,3, Atul Rawat1,3, Smriti Chaurasia2, 
Edavalath Sukesh2, Sanat Phatak2, Sajal Ajmani2, Umesh Kumar1, Chunni Lal Khetrapal1, 
Paul Bacon4, Ramnath Misra2 & Dinesh Kumar1

Management of patient with Lupus Nephritis (LN) continues to remain a challenge for the treating 
physicians because of considerable morbidity and even mortality. The search of biomarkers in serum 
and urine is a focus of researchers to unravel new targets for therapy. In the present study, the utility 
of NMR-based serum metabolomics has been evaluated for the first time in discriminating LN patients 
from non-nephritis lupus patients (SLE) and further to get new insights into the underlying disease 
processes for better clinical management. Metabolic profiling of sera obtained from 22 SLE patients, 
40 LN patients and 30 healthy controls (HC) were performed using high resolution 1D 1H-CPMG and 
diffusion edited NMR spectra to identify the potential molecular biomarkers. Using multivariate 
analysis, we could distinguish SLE and LN patients from HC and LN from SLE patients. Compared to 
SLE patients, the LN patients had increased serum levels of lipid metabolites (including LDL/VLDL 
lipoproteins), creatinine and decreased levels of acetate. Our results revealed that metabolic markers 
especially lipids and acetate derived from NMR spectroscopy has high sensitivity and specificity to 
distinguish LN among SLE patients and has the potential to be a useful adjunctive tool in diagnosis and 
clinical management of LN.

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by diverse clinical mani-
festations which affect multiple end organs including joints, skin, heart, lungs, blood vessels and kidneys1,2. The 
most severe manifestation of SLE is renal involvement, the condition known as lupus nephritis (LN)3. About 
50–60% of patients with SLE have nephritis with combinations of oedema, proteinuria, hypertension, urinary 
sediment abnormalities, hypocomplementemia and impaired renal function4–6. It may develop early in the course 
of SLE7, but in about 5–10% of cases, it becomes clinically apparent several years after the onset of SLE5,6,8. Despite 
advances in effective immunosuppressive therapies, the treatment of LN remains a challenge with considerable 
morbidity and progressive end stage renal disease requiring renal replacement therapy1,3. Renal biopsy is the gold 
standard for documenting histological class of nephritis and ascribing activity and damage features to guide the 
treatment9. However, being invasive, there are limitations on performing it serially for monitoring patients with 
LN. Thus there is an unmet need of biomarkers specific to nephritis among patients with SLE.

Metabolomics, the analysis of concentration profiles of low molecular weight metabolites present in biological 
fluids, has immense potential in identifying new biomarkers that are highly discriminatory for biological pertur-
bations or diseased states10–13. Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry (MS) 
are the most widely used analytical techniques for metabolomics studies; the former being preferred as it is rapid, 
requires minimal sample preparation and provides highly reproducible results. Previous metabolomics studies 
have shown the potential of metabolic profiling in the diagnosis of many inflammatory and rheumatic diseases such 
as ulcerative colitis, Crohn’s disease, inflammatory bowel disease, osteoarthritis and rheumatoid arthritis12,14–22.  
Metabolic disturbances associated with SLE have also been reported in urine and serum using NMR spectros-
copy and LC/MS and GC/MS-based approaches23–25. However, serum metabolomics of LN has not been stud-
ied so far to identify the metabolic changes to differentiate it from SLE. The aim of this study was to explore 
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whether NMR-derived serum metabolomics would reveal a distinctive signature of LN and thereby, suggest a 
proof-of-principle for the use of NMR based serum metabolomics in screening LN.

Results
1H NMR spectroscopy. Figure 1 shows the representative 1D 1H Carr Purcell Meiboom Gill (CPMG) NMR 
spectra of sera obtained from a HC, SLE and LN patient, respectively. The respective diffusion edited NMR spectra  
are shown in the inset of Fig. 1. The 1D 1H CPMG spectra of serum samples showed signals mainly from lipids/
lipoproteins (e.g. low-density lipoprotein (LDL), very low density lipoprotein (VLDL), unsaturated fatty acids 
(UFAs) etc.) and amino acids (e.g. alanine, valine, lysine, leucine, isoleucine, histidine, tyrosine, glutamine,  
glutamate and proline etc.). Other metabolites such as glucose, lactate, acetate, creatinine, citrate, formate, 
1,2-propanediol, choline and N-acetyl glycoproteins (NAG) were also assigned well. Visual inspection of the 
CPMG spectra revealed higher levels of glucose and lower levels of lactate in LN/SLE sera compared to HC. 
Comparison of CPMG and diffusion edited spectra revealed clear differences in their lipid and lipoprotein pro-
files too. While SLE serum samples have decreased levels of lipids and lipoproteins, LN serum samples show 
increased levels of lipids and lipoproteins compared to HC (see inset of Fig. 1).

Multivariate analysis and discovery of potential biomarkers. Principal Component Analysis (PCA) 
was performed on the NMR spectra and the obtained score plots showed a clear trend of group clustering and 
discrimination between the three cohorts (see supplementary Figures S1 and S2). One outlier was found in the 
healthy control group due to excessive alcohol peaks in its NMR spectrum and was excluded from the analysis. 
Pairwise Partial Least Squares Discriminant Analysis (PLS-DA) was further performed on both the CPMG and 
diffusion edited spectra. The PLS-DA score plots (Figs 2 and 3A–C), Supplementary Figure S3) showed that the 
clusters of LN and SLE patients are well separated from HC cluster and were also well discriminated from each 
other indicating that the metabolic profiles of LN and SLE patients were quite different. The model parameters 
for the explained variation, R2, which indicates goodness of fit and the predictive capability, Q2, were significantly 
higher (R2, Q2 >  0.5), indicating that the models possessed a satisfactory fit with good predictive power (Table 1). 
To evaluate the robustness of method, random permutation tests with 100 permutations were performed with 
derived PLS-DA models. The validation plots shown in Supplementary Figure S4A–F revealed the validity of 
original PLS-DA models, as both the permuted R2 and Q2 values on the left were significantly lower than the 
corresponding original points on right and the Q2 regression lines had negative intercept on y-axis. Furthermore, 
the calculation of analysis of variance CV-ANOVA validated the results, with highly significant p values (Table 1). 
Receiver operating characteristic (ROC) analysis performed on the Y-predicted values for each model gave the 
area under the curve greater than 0.99. It is important to mention here that the SLE and LN patients involved 
in this study were all on immunosuppressive medications including hydroxychloroquine (HCQ), Azathioprine 
(AZA), Cyclophosphamide, Mycophenolate and prednisolone (see Table 2). Each of these drugs may have its 

Figure 1. 800-MHz 1H CPMG NMR spectra (δ 0.5–4.7 and δ 5.2–8.5) of serum obtained from the (A) HC, 
(B) SLE and (C) LN patient. Inset shows the diffusion edited NMR spectra (δ 0.5–5.5) of serum obtained 
from the (D) HC, (E) SLE and (F) LN patient. The region of δ 5.2–8.5 is magnified 8 times compared with 
the corresponding region of δ 0.5–4.7 in the CPMG spectra for the purpose of clarity. Key: Ace: Acetate; 
Ala: Alanine; Cit: Citrate; Chol: Choline; Cn: Creatinine; For: Formate; Gln: Glutamine; Glu: Glutamate; 
His: Histidine; Ileu: Isoleucine; L: Lipid; L1/L2: CH3− (CH2)n−  of LDL&VLDL; L3/L4: CH3− (CH2)n−  of 
LDL&VLDL; L5: − CH2− CH2− C= O; L6: − CH2− CH= CH− ; L7: − CH2− C= O; L8: = CH− CH2− CH= ;  
L9: − CH= CH− ; Lac: Lactate; Leu: Leucine; Lys: Lysine; NAG: N-acetyl glycoprotein; Pd: 1,2-propanediol; 
Pro: Proline; Tyr: Tyrosine; Val: Valine; α -Glc: α -Glucose; β -Glc: β -Glucose. (here HC: Healthy control; SLE: 
Systemic lupus erythematosus without nephritis; and LN: Lupus nephritis).
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effect on metabolism; however, as the study involves heterogeneous patients in terms of medication, these effects 
have partly been randomized and minimized. To further rule out, if the medication has any profound effect 
on metabolism, the serum metabolic profiles of SLE/LN patients receiving HCQ/AZA medication were com-
pared with those not receiving these medications using PLS-DA analysis (i.e. HCQ group vs non-HCQ group 
and AZA group vs non-AZA group). The resulted PLS-DA score plots (see Supplementary material, Figure S5)  
clearly revealed that there are no overt metabolic differences between SLE/LN patients receiving HCQ/AZA 
medication and not receiving this medication.

Metabolic fingerprinting of LN and SLE patients. Metabolites responsible for discrimination in the 
PLS-DA score plots could be visualized by loading plots color-coded according to the absolute value of correla-
tion coefficients (|r|), where a hot-colored signal (red) indicated more significant contribution to class separation 
than a cold-colored one (blue). Figures 2 and 3(D–F) illustrate the loading plots of metabolites in the first latent 
variable of PLS-DA between HC vs. LN, HC vs. SLE and LN vs. SLE, respectively, for low molecular weight metab-
olites and lipoproteins. The discriminatory metabolites for LN and SLE along with their chemical shifts, variable 
importance on projection (VIP) score and p-value are listed in Table 3. The serum of LN patients was characterized 
by lower levels of amino acids (such as leucine, valine, alanine, glutamate, proline, histidine and glycine), citrate, 
acetate, lactate and choline compared with HC, whereas levels of creatinine, lipoproteins (LDL and VLDL), Lipids 
(L5-L9), N-acetyl glycoprotein and α /β  glucose were significantly elevated in sera of LN patients (Figs 2D and 3D).  
Compared with HC, the sera of SLE patients had lower levels of lipoproteins (LDL and VLDL), lipids, citrate, amino 

Figure 2. PLS-DA score plots derived from 1D CPMG 1H NMR spectra of serum samples (after the removal of 
lipid regions) between groups, (A) HC & LN, (B) HC & SLE, and (C) LN & SLE. (D–F) shows the color coded 
coefficient loading plot corresponding to the PLS-DA analysis shown in (A–C), respectively. The loading plots 
clearly demonstrate the metabolites responsible for the discrimination of the two groups in the corresponding 
score plots. The correlation coefficient of /r/> 0.419 was used as the cut-off value for the statistical significance 
based on the discrimination significance at the level of p =  0.05. Peaks in the positive direction (> 0) indicate 
the metabolites which are more abundant in the groups in the positive direction of first principal component. 
Consequently, metabolites which are more abundant in the groups in the negative direction (< 0) of first 
principal component are presented as peaks in the negative direction. Notions used for the assignments are 
same as that were used previously in Fig. 1.
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acids, lactate and choline, whereas levels of glucose and acetate were significantly elevated (Figs 2E and 3E). 
Consequently, the metabolites responsible for separating LN from SLE patients included elevated levels of lipo-
proteins (LDL and VLDL) and lipids, but decreased levels of acetate (Figs 2F and 3F).

Further validation of the identified potential biomarkers was performed by quantifying and comparing the 
characteristic spectral regions of these metabolite entities in 1D 1H NMR spectra. PLS-DA was again repeated 

Figure 3. PLS-DA score plots derived from 1D diffusion edited 1H NMR spectra of serum samples between 
groups, (A) HC & LN, (B) HC & SLE, and (C) LN & SLE. (D–F) shows the color coded coefficient loading plot 
corresponding to the PLS-DA analysis shown in (A–C), respectively. The loading plots clearly demonstrate 
the metabolites responsible for the discrimination of the two groups in the corresponding score plots. The 
correlation coefficient of /r/> 0.434 was used as the cut-off value for the statistical significance based on the 
discrimination significance at the level of p =  0.05. Peaks in the positive direction (> 0) indicate the metabolites 
which are more abundant in the groups in the positive direction of first principal component. Consequently, 
metabolites which are more abundant in the groups in the negative direction (< 0) of first principal component 
are presented as peaks in the negative direction. Notions used for the assignments are same as that were used 
previously in Fig. 1.

Comparison NMR spectra R2X (cum) R2Y (cum) Q2 (cum) CV-ANOVA, p-value Number of latent variables

HC vs LN 1D CPMG 0.75 0.95 0.87 9.66 ×  10−18 6

HC vs SLE 1D CPMG 0.75 0.94 0.86 1.66 ×  10−15 4

LN vs SLE 1D CPMG 0.58 0.77 0.54 1.88 ×  10−6 3

HC vs LN 1D Diffusion edited 0.86 0.84 0.68 6.42 ×  10−10 5

HC vs SLE 1D Diffusion edited 0.67 0.81 0.61 2.26 ×  10−7 3

LN vs SLE 1D Diffusion edited 0.65 0.73 0.57 2.23 ×  10−8 2

Table 1.  Goodness-of-fit of the PLS-DA models obtained from 1D CPMG and diffusion edited NMR-based 
analysis of serum samples.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:35309 | DOI: 10.1038/srep35309

using the quantified metabolite data and comparable results to those as mentioned above were obtained 
(Supplementary Figure S6). The representative box plots of the relative signal integrals for the potential metabolic 
markers of LN such as acetate, LDL/VLDL and lipids are shown in Fig. 4(A–D). The relative signal integrals of 
the significant metabolites (median and range) have also been presented in Supplementary Table S1. Further, 
the specificity and selectivity of these potential biomarker metabolites were checked using ROC curves analysis. 
The resultant area under the ROC curve (AUROC) values are listed in Supplementary Table S2. The ROC curves 
for the potential biomarkers highlighted in panel A-D of Fig. 4 are also shown in Fig. 4(E–H), respectively. It is 
clear from the ROC analysis that lipids, lipoproteins and acetate with AUROC greater than 0.95 have the highest 
potential to be useful serum biomarkers for LN.

We further investigated the correlation between the serum levels of identified discriminatory metabolites and 
clinical disease activity in LN patients. Of different metabolites that were significantly changed in the sera of LN 
patients (Table 3), the lipid metabolites (including LDL/VLDL) and acetate showed statistically significant cor-
relation with SLE disease activity index (SLEDAI). As shown in Fig. 5, the SLEDAI score has positive correlation 
with LDL/VLDL and lipids, whereas inverse correlation with acetate for LN group. We have also investigated 
the correlation between the discriminatory serum metabolites and SLE disease activity index (SLEDAI) for SLE 
group but no significant correlation was observed.

Discussion
In the present study, we have demonstrated the potential of 1H NMR-based metabolomic approach for identifying 
LN patients from SLE patients based on their characteristic serum metabolite profiles. To the best of our knowl-
edge, this is the first report on serum metabolic profiling for LN. The previous reports on SLE have shown that 
serum metabolome can result in the separation from HC24, and from rheumatoid arthritis (RA)23. However, these 
studies either did not categorize patients with nephritis or did not enrol LN as disease control and hence, did not 
demonstrate the ability of metabolic profiling to distinguish LN from SLE. The present study fills this lacuna and 
demonstrates that it is possible to separate LN patients from SLE patients and HC using both PCA and PLS-DA 
analysis applied to 1H-NMR spectra of human serum. The study revealed a wide range of differential metabolic 
signatures in SLE and LN patients. Significant metabolic disturbances were found in multiple cellular pathways, 
including glycolysis, amino acid metabolism and lipid metabolism. The metabolic network of potential biomark-
ers is presented in Fig. 6, which gives an overview of the metabolic pathways altered in SLE and LN conditions. 
The implications of these observed metabolic changes in the pathophysiology of LN have been discussed further.

An important feature accounting for the discrimination between patient cohorts and HC was the difference 
in relative levels of lipid and membrane metabolites. Compared to both SLE and HC, the LN patients showed 
significantly increased serum levels of VLDL/LDL and unsaturated lipids and decreased serum levels of acetate. 

SLE without Nephritis (SLE) Lupus Nephritis (LN) Healthy Control (HC)

Number 22 40 30

Gender (F/M) 22/0 37/3 25/5

Age (years), Mean ±  SD 32.3 ±  11.9 28.7 ±  10.1 28.3 ±  5.87

Duration of disease (Years), Mean ±  SD 7.86 ±  5.56 7.14 ±  4.65

Malar Rash (Yes/No) 15/7 20/20

Oral ulcer (Yes/No) 8/14 14/26

Discoid rash (Yes/No) 4/18 4/36

Photosensitivity (Yes/No) 16/6 21/19

Arthritis (Yes/No) 9/13 13/27

Neurological (Yes/No) 4/18 4/36

Serositis (Yes/No) 0/22 3/37

Haematological (Yes/No) 1/21 5/35

SLEDAI (score), Mean ±  SD 2.76 ±  3.06 6.4 ±  6.61

Serum Creatinine (mg/dl), Mean ±  SD 0.81 ±  0.22 1.03 ±  0.55

Urea (mg/dl), Mean ±  SD 31 ±  9.92 43.26 ±  33.88

Anti-dsDNA antibodies n (%) 13 (60) 33 (82)

C3 (mg/dl), Mean ±  SD 101.2 ±  46.6 92.20 ±  54.7

C4 (mg/dl), Mean ±  SD 27.4 ±  20.9 21.3 ±  17.0

Drugs n (%)

 Hydroxychloroquine 19 (86) 32 (80)

 Prednisolone (Steroid) 20 (91) 39 (98)

 Cyclophosphamide 0 (0) 4 (10)

 Azathioprine 3 (14) 16 (40)

 Mycophenolate 0 (0) 3 (8)

 Methotrexate 3 (14) 1 (2)

Table 2.  Demographics and Clinical characteristics of SLE, LN patients and Controls.
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Consistent with previous reports, hyperlipidemia (which might be related to impaired renal function) is the com-
monest manifestation of LN26, and represents a leading cause of cardiovascular complications and pre-mature 
mortality in LN patients26,27. Interestingly, the serum levels of lipid metabolites (including LDL/VLDL) showed 
positive and statistically significant correlation with SLEDAI score and this is also in line with previous observa-
tions that there is an increase in serum lipid levels with disease progression26. We have also observed an inverse 
correlation of SLEDAI score with acetate which is the end product of lipid metabolism and its decrease fur-
ther reflects a disturbed lipid metabolism in LN patients. However, contrary to previous reports, the serum lev-
els of VLDL/LDL and unsaturated lipids were found to be slightly decreased in SLE patients compared to HC. 
SLE patients are at increased risk of developing premature atherosclerosis and myocardial infarction associated 
with dyslipidemia such as raised LDL cholesterol, oxidized LDL (Ox-LDL) and low HDL26,28,29. B-cell depletion 
therapy has been shown to improve dyslipidemia implying the relation of dyslipidemia with disease activity30. 
The possible reason for decreased serum levels of LDL could be the excessive per-oxidation of circulatory LDL 
to Ox-LDL which is aberrantly involved in inflammatory processes through the formation of higher molecu-
lar weight complexes with distinct inflammatory mediators31,32. The NMR signal of these complexes are highly 
broadened and hidden in the spectral baseline rendering decreased NMR signal of LDL in sera of SLE patients. 
However, increased serum levels of acetate in SLE patients clearly indicate that the lipid metabolism is activated 
in SLE patients required to regulate the production of lipid and membrane metabolites.

Serum samples of SLE and LN patients contained significantly increased levels of N-acetyl glycoproteins 
(NAGs) and decreased levels of choline. NAGs are mainly acute phase proteins with anti-inflammatory properties 
and are expressed more during inflammation and immune responses33. Whereas, choline is an important interme-
diate of phospholipid metabolism, it is also a precursor in the synthesis of acetylcholine and phosphoryl-choline. 
Phosphoryl-choline is an essential component in membrane structure and therefore, decreased choline level 
in both SLE and LN patients might be related to the augmented utilization of phosphorylcholine for repairing 
the damaged cells/organelles under severe oxidative and systemic inflammatory condition. In concordance with 
serum choline levels, the present study also shows marked reduction in serum acetate levels in LN compared to 
SLE patients and HC suggesting acutely perturbed biosynthesis of acetyl-choline in LN.

Compared to HC, SLE/LN patients showed a significant increase in glucose accompanied by decrease in lac-
tate levels, suggesting disturbed glucose metabolism with dampened aerobic glycolytic activity. Further, we have 
also observed decreased levels of citrate in the sera of SLE/LN patients, indicating impaired aerobic glycolysis 
and thus dampened oxidative phosphorylation and ATP production in these patients. The similar higher glucose 

Metabolites Chemical shift

LN vs HC SLE vs HC LN vs SLE

Variation VIP p-value Variation VIP p-value Variation VIP p-value

Leu 0.95 ↓ 1.10 < 0.001 ↓ 0.91 0.036 — — —

Val 1.02 ↓ 1.80 0.006 ↓ 1.22 0.046 — — —

Ala 1.45 ↓ 3.22 0.031 ↓ 2.17 0.035 — — —

Ace 1.90 ↓ 0.62 0.001 ↑ 0.42 < 0.001 ↓ 1.44 < 0.001

NAG 2.02 ↑ 2.65 < 0.001 ↑ 0.99 < 0.001 — — —

Glu 2.34 ↓ 1.42 < 0.001 ↓ 0.94 0.001 — — —

Cit 2.51 ↓ 0.89 < 0.001 ↓ 0.70 < 0.001

Chol 3.20 ↓ 2.72 0.032 ↓ 3.92 0.001 ↑ 4.53 0.002

Pro 3.33 ↓ 1.68 < 0.001 ↓ 1.20 0.043 — — —

Gly 3.54 ↓ 3.33 0.01 ↓ 2.93 0.005 — — —

Lac 4.10 ↓ 8.98 < 0.001 ↓ 7.89 < 0.001 ↑ 3.13 < 0.001

Glucose 3.23–3.90, 4.63, 5.21 ↑ 1.00–6.30 0.001 ↑ 1.00–6.33 0.001 ↓ 1.00–6.09 < 0.001

His 7.03 ↓ 0.72 < 0.001 — — — — — —

L1\L2 0.78–0.90 ↑ 1.00–2.96 < 0.001 ↓ 1.00–3.76 < 0.001 ↑ 1.00–2.59 < 0.001

L3\L4 1.20–1.29 ↑ 2.00–10.1 < 0.001 ↓ 2.00–7.37 < 0.001 ↑ 2.00–9.70 < 0.001

L5 1.54 ↑ 0.78 < 0.001 ↓ 0.58 < 0.001 ↑ 0.81 < 0.001

L6 1.99 ↑ 1.50 < 0.001 ↓ 1.36 < 0.001 ↑ 1.65 < 0.001

L7 2.20 ↑ 1.06 < 0.001 ↓ 0.90 < 0.001 ↑ 1.10 < 0.001

L8 2.71 ↑ 0.37 < 0.001 ↓ 0.29 < 0.001 ↑ 0.42 < 0.001

L9 5.27 ↑ 1.40 < 0.001 ↓ 1.19 < 0.001 ↑ 1.32 < 0.001

Table 3.  Key observed metabolic differences between HC and LN, between HC and SLE, and between 
LN and SLE.  Chemical shift, variation, VIP score and p-values of the individual biomarkers are given. The 
statistical significance for various metabolites was determined by independent samples t-test. p-values less than 
0.05 were considered as significant. The arrows ↑  and ↓  indicate increase and decrease of metabolite levels in the 
LN and SLE cohorts compared with healthy control group, in case of LN vs. HC and SLE vs. HC, respectively, 
and in LN group in case of LN vs. SLE analysis. Variable importance in the projection (VIP) was obtained from 
PLS-DA. The low molecular weight metabolite markers were obtained from the PLS-DA analysis of CPMG 
NMR spectra, while the lipids and lipoproteins were obtained from the PLS-DA analysis of diffusion edited 
NMR spectra.
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levels and decreased lactate and citrate levels have also been found in the sera of SLE24 and Takayasu Arteritis (TA) 
patients34. Both SLE and TA are auto-immune diseases and clinically manifested with systemic inflammation which 
is known to trigger a hypercatabolic state, resulting in increased energy requirements and protein catabolism.

Our data also revealed decreased serum levels of several amino acids (such as glycine, alanine, valine, leucine, 
glutamate, proline and histidine) in both SLE and LN patients. Similar alterations have also been reported in 
autoimmune disorders associated with systemic inflammation and oxidative stress like SLE23,24, TA34 and RA23,  
suggesting aberrant amino acid catabolism and protein biosynthesis in these patients to regulate various bio-
logical functions such as gene transcription, cell cycle progression, inflammatory and autoimmune responses. 
Particularly, the lower serum levels of histidine –which is well-known for its anti-inflammatory and antioxidant 
properties– might be closely related to protein-energy wasting, inflammation and oxidative-stress35,36. Taken 
together, the elevated glucose levels in sera of SLE/LN patients and reduced levels of most of the glucogenic amino 

Figure 4. Representative box-cum-whisker plots showing quantitative variations of relative signal integrals for 
(A) Acetate, (B) L3/L4, (C) L5 and (D) L9 in LN, SLE and HC sera. (***p ≤  0.001; *p ≤  0.05). Red, blue and black 
bars represent LN, SLE and HC, respectively. In the box plots, the boxes denote interquartile ranges, horizontal 
line inside the box denote the median, and bottom and top boundaries of boxes are 25th and 75th percentiles, 
respectively. Lower and upper whiskers are 5th and 95th percentiles, respectively. Typical 1H NMR spectra of 
corresponding metabolites are shown in the left panel for all three groups. The potential of these metabolites in 
distinguishing LN from HC (blue dotted line), SLE from HC (red dotted line), or LN from SLE (green dotted 
line) were also analysed using the receiver’s operating characteristic (ROC) curves as displayed in (E–H).
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acids (such as glycine, alanine, glutamate, valine and histidine) and ketogenic amino acids (such as leucine), 
provided indications of a shift in energy production such as (a) profoundly dampened aerobic glycolysis and (b) 
utilization of metabolites other than glucose as an energy source, such as amino acids and ketone bodies. Our 
results also indicated an elevated serum level of creatinine in LN patients compared to SLE and HC, as expected 
with renal dysfunction. However, metabolomics revealed far more extensive differences between SLE and LN 
than could be learnt from a simple serum creatinine test.

The metabolic signatures in conjunction with biomarkers derived from proteomics and genomics studies 
have immense potential to predict disease course and follow treatment response which is a crucial pre-requisite 
to improve efficacy and decrease toxicity of the current treatment protocols. The present study provided proof of 

Figure 5. Serum levels of metabolic markers showing correlation with SLE disease activity index (SLEDAI) 
for LN group. 

Figure 6. Schematic representation of altered metabolic pathways in LN and SLE patients. The altered 
metabolites are shown in blue color. The red and green triangles stand for LN and SLE patients, respectively. 
Up and down triangles denotes higher and lower levels of respected metabolites compared to healthy controls. 
(*Indicates not significant).
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concept that NMR-based serum metabolomics approach has high sensitivity and specificity to discriminate LN 
from SLE cohorts. A potential metabolic hallmark discovered in this study apart from creatinine, is the elevated 
serum levels of LDL/VLDL lipoproteins (triglyceride and fatty acid) and decreased serum levels of acetate in LN 
compared to SLE patients. The obtained metabolic disturbances delineate some of the underlying biochemical 
processes and aid the understanding of the pathogenesis of this life-threatening complication of SLE. It is impor-
tant to mark here that the current study was performed with a limited number of samples and the metabolic 
changes present in the sera of LN patients should be further validated on larger prospective patient cohorts. After 
validation, these differential metabolic signatures would be used in clinical settings to improve the diagnosis and 
clinical management of LN.

Materials and Methods
Ethical Approval. All experimental protocols of this study were approved by the Institutional Research 
Ethics Committee, SGPGIMS, Lucknow and informed consents were obtained from all patients and healthy vol-
unteers before enrolment in the study. The methods used in this study were carried out in accordance with the 
approved protocols and guidelines.

Subjects and participants. The serum samples used in this study were collected from SLE and LN patients 
attending the Department of Clinical Immunology at SGPGIMS, Lucknow, India. Serum samples were collected 
from twenty two patients with SLE (22 females, mean age 32.3 ±  11.9 years), forty patients with LN (37 females,  
3 males, mean age 28.7 ±  10.1 years), and thirty healthy control subjects (25 females, 5 males, mean age 
28.3 ±  5.87 years). Serum creatinine was measured using automated analyzer (Randof Diagnostics, UK, Model 
Imola). The normal range of serum creatinine is 0.5–1.6 mg/dl and of urea is 17–52 mg/dl. The demographics and 
clinical characteristics of SLE and LN patients are tabulated in Table 2.

Sample collection and preparation for NMR spectroscopy. Venous blood samples were obtained 
from all subjects at early morning, after overnight fast to minimize the effect of dietary factors and inter-individual 
variations in metabolomics data37,38. Blood samples were kept in vacutainer tubes for 30 minutes at room temper-
ature for clotting. Clotted blood samples were centrifuged at 16278 rcf (relative centrifugal force) for 10 minutes 
to separate out the supernatant-serum, which was then frozen and stored at a temperature of − 80 °C, until the 
NMR measurements were performed. At the time of NMR measurement, serum samples were thawed at room 
temperature and mixed using a vortex mixer. Then, the aliquots of 250 μ L of serum were transferred into 250 μ L 
of saline buffer solution (in 100% D2O, NaCl 0.9%, 50 mM sodium phosphate buffer and pH 7.4) to minimize the 
variation in pH. The samples were centrifuged for 5 min at 6164 rcf and 450 μ L of each sample supernatant was 
subsequently moved into a 5 mm NMR tube (Wilmad Glass, USA).

NMR Measurements. The NMR experiments were performed at 298 K on Bruker Avance III 800 MHz 
NMR spectrometer (equipped with Cryoprobe) with a 5 mm broad-band inverse probe-head and Z-shielded 
gradient. The 450 μ L of serum sample was filled in 5 mm NMR tube (Wilmad Glass, USA) and a sealed capillary 
tube containing the known concentration of 0.1 mM TSP (Sodium salt of 3-trimethylsilyl-(2,2,3,3-d4)-propionic 
acid) dissolved in deuterium oxide (D2O) was inserted separately both for the purpose of locking and chemical 
shift referencing. Deuterium oxide (D2O) and sodium salt of trimethylsilylpropionic acid-d4 (TSP) used for NMR 
spectroscopy were purchased from Sigma-Aldrich (Rhode Island, USA). One‐dimensional CPMG and diffusion 
edited 1H-NMR spectra were recorded on all the serum samples using the Carr–Purcell–Meiboom–Gill pulse 
sequence (cpmgpr1d, standard Bruker pulse program)39 and the bipolar pulse pair longitudinal eddy current 
delay (BPP-LED) sequence40, respectively. The parameters used for 1D CPMG pulse sequence were as follows: 
spectral sweep width: 12 ppm; data points: 32 K; flip angle of radiofrequnecy pulse: 90°; total relaxation delay 
(RD): 5 sec; T2 filtering was obtained with an echo time of 200 μ s repeated 300 times, resulting in a total duration 
of effective echo time of 60 ms; number of scans: 128; window function: exponential and line broadening: 0.3 Hz. 
For diffusion edited 1H NMR pulse sequence, the square gradients of 70% of the maximum gradient strength 
(56 G/cm) and 2 ms duration (followed by a delay of 200 μ s to allow for the decay of eddy currents) were used. 
Diffusion time of 120 ms was used to attenuate the signals from low molecular weight compounds without affect-
ing the lipid signals. All the spectra or FIDs (free induction decays) were processed using Topspin-2.1 (Bruker 
NMR data Processing Software) using standard Fourier Transformation (FT) procedure following manual phase 
and baseline-correction. Prior to FT, each FID was zero-filled to 4096 data points and a sine–bell apodisation 
function was applied. 2D homonuclear 1H-1H total correlation spectroscopy (TOCSY) and 1H-13C heteronu-
clear single-quantum correlation spectroscopy (HSQC) spectra were acquired for selected samples to aid the 
spectral assignment. The details of various NMR parameters of these 2D homonuclear and heteronuclear exper-
iments are given in Supplementary material Appendix I. Spectral resonances were identified and assigned as far 
as possible, by comparing them with the chemical shifts available in the database library of Chenomx Profiler 
(NMR Suite, v8.1, Chenomx Inc., Edmonton, Canada) and further validated (a) using the freely available soft-
ware MetaboMiner41, (b) performing spiking experiments using standard chemicals (see Supplementary material, 
Figures S7 and S8) and (c) also using other existing databases and literature reports42–45.

Pattern recognition analysis of NMR data. The multivariate data analysis was performed on the 1D 
1H CPMG and diffusion edited NMR spectra for low molecular weight metabolites and lipids, respectively. To 
facilitate statistical analysis, the reduction of NMR data was done using Bruker AMIX software (Version 3.8.7, 
Bruker GmbH, Germany) in the chemical shift region δ 0.5–8.5 ppm for CPMG and δ 0.5–5.5 ppm for diffusion 
edited spcetra. The spectra were then binned into 0.01 ppm integrated spectral buckets. The chemical shift region 
δ 4.7–5.2 ppm was excluded from the analysis to elminite the residual signal of water and distorted region due to 
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water suppression. The lipid regions (0.7–0.9, 1.20–1.34, 1.52–1.56, 1.94–2.00, 2.19–2.23, 5.24–5.30 ppm) were 
also removed from the CPMG spectra to reveal the contribution of low molecular weight metabolites. The binned 
spectral data were obtained from AMIX after mean centering and normalization which was performed by divid-
ing each data point by the sum of all data points present in the sample to compensate for the differences in con-
centration of metabolites among individual serum samples. The data were scaled using unit variance in which 
identical weight was given to all variables. The resulting data matrices were then exported into Microsoft Office 
Excel 2010 and used for multivariate analysis using Unscrambler X Software (Version 10.3, CAMO USA, Norway) 
and SIMCA (Version 14.0, Umetrics AB, Singapore). To be noted here is that the diffusion edited spectra con-
tain signals mainly from lipid metabolites and these are not attenuated by overlapping signals of low molecular 
weight (MW) metabolites. Thus, DE spectra provide exquisite and reliable profiling of lipid metabolites. On the 
other hand, in CPMG spectra, the lipid signals may understate the statistical importance of low MW metabolites; 
therefore by excluding them from the analysis allows better comparison of low MW metabolites and surmounts 
their statistical importance as well. Therefore, lipid excluded CPMG spectral data has been complemented with 
diffusion edited spectra.

For determining the differences among HC and disease groups (SLE and LN), pair-wise multivariate analysis 
was performed for HC vs. LN, HC vs. SLE and LN vs. SLE groups. The obtained binned CPMG and BPP-LED 
NMR data matrices were first subjected to unsupervised principal component analysis (PCA) to examine inher-
ent clustering and to identify outliers. To further demonstrate the differences between the different groups, 
supervised partial least square-discriminant analysis (PLS-DA) was employed to help identifying potential dis-
criminatory metabolites. Model validation was done using repeated 7-fold internal cross validation. The reliability 
of the models were further rigorously validated by the permutation tests (n =  100) and CV-ANOVA (analysis of 
variance testing of cross-validated predictive residuals) tests. The receiver operating characteristic (ROC) analysis 
was obtained from Y predicted values to verify the robustness of PLS-DA models in discriminating the different 
cohorts. Area under the ROC curve (AUROC) was computed using the SPSS software (Version 11.2, IBM). The 
marker metabolites were identified from the loading plots (for PLS-DA) and the scores of variable importance 
on projection (VIPs).

Further, univariate analysis was performed by applying the independent samples T-test to several metabolites 
of interest (identified by the multivariate analysis) using SPSS software (Version 11.2, IBM). The correlations 
between the discriminatory serum metabolites and clinical disease activity index (SLEDAI score) were deter-
mined using the Pearson correlation coefficient. A 0.05 level of probability was used as the criterion for statistical 
significance.
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