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Interactome-transcriptome 
analysis discovers signatures 
complementary to GWAS Loci of 
Type 2 Diabetes
Jing-Woei Li1,2, Heung-Man Lee3,4,5, Ying Wang3,4, Amy Hin-Yan Tong4, Kevin Y. Yip1,5,6, 
Stephen Kwok-Wing Tsui1,2,5, Si Lok4, Risa Ozaki3,4,5, Andrea O Luk3,4,5, Alice P. S. Kong3,4,5, 
Wing-Yee So3,4,5, Ronald C. W. Ma3,4,5, Juliana C. N. Chan3,4,5 & Ting-Fung Chan1,5,6

Protein interactions play significant roles in complex diseases. We analyzed peripheral blood 
mononuclear cells (PBMC) transcriptome using a multi-method strategy. We constructed a tissue-
specific interactome (T2Di) and identified 420 molecular signatures associated with T2D-related 
comorbidity and symptoms, mainly implicated in inflammation, adipogenesis, protein phosphorylation 
and hormonal secretion. Apart from explaining the residual associations within the DIAbetes Genetics 
Replication And Meta-analysis (DIAGRAM) study, the T2Di signatures were enriched in pathogenic cell 
type-specific regulatory elements related to fetal development, immunity and expression quantitative 
trait loci (eQTL). The T2Di revealed a novel locus near a well-established GWAS loci AChE, in which 
SRRT interacts with JAZF1, a T2D-GWAS gene implicated in pancreatic function. The T2Di also included 
known anti-diabetic drug targets (e.g. PPARD, MAOB) and identified possible druggable targets (e.g. 
NCOR2, PDGFR). These T2Di signatures were validated by an independent computational method, and 
by expression data of pancreatic islet, muscle and liver with some of the signatures (CEBPB, SREBF1, 
MLST8, SRF, SRRT and SLC12A9) confirmed in PBMC from an independent cohort of 66 T2D and 66 
control subjects. By combining prior knowledge and transcriptome analysis, we have constructed an 
interactome to explain the multi-layered regulatory pathways in T2D.

The majority of disease-associated variants discovered in Genome-wide Association Studies (GWAS) were 
located within non-coding regions of the human genome. These variants were significantly enriched in chroma-
tin regulatory elements, particularly DNase I hypersensitive sites1, and expression quantitative trait loci (eQTL), 
suggesting these variants might influence disease risks by altering the expression levels of these disease-associated 
genes. Recent large scale eQTL studies including Multiple Tissue Human Expression Resource (MuTHER)2 and 
The Genotype-Tissue Expression (GTEx)3 provided expression data associated with genetic variants. These large 
datasets allowed identification of genes which might be regulated by these non-coding casual variants discovered 
in GWAS. In complex diseases, which often share similar traits, comorbidities and/or symptomatology, multiple 
disease genes interact to form overlapping genetic networks with interlinking pathobiological processes. Thus, the 
identification of a disease module may lead to discovery of other disease-related signatures in the vicinity of the 
gene-gene network4. To unravel this complexity, there has been a systematic effort to increase the coverage of the 
human interactome which is a map consisting of biologically relevant molecular interactions5. In this context, dis-
orders that share same disease genes or connected by protein-protein interactions (PPI) often share comorbidity 
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with overlapping symptomatology6,7. By combining clinical knowledge, human data, molecular interactions and 
cellular networks, we can explore correlations amongst these molecular/cellular networks and comorbidity pat-
terns to generate new hypothesis on disease mechanisms.

Type 2 Diabetes (T2D) is a model of complex multi-system disease involving the brain, gut, liver, pancreas, 
muscle, fat and kidney8. Compared to non-diabetic subjects, people with T2D have 1.3–3 fold increased risk of 
vascular, cancer, non-vascular (renal, neurological, gastrointestinal, hepatic, sepsis) and non-cancer deaths9. In 
this experiment, we used high-throughput transcriptome sequencing (RNA-Seq) to investigate gene expression 
using peripheral blood mononuclear cells (PBMC) in a case-control cohort of Chinese T2D patients and age- and 
gender-matched healthy subjects. Based on the premises that (1) disease-associated proteins tend to cluster in 
the interactome to form disease modules10, (2) disease-associated genes show distinct interaction patterns in 
the interactome11 and (3) these interaction patterns may influence expression patterns, we used complementary 
strategies to identify disease-associated genes in an interactome12. Specifically, we used the Subnetwork-based 
method which identifies highly-connected modules within the interactome and the Diffusion-based method 
which identifies candidate genes connected to known disease genes in the interactome. In this study, we applied 
these two strategies in an integrated transcriptome-interactome analysis to enhance our understanding of the 
pathogenesis of T2D.

Results
Study overview. Accumulating evidence suggested that peripheral blood is a useful surrogate tissue for 
discovery of disease signatures as gene expression levels in blood cells may reflect metabolic phenotypes13. We 
performed a cross-sectional case-control study of RNA expression in PBMC using high-throughput strand-spe-
cific transcriptome sequencing. Figure 1 summarizes the study design. Strand-specific transcriptome sequencing 
for 10 T2D individuals and 10 controls generated an average of 5.2Gb sequencing data per individual (Table S1). 
We first analyzed the changes in KEGG pathway dynamics in T2D (Fig. 1a). In line with previous findings14,15, we 
observed modest changes in gene expression with up-regulation of inflammatory and immunity-related genes. 
We also observed inhibition of insulin signaling and confirmed altered expression of some T2D-GWAS genes in 
PBMC (see section “Differential gene expression and alteration of pathway dynamics”). Then, we reconstructed 
the T2D interactome (T2Di) (Fig. 1b) by combining 1) genes significantly connected to T2D-GWAS loci in the 
interactome and 2) gene clusters with significant changes in transcription (Fig. 1c,d) to identify novel molecular 
signatures associated with T2D. The functional and pathobiological relevance of the disease module was validated 
computationally in our case-control cohort (Fig. 1e). We selected a sample of candidate genes from the modules 
in T2Di and used qPCR to replicate their expression in PBMC from an independent case-cohort cohort (Fig. 1f). 
The rationale and methods of construction of the interactome, identification of novel T2Di signatures, choices of 
genes subjected to qPCR validation, and various meta-analyses (Fig. 1f) are discussed below. A summary of the 
genomic and functional properties of these T2Di signatures are shown in Fig. 1g and Fig. S1.

Incomplete human interactome necessitates the construction of a T2D interactome (T2Di). In 
the human interactome map constructed by Menche et al. using physical protein interactions supported by 
experimental validation5, the largest size (S) of the T2D module, as defined by Online Mendelian Inheritance 
(OMIM) and GWAS was 9 (S =  9), i.e. the module consisted of 9 T2D-GWAS genes which physically interact 
with each other. This was larger than random expectation Srand: 2 ±  1 (z score: 3.9, p: 4.80E-5) suggesting that the 
observed T2D module was unlikely to be due to random agglomeration of any disease genes. Since there were 97 
T2D-GWAS genes, the relative module size (S/Nd), where Nd was the number of known T2D-associated genes 
was only 9.3% (9/97) (Fig. S2). This relatively low module size was likely due to incompleteness of the currently 
available human interactome5. Apart from the module size, the degree of clustering and distance between proteins 
also gave some indications regarding the completeness of the interactome. In Menche’s module, disease proteins 
not connected to T2D-associated genes tended to cluster in the neighborhood (p: 1.20E-2). The network-based 
distance amongst these possibly disease-related proteins in juxtaposition (ds) was large with small effect size 
(Glass’ Delta) (Fig. S3). These data indicated that the current human interactome required enhancement for 
discovery of T2D modules.

In this analysis, we combined known interactions and our de novo T2D co-expression network to construct 
an interactome comprising 19,984 genes (nodes) connected through 455,302 interactions (edges). The degree 
distribution of our interactome followed a power law (Fig. S4) and approximated a scale-free network, a prop-
erty observed in many biological networks. Mathematically, it has been estimated that there are 650,000 interac-
tions in a human interactome16. By integrating the interactome and transcriptome analysis, our T2Di contained 
approximately 70% of the human interactions. Note that the de novo network constructed by ARACHE consti-
tuted only a minority (6%) of the interactions in the T2Di (Fig. S5).

Differential gene expression and alteration of pathway dynamics. In the transcriptome analysis, 
using a criterion of absolute log2 fold-change > 0.75, 157 genes were significantly up-regulated and 1,238 genes 
were significantly down-regulated in T2D (Table S2). The magnitude of global change in expression was modest 
(T2D up-regulated: median log2fold 0.81; T2D down-regulated: median log2fold − 1.23).

In the T2D subjects, expression of 11 T2D-GWAS candidate genes (IRS1, WFS1, KCNQ1, CHCHD9, 
CDKN2A, SLC16A11, GPSM1, CCDC102A, IL2RB, PPARD, DNMT3A) were repressed in their PBMC (Table S3).  
In order to provide a generalized overview of our case-control cohort, we performed standardized analyses 
including gene ontology and KEGG pathway dynamics to identify functional gene enrichment as well as pathway 
activation and repression.

In animal studies, adaptive and innate inflammatory responses in visceral adipose tissues due to accumu-
lation of B cells, activation of pro-inflammatory macrophages and production of pathogenic IgG antibodies by 
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Figure 1. Overview of the integrated T2D study design. (a) Analysis of pathway dynamics in T2D. (b) T2D 
interactome was constructed from curation of known interactions and T2D co-expression patterns. (c) Disease 
modules were identified through identification of genes significantly associated with T2D-GWAS loci, and 
gene clusters which were significantly altered transcriptionally in the discovery case-control cohort. (d) The 
genes in the disease modules were filtered and validated based on differential gene expression in our dataset 
which yielded the final interactome signatures. (e) The resultant interactome signatures were interpreted 
using a functional network. (f) The interactome signatures were validated through comparative analysis with 
DIAGRAM GWAS, eQTL studies including MuTHER and GTEx, trait and druggability analysis, expression in 
pancreatic islet, liver and muscle, followed by qPCR replication of genes in an independent case-control cohort. 
Refer to respective section for details. (g) T2D interactome signatures overlapping with various genomic and 
functional properties are defined as follows: “DGE in T2D pancreatic/muscle/liver” indicates the signatures 
were also dysregulated in T2D relevant tissues, in addition to our discovery cohort; “Chromatin-folding” 
indicates the genes which may be distantly regulated by the GWAS SNPs reaching genome-wide significance 
in DIAGRAM-database; “GWAS +  cis-, trans-eQTL” refers to the genes identified by the Sherlock statistical 
framework to be associated with T2D using the DIAGRAM-database, cis- and trans- eQTL signals; “cis-eQTL” 
refers to the SNPs in perfect LD to T2D interactome signatures with eQTL properties regulating these genes; 
“Comorbidity” refers to genes that are shared between T2D and comorbid diseases; “Druggability” indicates 
T2D druggable or potentially druggable targets; “Insulin & T2D-GWAS” refers to genes in the insulin pathway 
and T2D genes in GWAS Catalogue with dysregulation in the T2D interactome signatures.
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T cells may mediate insulin resistance and glucose intolerance17. These maladaptive immune responses sup-
ported the use of expression signatures of PBMC as immune cells to study mechanism of T2D and insulin resist-
ance. In T2D patients, we identified down-regulated genes in the insulin-signaling pathway (Table S3), such as 
AKT2 (Log2fold: − 0.78, adjusted p: 4.42E-4). In experimental studies, silencing AKT2 resulted in inhibition of 
insulin-mediated glucose uptake and glycogen synthesis18. In addition to insulin receptor substrate 1 (IRS1), 
(log2fold − 0.98, adjusted p: 3.93E-3), other down-regulated genes were enriched in “signal transduction” of the 
MAPK and JNK cascade (adjusted p: 5.45E-3) and “secretion” of hormone activity (adjusted p: 1.96E-2). The 
up-regulated genes were enriched in the Gene Ontology inflammation-related term “defense response” (adjusted 
p: 2.02E-2) which included genes such as CAMP, TLRs, S100A12 and SELP (Table S4). We also analyzed changes 
in gene expression using SPIA19 which takes into consideration quantitative changes in expression and gene-gene 
interactions within the context of pathway topology. Using this approach, we discovered repression of “Wnt sig-
naling pathway” (adjusted p: 2.40E-02) and “Dopaminergic synapse” (adjusted p: 1.50E-02) in T2D (Table S5). In 
this light, D2-Dopamine agonist which restores hypothalamic dopamine level has been approved by the U.S. Food 
and Drug Administration (FDA) for treatment of T2D20. Apart from the “Cytokine-cytokine receptor interac-
tion” pathway (adjusted p: 2.00E-03) and “Chemokine signaling pathway” (adjusted p: 2.70E-02), the “Circadian 
rhythm” (adjusted p: 5.00E-06) was also activated in T2D, in line with the association of dysregulation of circa-
dian clocks with metabolic diseases21.

Interactome signatures reflect pathogenesis and druggability of T2D. In this integrated 
human interactome with connections to T2D-GWAS genes and our de novo transcriptome data, we identi-
fied 420 Interactome signatures (T2Di signatures) supported by transcriptional dysregulation in PBMC of our 
case-control cohort (Table S6). Using computational analysis, we validated the biological significance of these 
signatures, which were enriched with gene functions in “insulin signaling”, “MAPK signaling”, “acute myeloid 
leukemia”, “transcription”, “adipogenesis” and “regulation of protein phosphorylation” (Fig. 2a). In T2D, defec-
tive adipocyte differentiation results in ectopic fat distribution with excessive calorie intake22. The transcription 
factor, PPAR-G, promotes adipogenesis with CEBPB as the upstream signal. Insulin signaling activates mTOR to 
increase hepatic gene expression through the mTORC2 complex, and lipogenesis by modulating gene expression 
of SREBF1. The formation of mTORC2 complex is dependent on MLST8 (or rictor) expression and disruption 
of mTORC2 by silencing MLST8 can lead to insulin resistance in rodent model23. Glucose binds to the nuclear 
receptor LXRbeta promoter24 to regulate energy utilization in muscle and fat storage in visceral adipose tissue25. 
Here, SRF regulates glucose binding to LXRbeta with silencing of SRF resulting in impaired glucose-mediated 
cellular responses24. Given the crosstalks amongst insulin, IGF-1 (insulin growth factor-1) and SREBF pathways, 
reduced SREBF1 expression has been reported in obesity and T2D in adipose tissue26. In support of these disease 
mechanisms, we found repressed expression of CEBPB, MLST8, SREBF1 and SRF in our discovery cohort with 
validation in the replication cohort (Fig. 2b).

Some of the molecular signatures of the T2Di overlapped with gene targets of FDA-approved anti-diabetes 
drugs. For example, NF-kB, PPARD, MAOB and RARA are downstream targets of Thiazolidinedione (TZDs) 
while P1K3 pathway, IRS1 and IRS2 are that of insulin27,28. In the vicinity of these drug targets (first degree con-
nection), two of the T2Di signatures, namely NCOR229 and PDGFR30, are potential T2D drug targets (Fig. 2c). 
Using the Drug Gene Interaction Database and manual literature curation, we identified possible druggable tar-
gets including ADORA1/2, DRD4, IL2RB, THRA, TNNC1, TSPO, MMP1 and TLR8 with supporting evidence 
summarized in Table S7.

Interactome signatures supported by disease comorbidity and clinical symptoms. The mainte-
nance of human structure and function is regulated by interlinking biological systems. Internal (e.g. aging) and 
external causes (e.g. environment and lifestyle) can disrupt these processes leading to cascades of dysfunctions 
to trigger co-emergence of multiple diseases. In system biology, there are significant correlations amongst the 
molecular structures of disease modules and cellular networks associated with multiple diseases and morbidities. 
Diseases that share genes, PPI and pathobiological pathways tend to exhibit overlapping symptoms and comor-
bidity6,31. Recent reports indicated that diseases with similar symptoms, as quantified by MeSH metadata using 
‘term frequency–inverse document frequency’, tend to share disease genes with high first- and second-order PPI 
amongst the disease-related proteins7. Due to their frequent clustering, we expected the T2Di signatures to be 
enriched in genes related to T2D associated comorbidities and symptomatology.

To test this hypothesis, we first obtained the T2D-associated genes by mapping the disease genes from OMIM 
and GWAS to diseases according to the method described by Menche et al.5. According to the U.S. Medicare dis-
ease history of more than 31 million individuals, T2D patients had a relative risk ≥ 1.5 (99% confidence interval 
> 1.0) increased for 70 diseases (ICD-9 codes)32, Comorbidity analysis of these disease-associated genes indi-
cated that the T2Di signatures were enriched with genes associated with 27 comorbid diseases, including male 
urogenital diseases33. (RR: 1.86, enrichment p: 3.18E-2, Fisher’s exact test), gastroenteritis (RR: 1.51, enrichment 
p: 1.77E-3, Fisher’s exact test) and cardiomyopathy (RR: 1.74, enrichment p: 3.66E-3, Fisher’s exact test)34. Using 
the ‘diseases symptoms similarity’ captured by large-scale medical bibliographic record7, there were also high 
similarities between T2D and atherosclerosis (similarity score: 0.74) and male infertility (similarity score: 0.45). 
The correlations of these comorbid diseases and symptomatology within the context of PPI with enrichment of 
shared genomic signatures supported the validity of our T2Di signatures (Table S8).

Partial explanation of residual associations with DIAGRAM by T2Di signatures. We used 
Quantile-Quantile (QQ) plot to study all associations in the DIAGRAM-database (black curve in Fig. S6) and 
found residual associations after removing the T2D-GWAS SNPs and SNPs in linkage disequilibrium (LD) (green 
curve), suggesting many T2D loci are yet to be discovered in the DIAGRAM database. Using GWAS as the gold 
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standard for discovery of causal genes, we used the DIAGRAM meta-analysis database to test whether the T2Di 
signatures (without established T2D GWAS genes) were enriched with variants associated with T2D, which fell 

Figure 2. Functional analysis of the T2D Interactome Signatures. (a) Functional analysis of the T2D 
interactome signatures revealed enrichment of genes related to insulin signaling, MAPK signaling, acute 
myeloid leukemia, transcription, adipogenesis and regulation of protein phosphorylation. Color(s) of the 
nodes and the line connected to the functional grouping(s) indicate the function(s) of the respective gene. The 
thickness of the edge represents the evidence code of the Gene Ontology that relates the gene (node) to the 
functional term. The thicker edge represents those with experimental evidence code. (b) The dysregulation 
of expression of SREBF1, CEBPB, MLST8 and SRF was replicated in the independent cohort. Statistical 
significance in change of gene expression: *p <  0.05, **p <  0.01, ***p <  0.001. (c) T2D Interactome signatures 
targeted by anti-diabetic medications.
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short of genome-wide significance. We first computed a single p-value for each gene in the DIAGRAM-GWAS 
using the LDsnpR method35. Figure 3a shows the distribution of the combined p-value of T2D-GWAS genes (from 
46 T2D GWAS datasets), T2Di signatures, and 100 control gene sets randomly sampled from the DIAGRAM 
data with a size matched to the T2Di signature set. The result indicated that previous T2D-GWAS contained 
the highest fraction of T2D-associated genes in the DIAGRAM dataset, followed by the T2Di signatures and 
finally the control sets. This observation suggested that our T2Di signatures were enriched with low frequency 
disease-susceptibility variants not expected by chance. In order to prove the utility of combining physical inter-
action network and co-expression network, we applied the two module identification algorithms on physical 
and co-expression network independently and cross-compared the potential disease genes based on DIAGRAM 
GWAS with the integrated discovery method. The physical interaction network contains 18696 genes with 424550 
interactions, whereas the co-expression network contains 6316 genes with 30965 interactions. jActiveModules 
identified fractions of genes with more significant p-values in an integrated interactome than in annotated phys-
ical network and co-expression network. Similar observation was observed for DIAMoND algorithm, such that 
DIAMoND applied on an integrated interactome discovered a higher fraction of genes with more significant 
p-values than in annotated physical network and co-expression network (Fig. S7). Taken together, we have shown 
that by merging physical interaction network and co-expression network as an integrated T2D interactome, a 
higher fraction of genes with more significant GWAS association to Type 2 diabetes could be discovered.

The advantage in combining Diffusion-based method (DIAMoND) and subnetwork-based method (e.g. jAc-
tiveModules) could be observed by dividing the T2Di signatures into 2 groups: (1) the gene sets discovered by 
DIAMoND and (2) the gene set discovered by jActiveModules. As shown by Fig. S8, the differential expressed 
genes (DGE) obtained in this study (i.e. without undergoing any selection by interactome analysis) were enriched 
in genes with more significant p-values than random gene sets. DIAMoND and jActiveModules both contained 
genes with p-values more significant than DGE gene set, suggesting the use of both methods independently fur-
ther enriched T2D relevant genes.

Figure 3. Comparison of T2Di signatures with known T2D GWAS genes. (a) Comparison of enrichment of 
different gene sets using the DIAGRAM meta-analysis dataset. The T2D-GWAS genes obtained from GWAS 
Catalog has the highest enrichment, followed by our T2Di signatures. The 100 random control gene sets (size 
matched to the Interactome Signature set) randomly sampled from the DIAGRAM dataset have significantly 
lower fractions of low p-value genes. (b) Comparison of DIAGRAM p-values of the variants of T2D-GWAS 
genes with T2Di signatures.
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Because DIAMoND and jActiveModules identified different set of genes (DIAMoND identified 39 genes 
whereas jActiveModules identified 401 molecular signatures; both method identified 20 common genes; Table S6),  
the functional cohesiveness among genes discovered by DIAMoND and jActiveModules in T2Di signatures could 
first been demonstrated in the similarity of pathways enriched from respective methods (Fig. S9). The functional, 
genomic and genetic relevancy of the T2Di signatures to Type 2 diabetes is demonstrated in the enrichment of 
such properties of DIAGRAM SNPs in T2D interactome signatures over random, as described in next section.

Figure 3b shows the distribution of variants’ p-values of T2D-GWAS genes versus our T2Di signatures. Since 
the latter did not reach the nominal genome-wide significance (p: 5.00E-8), the T2Di signatures could not be 
discovered through GWAS alone.

Genomic and genetic properties of DIAGRAM SNPs in T2D interactome signatures. Many 
GWAS SNPs are located within transcriptional regulatory regions, including promoters and enhancers, which 
are enriched with eQTL property36. Therefore, we expected genuine T2Di signatures to possess properties similar 
to T2D-GWAS genes. In line with such notion, we found a significant fraction (49.4%; 270/547) of DIAGRAM 
genome-wide significant SNPs (p <  5.00E-8) overlaps with regulatory regions [transcription factor (TF) binding, 
DNase I hypersensitivity peak/footprint, sequence motif, eQTL or a combination of them]. We performed 1 
million times of Monte Carlo randomization of a size-matched SNP set from DIAGRAM-database and found 
that the T2D-GWAS variants with genome-wide significance were enriched in regulatory elements (p: 1.00E-06). 
Similarly, SNPs in perfect LD with the T2D-GWAS variants were also enriched in regulatory elements (p: 3.20E-3).  
Notably, we also observed enrichment of SNPs in perfect LD with our T2Di signatures (75.6%; 875/1157,  
p: 1.00E-06) which overlapped with regulatory elements.

Since many disease-associated GWAS variants are enriched in affected cell type-specific regulatory elements1, 
we sought to identify tissue-specific enrichment of regulatory elements in SNPs that were in perfect LD with the 
T2Di signatures. We found that the established T2D-associated variants (in both T2D-GWAS and DIAGRAM) 
satisfying genome-wide significance were enriched in fetal regulatory elements (Fig. 4A,B), including fetal intes-
tine, muscle and stomach. The enrichment of GWAS variants in fetal regulatory elements is commonly seen in 

Figure 4. Enrichment of SNPs on DNase I hotspots. Each point represents the enrichment of the test SNP set 
compared to matched background SNPs on a single sample, organized by tissue types. (A) Type 2 Diabetes SNPs 
in GWAS Catalogue (B) DIAGRAM SNPs meeting genome wide significance of p: 5.00E-8. (C) SNPs associated 
with the T2Di signatures in the DIAGRAM dataset. Red points are at adjusted p ≤  0.01, and green points are at 
p ≤  0.05.
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complex diseases for which growth trajectory plays important pathogenetic roles1. Similarly, the SNPs in perfect 
LD with our T2Di signatures were also enriched in regulatory variants in fetal intestine, muscle and stomach, in 
addition to blood and thymus. In T2D, dysregulation of auto-immunity has been reported and in db/db mice, 
thymus transplantation restored cytokine imbalance and insulin sensitivity37.

Among the 420 interactome signatures, 43.3% (182/420) overlapped with TF binding sites together with 
DNase I peaks. Amongst them, 17.6% (32/182) were rSNP/eQTL signals with genome-wide significance  
(p: 5.00E-8) in DIAGRAM or in perfect LD to these DIAGRAM SNPs. These SNPs were associated with expression  
changes in GTEx (skeletal muscle, whole blood and subcutaneous Fat) and MuTHER (lymphoblastoid cell lines 
(LCL) and fat). The T2Di signatures in perfect LD to DIAGRAM variants with p-values between 7.60E-5 and 
3.60E-2 (Table S9) were also enriched in rSNP/eQTL property (Fisher p: 3.50E-2; compared to a matched set of 
random sampling of 182 SNPs having exact range of GWAS p-value). Of note, the p-values of variants of genes 
targeted by anti-diabetic drugs (with the exception of IDE, PPARG, KCNJ11 and ABCC8, which are established 
T2D loci) were between 4.28E-5 and 6.75E-3 in the DIAGRAMv3 GWAS, not reaching genome-wide signifi-
cance27. Our T2Di signatures possessed many significant eQTL loci (Fig. S10A) including those expressed in 
LCL (Fig. S10B) and fat tissue (Fig. S10C) although only variants associated with JAZF1-AS1 and WFS1 reached 
genome-wide significance (p <  5.00E-8).

Finally, we combined cis- and trans- eQTLs and GWAS p-values to assess our T2Di signatures. Using the 
Sherlock statistical framework38, we identified 17 (24.3%; 17/70) DIAGRAM-genes to be associated with T2D 
(p <  0.05) (Fisher p-value for enrichment: 3.32-5) compared to enrichment of 88 genes in the T2Di signatures 
with p <  0.05 (20.9%; 88/420) (Fisher p-value for enrichment: 5.40E-14) (Table S10).

Differential expression of SRRT and SLC12A9 led to discovery of novel locus near AChE. In the 
Asian GWAS datasets, we noted that rs7636, a synonymous SNP within Acetylcholinesterase (AChE), exhibited 
genome-wide significance for T2D in Asian but not Caucasian populations with an odd ratios of 1.85 (95% CI: 
1.42–2.41, p: 5.00E-6)39. This SNP was in perfect LD with multiple SNPs which might regulate expression of two 
T2Di signatures, SLC12A9 and SRRT (Table S11), which are in proximity with each other but distant from rs7636 
(Fig. 5A). Both SRRT and SLC12A9 were down-regulated in T2D (SRRT: log2fold -0.87; adjusted p: 4.46E-5; 
SLC12A9 log2fold: -0.76; adjusted p: 5.87E-4) with replication in our independent cohort (Fig. 5B). According to 
the GTEx analysis V4 (dbGaP Accession phs000424.v4.p1), AChE is mainly expressed in brain (median RPKM: 
10.74; 357 samples) with low expression in blood tissues (median RPKM: 0.73; 245 samples).

GWAS variants located in regulatory regions may control distant genes through long-range interactions1. We 
used chromosome conformation capture (Hi-C) data to test this hypothesis. Using two independent normaliza-
tion methods, HiCNorm40 and Yaffe41 to identify consensus interacting partners in K562 and GM06990 cell lines, 
we identified the chromatin region containing rs1635852 and other DIAGRAM-SNPs reaching genome-wide 
significance that might interact with SRRT by a long-range interaction (Table S12). In particular, rs1635852 was 

Figure 5. GWAS significant T2D association of SNP rs7636 might also be functionally explained by 
repression of SRRT and SLC12A9. (A) rs7636 is in perfect LD with rs11171 (SRRT), rs781190 and rs1716255 
(SLC12A9) in Beijing Han Chinese in the CSHL-HapMap project (r2: 1; D’:1). Both SRRT (log2fold -0.88, 
adjusted p: 1.24E-4) and SLC12A9 (log2fold -0.77, adjusted p: 6.32E-3) were significantly down-regulated in 
T2D. Expression of ACHE was not altered (log2fold 0.19, adjusted p: 1.00). (B) The dysregulation of expression 
of SRRT and SLC12A9 were replicated in the independent cohort. Statistical significance in change of gene 
expression: * p <  0.05, **p <  0.01, ***p <  0.001. (C) Physical interaction of SRRT, JAZF1 and CREB5 among 
other proteins.
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associated with CREB5 and JAZF1 expression. The latter is an established T2D-GWAS locus42 which is a tran-
scriptional repressor of gluconeogenic genes43 and regulator of visfatin expression via PPARα , and PPARβ /δ  
signaling44. In T2D islets, the risk allele rs1635852-T of JAZF1 was associated with lower transcription enhancer 
activity45. In our T2Di, SRRT, JAZF1 and CREB5 physically interact, along with other proteins (Fig. 5C). While 
JAZF1 and CREB5 bind to the miRNA miR-9, which has been implicated in pancreatic development, JAZF1 
also binds to miR-96 that negatively regulates insulin exocytosis46. In this connection, SRRT contributes to the 
stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex and may 
modulate expression through gene silencing. Together with the genome-wide significance of rs7636 in Asian 
populations, our analysis revealed a possible network linking SRRT and JAZF1 possibly through miRNA.

Assessment of T2Di signatures by an orthogonal approach. Recently, Himmelstein et al. developed 
a computational method to prioritize and predict disease-associated genes47. In their method, GWAS genes were 
used as gold standard for assessing the prediction accuracy. Firstly, features that describe the topology between 
diseases and the known GWAS-associated genes were extracted and analyzed in a metagraph network con-
structed using diverse information domains. Then, PathPredict, a machine learning algorithm originally devel-
oped for social network analysis, was used to train a model from these GWAS associations, and then applied to 
other protein-coding genes to predict the probability of disease associations. Their Heterogeneous Network Edge 
Prediction method, based on abovementioned principles, which is distinct from our multimethod interactome 
approach to discover disease-related genes, can be used to evaluate our T2Di signatures. We used the probability 
scores computed by Himmelstein et al. to compare our T2Di signatures, segregated by overlapping with genomic 
and functional properties, to the established GWAS-T2D genes using randomized, size-matched gene sets (Fig. S1).  
We found that our T2Di signatures had median probability scores similar to those of T2D-GWAS loci that were 
higher than expected by chance (Fig. S11) and provided further support to our T2Di signatures.

Discussion
Common human diseases such as diabetes, are due to complex interactions of many genes, each with small 
effect size48. While GWAS has led to the discovery of multiple disease-associated genes or SNPs, pathway 
analysis can provide further insights into the interactive effects of these genes/SNPs in disease development. 
In this integrated transcriptome-interactome analysis, we employed various strategies utilizing prior knowl-
edge such as the T2D-GWAS loci to analyze the transcriptome of PBMC in a case-control cohort. Firstly, gene 
ontology, pathway enrichments and pathway dynamics analysis were performed to provide a general overview 
of the case-control cohort. We performed functional Over-Representation-Analysis (ORA) to identify a set of 
differentially-expressed genes (DEGs), followed by enrichment analysis of these DEGs in known biological path-
ways and Gene Ontology terms. Although we were able to demonstrate perturbation of T2D-associated pathways 
using this method, the ORA approach only took into consideration the number of genes, assuming each gene 
being independent and ignored their expression changes. We then used pathway topology and took expression 
changes into account to infer the pathway dynamics although there remained challenges due to limited number 
and incomplete coverage of annotated human pathways49.

Based on the premise that complex diseases are caused by a combination of molecular perturbations50 to 
form disease modules5 that tend to avoid hub genes which might cause major abnormality51, we integrated our 
gene expression analysis within the context of a human interactome. Using various methodologies, we identified 
novel interactome signatures shared by diseases with comorbidity and symptomatology related to T2D. We note 
that our approach to discover novel candidate genes share similar concept with Sharma et al.52, where multiple 
methods, including jActiveModules, were combined to discover disease genes. Our approach was based on dis-
tinct premise that disease genes could be discovered by transcriptome-interactome analysis, in which clusters 
of transcriptionally altered gene signatures and disease genes with significant fractions of their connections to 
T2D-GWAS genes were discovered by jActiveModules and DIAMoND, respectively, followed by experimentally 
validation by RNA-Seq of our case-control cohort. These signatures are enriched in regulatory elements, particu-
larly cell-type specific regulatory elements, notably fetal intestine, stomach and muscle. Apart from explaining 
some residual associations in the DIAGRAM GWAS, some of these signals also showed associations with eQTL 
in human tissues. We further identified an Asian-relevant T2D locus, AChE, upstream of SRRT, the latter being 
differentially expressed with physical interaction with JAZF1, a T2D-GWAS gene implicated in beta cell biology, 
possibly through long distance chromatin regulation and miRNA.

Conclusion
By integrating prior knowledge with transcriptome and interactome analysis, we discovered disease modules and 
druggable pathways to explain the complexity of diabetes. In this post-GWAS era where multiomic technologies 
are increasingly used to study gene regulation and expression, our multi-method approach can be used to provide 
new insights into the pathogenesis of complex diseases.

Materials and Methods
The methods and results of the supplementary datasets are explained in the corresponding files.

Ethics, consent and permissions. Written informed consent was obtained from all participants. This 
study was approved by the Clinical Research Ethics Committee of the Chinese University of Hong Kong. All 
experiments were performed in accordance with relevant guidelines and regulations.

Subjects of discovery and replication cohort and RNA sequencing. All participants in this study 
were of southern Han Chinese ancestry residing in Hong Kong. All T2D cases were selected from the Hong Kong 
Diabetes Registry and from the Hong Kong Family Diabetes Study. Type 2 diabetes was diagnosed according to 
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the 1998 World Health Organization criteria. Patients with type 1 diabetes defined as acute ketotic presentation or 
continuous requirement of insulin within 1 year of diagnosis were excluded. In our discovery cohort, we selected 
10 T2D patients (50% male, age 52.8 ±  12.3 years, disease duration: 22.6 ±  11.8 years) with enriched phenotypes 
including positive family history, early age of diagnosis, and obesity (age of diagnosis: 30.2 ±  8.1 years; body mass 
index (BMI): 29.9 ±  4.7 kg/m2)53. The replication cohort included 66 T2D individuals and 67 healthy controls. All 
control subjects were age- and gender-matched with fasting plasma glucose below 6.1 mmol/l who were either 
hospital staff or volunteers from a community-based health screening program. The clinical phenotypes of the 
discovery and replication cohort are shown in Tables S13 and S14, respectively.

Type 2 diabetes is characterized by inflammatory infiltrates in pancreatic islets and accumulation of T-cell in 
adipose tissues54. Human studies supported alterations of gene expression in peripheral blood, which provided 
a glimpse into the internal environment13. Islet-infiltrating immune cells were in equilibrium with circulating 
pools, which could be sampled via peripheral blood. Thus, we hypothesized that changes in gene expression in 
PBMC might provide insights into the molecular mechanisms underlying the metabolic dysregulation in T2D. 
By sampling PBMC in T2D and control subjects, we systematically characterized the transcriptome to discover 
molecular networks and signatures associated with T2D-GWAS genes. We first isolated PBMC from blood using 
a Ficoll gradient followed by extraction of total RNA using Trizol reagent. Poly(A)+ RNA was purified with the 
Dynabeads mRNA purification Kit (Life Technologies) following the manufacturer’s instructions and then sub-
jected to dUTP-based strand-specific RNA transcriptome sequencing on the Illumina GAIIx platform.

Sequence and pathway analysis. Sequencing reads were dynamically trimmed according to BWA’s 
algorithm with parameter -q 20. Read pairs were synchronized such that all read-pairs with sequences equal 
to or longer than 35 bp on both sides after trimming were retained55. Quality trimmed reads were mapped onto 
human genome (hg19) by STAR v.2.3.0e56 and gene expression in terms of FPKM was calculated by Cufflinks 
v.2.2.157. Differential gene expression was analyzed using DESeq258, and genes with Benjamini and Hochberg 
multiple-testing adjusted p <  0.05 and absolute log2 fold-change > 0.75 were considered to be significant. 
KEGG Pathway dynamics analysis was performed using the Signaling Pathway Impact Analysis (SPIA)19. 
Over-Representation-Analysis: Gene ontology enrichment analysis was performed using BiNGO v.2.4459 imple-
mented in Cytoscape v.2.82 (http://cytoscape.org/). Enrichment was considered to be significant when p-value 
was less than 0.05 after multiple-testing adjustment with the Benjamini and Hochberg procedure. Expression 
data from mammalian pancreatic islet60, β -cell61, liver62 and skeletal muscle63 were retrieved from NCBI GEO 
(http://www.ncbi.nlm.nih.gov/geo/) and analyzed using GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) to 
assess the overlap of differential expressed genes in PBMC and T2D relevant tissues, and genes with Benjamini 
and Hochberg multiple-testing adjusted p <  0.05 were considered to be significant.

Construction of the T2D interactome. We assembled all known interactions present in a human cell 
from available databases and literatures to build a human interactome5,64,65. In brief, our initial curated network 
contained information from high-throughput Yeast-2-Hybrid PPI, literature curated protein-protein interactions, 
metabolic enzyme-coupled interactions, protein complexes and kinase-substrate interactions. As discussed in the 
“Result” section, the existing human interactome does not capture the T2D modules. Besides, disease-causing 
genes tend to exhibit tissue-specific interactions66. Therefore, we integrated a de novo T2D co-expression net-
work into the knowledge-based interactome to yield the T2Di. We applied the Algorithm for the Reconstruction 
of Accurate Cellular Networks (ARACNE) reverse-engineering algorithm and applied recommended parame-
ters67 to our transcriptome data and generated a genome-wide T2D co-expression network using gene expression 
(FPKM) in a two-step manner68. We only selected robust interactions between gene-gene pairs with a stringent 
mutual information score of at least 1.

An integrative approach to identify T2D interactome signatures. In complex diseases, 
disease-proteins tend to avoid hub genes. From an evolutionary perspective, disease-related mutations in 
topologically-central genes may cause severe impairment of development and tend to be deleted from the pop-
ulation. On the other hand, disease-related mutations in the topologically-peripheral regions of the interactome 
may improve adaptability and increase chance of viability51. Besides, genes coding for disease-related proteins 
tend to have higher probability of being connected to other disease proteins than non-disease proteins in the 
interactome69. Therefore, we made use of the DIAMOnD algorithm11, a type of Diffusion-based method, to select 
genes with significant fraction of their interactions with known T2D-disease genes discovered by all GWAS stud-
ies deposited in GWAS Catalogue (T2D-GWAS genes). As demonstrated by Ghiassian et al.11, 200 iterations 
of DIAMoND would be optimal to yield important seed pathways at a rate similar to the one within the seed 
proteins themselves and significantly higher than random expectation across 70 real diseases, including Type 2 
Diabetes that we are studying. We thus employed 200 iterations as our starting point. DIAMOnD penalizes the 
scoring of hubs that interact with many known T2D-disease genes, since such high scores might be spurious due 
to high degree of connectivity of these hub genes.

Molecular perturbation of complex diseases usually affects expression of genes in modules10. Thus, besides 
the DIAMoND method, we used the jActiveModules algorithm, a type of Subnetwork-based method, to discover 
T2D-associated active hotspots from our expression data70. The algorithm calculates a network score, which is 
a weighted average of the z-scores of the individual network members. We used the recommended parameter 
values to invoke the algorithm [Simulated Annealing: Start Temp: 1.0, End Temp: 0.01, Iterations: 106. Regional 
Scoring was disabled. Number of putative modules to be detected: 5, Overlap Threshold: 0.1]. The algorithm was 
run twice in succession, the first time aimed to identify high-scoring network(s) (HSN1) in T2Di, and the second 
time, a high-scoring subnetwork(s) within the initial high-scoring component(s). The output from the second 
run was taken as HSN2. Recursive application of the algorithm aimed to discover the most active sub-network(s) 

http://cytoscape.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
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in HSN1 as previously described70. Since the full set of T2D disease genes is unknown, we cannot assess the per-
formance of each respective algorithm directly in terms of true positives or negatives. In line with suggestion by 
Barabasi et al.4, we considered the experimentally derived biological expression data from actual disease cohort 
as the ultimate functional validation approach for potential disease associated genes. Thereby the DIAMOnD 
genes and the genes in HSN2 had to show differential expression in the T2D case-control cohort to be considered 
as T2Di signatures. The functions of the resultant disease module were analyzed using ClueGO v2.1.671 with an 
adjusted p threshold for the pathway significance of 0.02. We used the Drug Gene Interaction Database (DGIdb)72 
and the QIAGEN’s Ingenuity® Pathway Analysis Release (June 2015) (IPA®, QIAGEN Redwood City, www.qia-
gen.com/ingenuity), based on the most robust experimentally-validated gene-gene relationships to assess the 
utility of these interactome signatures as anti-diabetic drug targets. The Chromatin interaction (Hi-C) data of 
K562 and GM06990 cell lines73 were analyzed using HiCNorm40 and Yaffe’s method41, and consensus interacting 
chromatin regions identified by both normalization methods in both cell lines were used.

Quantitative PCR replication in an independent case-control cohort. Differential expression of the 
candidate genes in the T2Di was validated by quantitative real-time PCR (qRT-PCR). First strand cDNA was syn-
thesized by the High-Capacity cDNA Reverse Transcription Kit (ABI Biosystems) using 0.5 μ g of total RNA as tem-
plate. SYBR Green qRT-PCR with SYBP® Premix Ex Taq™  (Perfect Real Time, Takara) was run with 40 cycles on an 
ABI 7900HT Thermocycler. Expression levels were normalized to the expression level of β -actin. Mann-Whitney U 
test was used to test for differential expression of the genes. For genes with multiple transcripts, the common exons 
were used as targets for primer design and for real-time PCR. Primers used are listed in Table S15.

Meta-analysis with the DIAGRAM Trans-Ancestry T2D study and regulatory properties of 
the interactome signatures. In the DIAGRAM (DIAbetes Genetics Replication And Meta-analysis) 
trans-ethnic T2D GWAS meta-analysis database (DIAGRAM-database)42, there were 26,488 cases and 89,964 
controls recruited from multiple consortiums (DIAGRAM, AGEN-T2D, STA2D and MAT2D) with different 
ethnic groups including European, East Asian, South Asian, Mexican and Mexican American. We retrieved the 
association summary statistics, which have undergone three rounds of genomics control at the cohort level, after 
ethnic-specific meta-analysis and after trans-ethnic meta-analysis (http://diagram-consortium.org/downloads.
html). The genomic inflation factor (λ gc) was 1.05, suggesting minimal global inflation of test statistics with 
accounting for most of the population stratification. We referred all T2D-associated genes deposited in GWAS 
Catalogue as T2D-GWAS genes and T2D genes reported by the DIAGRAM meta-analysis42 as DIAGRAM-genes.

We used a LD-based SNP binning tool, named LDsnpR35, to identify additional SNPs in the 
DIAGRAM-database which might be associated with T2D, targeted at the gene level. We assigned SNP marker 
information and p-values from the DIAGRAM-database to individual genes based on the chromosomal position 
and the LD profile of the SNP (positional- and LD-based-binning, respectively). During the process, a SNP was 
binned to a gene if it is physically located within the pre-defined boundaries of the gene, or in LD with another 
genotyped SNP that is physically located within these boundaries of the gene. Gene bin definitions were based on 
Human Ensemble release 66 (March 2012). The LD data was based on that of the Han Chinese in Beijing, China 
(CHB) sample from HapMap Phase II release 27. The pairwise LD threshold was set at r2 ≥  0.8.

Regulatory properties of the variants were retrieved from RegulomeDB74. SNPs in LD with lead SNPs 
were retrieved from HaploReg v375. We used FORGE v.1.1 (http://browser.1000genomes.org/Homo_sapiens/
UserData/Forge), which utilizes DNAse1 hotspots from the Roadmap Epigenomics project, to analyze cell-type 
specific enrichment of regulatory elements consisting of variants in perfect LD (r2: 1 and D’: 1) with the T2Di 
signatures. eQTL data was retrieved from MuTHER2 and GTEx3. We used the Sherlock statistical framework38 
to identify potential disease-associated genes by matching eQTL signals with GWAS associations. Expressional 
regulatory SNPs (eSNPs) could act together in cis- and trans- to regulate the expression of a T2D-associated 
gene. Sherlock utilized moderately associated cis- and trans- eSNPs and GWAS associations instead of solely 
focusing on eSNPs and GWAS results that met stringent cutoff criteria. By integrating the analysis from eQTL 
and T2D-GWAS signals, the causal nature of these signals could be elucidated. Using this approach, Sherlock first 
searched all eSNPs of each gene using the whole genome eQTL data. For each eSNP, Sherlock evaluated its associ-
ation with T2D using the DIAGRAM GWAS data with three different scenarios: (1) if the eSNP of a specific gene 
was associated with T2D in GWAS, a positive score would be given; (2) if the eSNP of this gene was not associated 
with T2D, a negative score would be assigned; and (3) association with T2D without eSNPs did not alter the score. 
Thus, the total score of a gene increased with increasing number of SNPs associated with both T2D and expres-
sion. Finally, Sherlock identified gene-disease associations by matching genetic signatures of gene expression 
with disease-related traits. Statistical inference was performed using Bayes statistical framework and Bayes factor 
(BF, the probability of the observed data under a specific model) of each SNP was calculated separately. For each 
gene, Sherlock computed individual logarithm of BF (LBF) for each eSNP in the alignment, and the sum of these 
constituted the final LBF score for the gene. The value of the LBF score of a gene reflected the strength of evidence 
(i.e., a larger LBF represented higher probability that the gene was associated with the disease).

Data Availability. The sequence data from this study have been submitted to the NCBI SRA (http://www.
ncbi.nlm.nih.gov/sra) under the accession number SRP026359.
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