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Multiparametric MRI-based 
differentiation of WHO grade  
II/III glioma and WHO grade IV 
glioblastoma
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Non-invasive, imaging-based examination of glioma biology has received increasing attention in the 
past couple of years. To this end, the development and refinement of novel MRI techniques, reflecting 
underlying oncogenic processes such as hypoxia or angiogenesis, has greatly benefitted this research 
area. We have recently established a novel BOLD (blood oxygenation level dependent) based MRI 
method for the measurement of relative oxygen extraction fraction (rOEF) in glioma patients. In a 
set of 37 patients with newly diagnosed glioma, we assessed the performance of a machine learning 
model based on multiple MRI modalities including rOEF and perfusion imaging to predict WHO grade. 
An oblique random forest machine learning classifier using the entire feature vector as input yielded a 
five-fold cross-validated area under the curve of 0.944, with 34/37 patients correctly classified (accuracy 
91.8%). The most important features in this classifier as per bootstrapped feature importance scores 
consisted of standard deviation of T1-weighted contrast enhanced signal, maximum rOEF value and 
cerebral blood volume (CBV) standard deviation. This study suggests that multimodal MRI information 
reflects underlying tumor biology, which is non-invasively detectable through integrative data analysis, 
and thus highlights the potential of such integrative approaches in the field of radiogenomics.

How glioma histology and genotype is reflected in imaging has been subject of an increasing number of recent 
studies1. Such information may on the one hand support initial clinical decision making and on the other hand 
potentially allow non-invasive follow-up of changes of tumor biology over time, for example during therapy. With 
the advent of novel therapeutic strategies specifically targeting defined genomic lesions2, the interest in this field 
has grown even further.

Traditionally, anatomic imaging sequences such as T1 and T2 weighted (T1w, T2w) images have been used to 
differentiate high-grade from low-grade gliomas3 or to identify defined genomic aberrations such as combined 
1p/19q loss in oligodendroglial tumors4. However, significant overlap for imaging characteristics between WHO 
grades and genotypes (such as the presence of contrast enhancement in low-grade gliomas) limits the univari-
ate use of T1w and T2w sequences as a definite predictor of grade in clinical practice5–7. Pivotal to the field of  
radiogenomics has, therefore, been the development and refinement of physiological MRI techniques visualizing 
key oncogenic processes such as invasion, angiogenesis or hypoxia. Of these, MRI based measures of tumor 
perfusion, including both dynamic susceptibility contrast (DSC) and dynamic contrast enhancement (DCE) per-
fusion, have probably been studied most extensively. Quite consistently, increased perfusion metrics have been 
associated with shortened progression-free8 and overall9,10 survival in newly-diagnosed glioma. Furthermore, 
several authors have suggested association of perfusion metrics and molecular biomarkers in glioma, such as 
epidermal growth factor receptor (EGFR) status8 or WHO grade (III vs. IV)9.
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We have recently established a novel BOLD (blood oxygenation level dependent) based MRI method for the 
measurement of vascular deoxygenation, i.e. relative oxygen extraction fraction (rOEF), in glioma patients. In a 
subgroup of patients, this non-invasive measure of hypoxia also correlated reasonably well with hypoxia-inducible 
factor 1α  (HIF1α ) immunohistochemistry stainings11. Hypoxia has long been known to play a central role in gli-
omagenesis and is related to a more malignant tumor phenotype and therapy resistance12. Accordingly, several 
studies have shown that HIF1α  protein expression increases with WHO grade13.

In order to evaluate the large feature vectors resulting from integrative analysis of image features and their 
association with underlying biology, machine-learning algorithms such as random forests and support vector 
machines clearly outperform traditional approaches such as correlation analysis and are increasingly being used 
in fields such as genomics14 and imaging analysis15.

We hypothesized that integrative analysis of multimodal MRI data, considering anatomic sequences (T1 and 
T2 weighted) as well as physiological imaging (DSC perfusion and hypoxia imaging), reflects the underlying 
glioma biology and hence allows for its non-invasive detection.

Results
Patient characteristics. In total, this study included 37 patients (24 male, 13 female; mean age 58 years), 27 
of which had a glioblastoma (73%; WHO grade IV), five an anaplastic glioma (13.5%; WHO grade III) and five a 
diffuse glioma (13.5%; WHO grade II). Of the grade II and III glioma, seven were diagnosed with an astrocytoma, 
two with a mixed oligoastrocytoma and one patient with a pure oligodendroglioma. Isocitrate dehydrogenase 
(IDH) mutation status was available for 35/37 patients: 31 patients were IDH wild type, while four patients (two 
WHO grade II glioma, two WHO grade III glioma) carried a mutant IDH allele.

Multimodal image feature analysis. We performed multimodal MRI on all 37 patients, including rOEF 
as a marker for hypoxia and perfusion imaging (Fig. 1). For image analysis, volumes of interest (VOI) were man-
ually defined by CP and summary and volume statistics were extracted for these VOIs in all sequences, resulting 
in a total of 116 features (see methods for details).

Based on recent work on the (epi)genetic basis of gliomas16–18 which indicate that WHO grade II and III 
gliomas can be rather subdivided by molecular status than WHO grade, we grouped these tumors as opposed to 
WHO grade IV glioblastoma.

We trained an oblique random forest with 300 trees, using logistic regression as the node model. To account 
for the bias in prediction accuracy, we performed a five-fold cross-validation to estimate classifier performance. 
The resulting model had an area under the curve of 0.944, with 34 of 37 patients correctly classified (Fig. 2A; 
sensitivity 0.8889, specificity 1, positive predictive value 1, negative predictive value 0.7692). In this analysis, 
three patients with a glioblastoma got misclassified as grade II/III glioma. Of these, all three were IDH wild type 
and also otherwise showed no peculiarities. To investigate the features most important for this classification, we 
calculated the mean importance score from 1000 bootstrap iterations, using the same model parameters as above. 
Figure 2B displays the z-transformed mean importance scores for all 116 features. Of these, three features had a 
z-transformed importance score > 1.96: Standard deviation of the contrast-enhanced (ce) T1w signal and rCBV 

Figure 1. Examples of a WHO grade II/III glioma (top row) and WHO grade IV glioblastoma (bottom 
row) and VOI definition. Sequences shown are contrast-enhanced T1w, FLAIR, T2, rOEF and CBV.
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in FLAIR-hyperintense tumor as well as maximum rOEF signal in the high rOEF VOI, which generally broadly 
overlapped with edema (Fig. 3). For all these features, values were higher in glioblastoma compared to WHO 
grade II/III glioma. Table 1 summarizes these features.

In our cohort, only four of 37 patients carried a mutant IDH allele. This low frequency prohibited training a 
prediction model for IDH mutational status in our cohort.

Discussion
Novel MR imaging sequences reflecting underlying oncogenic processes have greatly advanced the field of  
radiogenomics. Here, we explored the ability of a machine-learning classifier based on an extensive multimodal 
MR imaging data set to distinguish between WHO grade II/III glioma and WHO grade IV glioblastoma.

For this study, we grouped WHO grade II and III gliomas as opposed to WHO grade IV glioblastomas. In the 
current fourth edition of the WHO classification19, signs of anaplasia and mitotic activity distinguish WHO grade 
II and III glioma. However, both criteria are rather subjective and prone to relevant inter-observer variability20,21, 
while the diagnosis of WHO grade IV glioblastoma, requiring the presence of necrosis and neoangiogenesis, is 
more reliable. Furthermore, recent advances in our understanding of the complex (epi)genetic basis of gliomas 
have led to the identification of several molecular subtypes associated with biology and prognosis16–18, and have 
shown that outcome differences between WHO grade II and III glioma more rely on the distribution of these 
molecular subgroups than on biological differences between WHO grade II and III glioma per se22, suggesting 
that grade II and III glioma may in fact be a single entity subdivided by molecular parameters. Glioblastoma, on 
the other hand, still have a worse prognosis than WHO grade II and III glioma, even when accounting for molec-
ular parameters17. Based on these considerations and in accordance with large cohorts such as the cancer genome 
archive (TCGA), which also group WHO grade II and III glioma as “lower grade glioma” as opposed to grade IV 
glioblastoma, we also grouped our samples accordingly.

We identified three imaging features most important for the differentiation between WHO grades: One 
feature from a conventional anatomic sequence (ce T1w) and two features from physiological imaging (rCBV, 
rOEF). Using only image features derived from anatomic sequences to distinguish gliomas of different WHO 
grades is known to be limited by significant overlap between WHO grades3,6,7. Therefore, the use of several phys-
iological imaging sequences, better capturing underlying tumor biology, has been explored. Of these, perfusion 
imaging has maybe been studied most extensively for its use in MRI-based glioma grading23–25. Most authors 
found maximum CBV values to be a significant discriminator between tumor grades (with higher values in 
higher WHO grades), while in our cohort, the standard deviation of the CBV was more important. This may be 
related to a finding of an earlier study, where we found maximum CBV to be reflective of IDH status26, and in our 
cohort, only four patients carried an IDH mutation. We hypothesize that standard deviation of the CBV in the 
FLAIR-hyperintense tumor reflects intratumoral heterogeneity, which is known to be a prominent feature of glio-
blastoma, both histopathologically and molecularly27. Maximum relative oxygen extraction fraction (rOEF) was 
higher in glioblastoma compared to WHO grade II/III glioma (Fig. 3, Table 1). Considering the preliminary cor-
relation between HIF1α  expression (as per immunohistochemistry) and areas of high rOEF11, this feature might 
well reflect hypoxic areas, again highly characteristic of glioblastoma and thus aid in the differentiation between 
WHO grade II/III glioma and WHO grade IV glioblastoma. Interestingly, high rOEF values were most prevalent 
in peritumoral edema, which also fits with recent observations of Jensen et al. who demonstrated expression of 
hypoxia markers (HIF1α  and VEGF) in peritumoral edema28.

Only four of the ten WHO grade II and III patients in our cohort carried a mutant IDH allele, while large-scale 
population-bases studies suggest that between 60–80% of these tumors should be IDH mutant29. Unfortunately, 
this low number of IDH mutations also precluded training a classifier for the detection of IDH mutation status. A 
possible explanation for the lower number of IDH mutant patients in our cohort might lie in the selection criteria 
for this study. In this cohort, we aimed to include mostly patients with a suspected high grade glioma, because we 
wanted to correlate hypoxia as detected by rOEF with a PET-based measure of hypoxia, [18F]-FMISO.

Unraveling such meaningful correlations in complex multivariate features sets requires elaborate com-
putational algorithms that go beyond standard univariate statistical tests. The random forest algorithm excels 
in feature extraction and classification tasks for data sets with few observations but high-dimensional feature  

Figure 2. (A) Five-fold cross-validated receiver operating characteristic (ROC) curve for the random forest 
classifier predicting WHO grade. (B) Plot of the z-transformed bootstrapped mean feature importance scores. 
Here, each dot represents a feature, with the feature importance plotted on the y axis.
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vectors – a property of most data sets used in radiogenomics studies, as well as ours. Here, we used a random 
forest implementation with “oblique” node models30 that overcomes deficiencies of the regular random forest 
when dealing with correlated features, which also is a typical property of an imaging data set in general and ours 
in particular. Importantly, such algorithms allow to input a high-dimensional data set without prior selection of 
“candidate sequences”, by automatically weighing each feature, and hence leverage the full information contained 
in the data set.

Five-fold cross-validation yielded an 91.8% accuracy (34 of 37 patients correctly classified), suggesting that 
advanced MR imaging indeed is able to predict underlying biology. However, the lack of an independent vali-
dation cohort as well as the relatively small sample size are limitations of our work and caution against strong 
conclusions, though we tried to account for this by bootstrapping and cross-validating all steps in training and 
evaluating our classifier. Furthermore, this study is retrospective in nature and hence suffers from limitations 
associated with retrospective data sets.

In summary, multimodal MR imaging analysis using machine-learning techniques holds great promise for 
advancing the field of radiogenomics, enabling non-invasive insight into tumor biology, and possibly in the future 
informing clinical decision making. Our results warrant future studies.

Methods
Subjects. 47 patients with suspected glioma were examined using an extended MRI protocol. Data of ten 
patients had to be excluded because of other or lacking diagnosis (n =  4), severe motion artifacts in R2′  measure-
ment (n =  2) and technical problems or motion in the DSC-based CBV measurement (n =  4). All patients pro-
vided informed written consent. The study was approved by the ethics committee of the TU Munich and carried 
out in accordance with the approved guidelines.

MRI study protocol. MRI examinations were performed on a clinical 3 T mMR Biograph scanner (Siemens 
Medical Solutions, Germany). The advanced clinical MRI protocol comprised R2′  mapping (voxel size 
2 ×  2 ×  3 mm3, matrix 128 ×  128, 30 slices) by separate acquisition of a multi-gradient echo (12 echoes, 
TE1 =  5 ms, Δ TE =  5 ms, TR =  1950 ms, α  =  30°, exponential excitation pulse, rapid flyback, acq. time 4:08 min) 
and a multi-echo TSE sequence (8 echoes, TE1 =  16 ms, Δ TE =  16 ms, TR =  4040 ms, acq. time 5:04 min). 
Relative cerebral blood volume (rCBV) was obtained by dynamic susceptibility contrast (DSC) imaging 
(single-shot GE EPI: TR =  1500 ms, TE =  30 ms, α  =  90°, 60–80 dynamics) during a bolus injection of 15 ml 
Gd-DTPA (prebolus of 7.5 ml)31. Calculation of MRI parameter maps was performed using custom programs in 
Matlab (MathWorks, Natick, Massachusetts, USA) as described previously11,32. In short, SPM8 (www.fil.ion.ucl.
ac.uk/spm, using default parameters) was employed for spatial coregistration (rigid, 6 degrees of freedom) of the 
different image modalities (prior to rOEF calculation and VOI definition) and realignment (motion correction of 
DSC-MRI time courses if necessary). rCBV parameter maps were obtained by numerical integration of ΔR2*(t)31 
and normalized by assuming a value of 1.5% for healthy white matter32. T2* evaluation included correction for 
motion33 and magnetic background gradients34 and T2 fitting was restricted to even echoes11,32. rOEF = R2′/(c· rCBV) 
was calculated from R2 = (1/T2*) − (1/T2) and rCBV using c = 4/3·π·γ·∆χ·B0 = 317 Hz at 3T11,32 (with suscepti-
bility difference between oxygenated and deoxygenated blood ∆χ and gyromagnetic ratio γ). T1, T2, FLAIR and 
T2* images were normalized by computing a standard score µ

σ
−x  for tumor VOIs, using mean and standard 

deviation from healthy, non-tumorous brain. Using thresholding, manual editing, and logical VOI operations 
(difference and intersection), volumes of interest (VOI) were defined with Vinci (http://www.nf.mpg.de/vinci3) 

Figure 3. Box plots of the three most important features for the differentiation between grade II/III glioma 
and grade IV glioblastoma. 

Feature Importance Score (z) Cohen’s d p value

Standard deviation of T1ce values 
in FLAIR-hyperintense tumor 2.877775 2.798253 < 0.0001

Maximum rOEF value in areas of 
high rOEF signal 2.022619 0.839689 0.003764

Standard deviation of CBV in 
FLAIR-hyperintense tumor 2.100360 0.9144929 0.001831

Table 1.  Overview of the most important features. ce, contrast-enhanced.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.nf.mpg.de/vinci3
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as described previously11. Briefly, a comprehensive FLAIR-hyperintense tumor VOI (FLAIR) was defined first, 
comprising tissue with any tumor related changes. Next, VOIs of solid appearing T2 visible tumor (T2T) and 
areas of contrast enhancement (in the T1w sequence (contrast enhancing tumor, CET) were defined to be mutu-
ally exclusive inside this FLAIR VOI. Furthermore, areas with high rOEF values (rOEF greater than mean +  one 
standard deviation of healthy tissue) were defined (see Fig. 1 for illustration). Special care was taken to exclude 
artifacts (areas with necrosis, bleeding, iron deposition, macroscopic susceptibility perturbation). Within Vinci 
the VOI statistics functionality was then used to apply these VOIs to the spatially coregistered MR images and 
parameter maps, and extract the respective mean, standard deviation, minimum and maximum values together 
with the VOI volume for each sequence (contrast-enhanced T1w, FLAIR, T2, T2*, R2′ , rOEF and CBV) and VOI, 
resulting in a total of 116 features.

Statistical analysis. For supervised analysis of this high-dimensional data set, we trained an oblique random 
forest classifier30 with 300 trees (https://cran.r-project.org/package= obliqueRF). To validate this model, we per-
formed a five-fold cross-validation; only cross-validated performance measures are reported, using the pROC and 
caret packages (https://cran.r-project.org/package= pROC & https://cran.r-project.org/package= caret)35. Using 
a bootstrapping approach (with 1,000 iterations), we calculated feature importance scores to identify the features 
most important for classification from the oblique random forest. Briefly, importance counts how often a varia-
ble was deemed relevant (at 0.05 level) when chosen for a split at a node (increasing the importance value by 1)  
and how often it was irrelevant for the split (decreasing by 1). For the most important features (bootstrapped 
standardized z score > 1.96), effect size (Cohen’s d) was calculated and Welch’s t test performed. All tests were 
two-sided and carried out using R version 3.236.

Data availability. Phenotype data and anonymized & skull-stripped MR images are available upon request 
at figshare (https://figshare.com/articles/MRI_data_for_SciRep/3980175).
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