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PAI: Predicting adenosine to 
inosine editing sites by using 
pseudo nucleotide compositions
Wei Chen1, Pengmian Feng2, Hui Ding3 & Hao Lin3

The adenosine to inosine (A-to-I) editing is the most prevalent kind of RNA editing and involves in many 
biological processes. Accurate identification of A-to-I editing site is invaluable for better understanding 
its biological functions. Due to the limitations of experimental methods, in the present study, a support 
vector machine based-model, called PAI, is proposed to identify A-to-I editing site in D. melanogaster. 
In this model, RNA sequences are encoded by “pseudo dinucleotide composition” into which six RNA 
physiochemical properties were incorporated. PAI achieves promising performances in jackknife test 
and independent dataset test, indicating that it holds very high potential to become a useful tool 
for identifying A-to-I editing site. For the convenience of experimental scientists, a web-server was 
constructed for PAI and it is freely accessible at http://lin.uestc.edu.cn/server/PAI.

The adenosine to inosine (A-to-I) editing is the most prevalent kind of RNA editing, which has been found from 
fungi to human1. A-to-I editing is catalyzed by the highly conserved enzyme ADARs (adenosine deaminases that 
act on RNA), which bind dsRNA (double-stranded RNA) structures and deaminate the targeted A within these 
structures into I2,3, Fig. 1.

The inosine yielded by A-to-I editing replaces the genomically encoded adenosine and is read by the cellular 
machinery as a guanosine (G)3–5. Therefore, A-to-I editing not only results in codon changes6, but also serves 
numerous post-transcriptional roles, such as regulating alternative splicing, modifying microRNA gene products 
and altering their microRNA target sites7–9. Therefore, the knowledge about the positions of A-to-I editing site is 
important for deciphering its biological functions.

By using RNA-Seq method, A-to-I editing sites have been detected in H. sapiens10–12, M. musculus13, and 
D. melanogaster14. The experimental data yielded quite encouraging results and play a role in promoting the 
research progress on identifying the distribution of A-to-I editing site. However, the high error rates of many 
next-generation sequencing platforms present a major challenge for A-to-I editing site discovery14. Therefore, it is 
in high demand to develop computational methods for analyzing the distribution and function of A-to-I editing 
site, so as to speed up genome-wide A-to-I editing site detection.

Based on the RNA-Seq data, Laurent and his colleague constructed a high quality dataset and developed a 
computational model to detect A-to-I editing site in D. melanogaster14. However, the features used in their model 
are all information from RNA-Seq experiment. Therefore, their model couldn’t be used to detect A-to-I editing 
site in the cases without the reads information from RNA-Seq experiment. Moreover, no web-server or predic-
tor was provided for their method, and hence its usage is quite limited, particularly for the broad experimental 
scientists.

Keeping this in mind, in the present study, we proposed a support vector machine (SVM) based-method to 
identify the A-to-I editing site in D. melanogaster. By using the pseudo dinucleotide composition as the input 
feature vector of support vector machine, the long-range sequence-order effects and RNA physicochemical prop-
erties were integrated together in the proposed model. It is encouraging that the proposed method obtained 
promising performances in jackknife test and independent dataset test. For the convenience of experimental 
scientists, a web-server for the proposed model is provided at http://lin.uestc.edu.cn/server/PAI.
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Result and Discussion
Parameter optimization. By using PseDNC, RNA samples in the benchmark dataset can be transferred 
to a discrete vector whose dimension and elements depend on the two parameters w and λ (see Materials and 
Methods). w is the weight factor usually within the range from 0 to 1, and λ is the global order effect. Generally 
speaking, the greater the λ is, the more global sequence-order information the model contains. However, if λ is 
too large, it would reduce the cluster-tolerant capacity so as to lower down the cross-validation accuracy due to 
over-fitting or “high dimension disaster” problem. Therefore, our searching for the optimal values of the two 
parameters is in the range of w∈ [0, 1] and λ∈ [1, 10] with the steps of 0.1 and 1, respectively.

In order to reduce the computational time, the 5-fold cross-validation method was used to optimize the 
two parameters. We found that when w =  0.3 and λ =  4, a peak of 78.86% was obtained for the Acc (Fig. 2). 
Accordingly, these two numerical values, w =  0.3 and λ =  4, were used for the two uncertain parameters to build 
the SVM-based model. The model thus obtained is called PAI, where “P” stands for Predicting, “A” for Adenosine 
and “I” for Inosine.

A-to-I editing site sites prediction. The jackknife test is the least arbitrary and most objective 
cross-validation method and has been increasingly adopted by researchers to examine the quality of various 
computational models. Thus, the jackknife test was used to examine the performance of PAI. In the jackknife test, 
PAI obtained an accuracy of 79.51% with the sensitivity of 85.60%, specificity of 73.11% and MCC of 0.60 for 
identifying A-to-I editing sites in the benchmark dataset. To further testify its performance, we also applied the 
PAI to identify the 300 A-to-I editing sites in the independent dataset, and found that PAI could correctly identify 
247 A-to-I editing sites with the sensitivity of 82.33%.

Comparison with other classifiers. Since there is no freely accessible predictor or webserver that could 
be used to identify the A-to-I editing sites, and hence no comparison could be made in this study for PAI with 
its counterparts. In order to testify its superiority, we compared the predictive results of PAI with those of other 

Figure 1. Illustration to show the adenosine to inosine. Its formation is catalyzed by the enzyme ADARs 
(adenosine deaminases that act on RNA).

Figure 2. A graph to show the accuracies obtained in the 5-fold cross-validation with different values of w 
and λ. 
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commonly used classifiers, i.e., Naïve Bayes, BayesNet and J48 Tree, as implemented in WEKA15. The jackknife 
test results of different classifiers for identifying A-to-I editing sites in the benchmark dataset were reported in 
Table 1.

It is shown that the sensitivity, specificity, accuracy and MCC of PAI are all higher than that of the other three 
state-of-the-art classifiers. These results suggest that the proposed SVM based model can be effectively used to 
identify A-to-I editing sites.

Webserver. To enable applications of the proposed method and for the convenience of scientific community, 
a freely accessible online webserver was established. The user guide is given as following.

Step 1. Open the web server at http://lin.uestc.edu.cn/server/PAI, and the top page of PAI will be shown as in 
Fig. 3.

Step 2. Either type or copy/paste the query RNA sequences into the input box at the center of Fig. 3.

Step 3. Click on the ‘Submit’ button to see the predicted result. For example, if use the query RNA sequences 
in the ‘Example’ window as the input, the outcomes are as following: All the Adenosines (A) at position 26 in the 
four query sequences can be edited to Inosine (I). These results are consistent with the experimental observations.

Conclusions
RNA-seq analyses have demonstrated that A-to-I editing is associated with a number of key biological processes 
and plays important roles ranging from changing codon to regulating mRNA splicing. Therefore, genome-wide 
detection of A-to-I editing sites will facilitate our understanding of its biological functions.

In the present study, we proposed a support vector machine based model for predicting A-to-I editing sites by 
using pseudo dinucleotide composition and found that the model is very promising as reflected by high success 
rates obtained from the rigorous jackknife test and independent dataset test.

For the convenience of researchers in the scientific community, a web-server for the proposed model, called 
PAI, is provided. We hope that it will provide novel insights into the understanding of the distribution and func-
tion of A-to-I editing. As the current method is only applicable to D. melanogaster, future work will expand to 
other species once the high quality experimental data that can be used to train the model is available.

Materials and Methods
Dataset. The benchmark dataset used to train and test the proposed method was built based on Laurent  
et al.’s work14. By using single molecular sequencing method, they sequenced the RNAs and DNAs of the 

Method Sn (%) Sp (%) Acc (%) MCC

Naïve Bayes 81.60 71.40 76.60 0.53

BayseNet 81.60 69.70 75.80 0.52

J48 67.50 63.10 65.40 0.31

PAI 85.60 73.11 79.51 0.60

Table 1.  Comparison of different methods for identifying A-to-I editing site by the jackknife test.

Figure 3. A semi-screenshot for the top-page of the PAI web-server at http://lin.uestc.edu.cn/server/PAI.

http://lin.uestc.edu.cn/server/PAI
http://
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wild-type D. melanogaster and RNAs of the ADAR-deficient D. melanogaster, and obtained a training dataset 
including 127 A-to-I editing site containing sequences and 127 non-A-to-I editing site containing sequences. 
After removing the redundant samples in their dataset, we obtained a benchmark dataset including 125 A-to-I 
editing site containing sequences and 119 non-A-to-I editing site containing sequences.

It was observed via preliminary trials that when the length of the sequences in the benchmark dataset is 51 nt 
with the A that can be edited to Inosine in the center, the corresponding predictive results were most promising. 
Accordingly, all the sequences in the training dataset are 51-nt long and are available at http://lin.uestc.edu.cn/
server/PAI.

To further verify the power of the proposed method, we also build an independent dataset by harvesting the 
A-to-I editing site containing sequences of D. melanogaster from Yu and his colleagues’ work16. By removing the 
sequences with more than 75% sequence similarity using CD-HIT17, we obtained 300 A-to-I editing site contain-
ing sequences. These sequences are also 51-nt long and are available at http://lin.uestc.edu.cn/server/PAI.

Pseudo nucleotide composition. In order to include the global sequence order information, the pseudo 
nucleotide composition was proposed to represent genomic sequences18. Since its introduction, pseudo nucle-
otide composition has been successfully applied in many branches of computational genomics19–22. Due to its 
excellent performance, a series of flexible web-servers were developed to generate pseudo nucleotide compo-
sitions23–26. Therefore, in the current work, the pseudo nucleotide composition was also used to represent RNA 
samples. Below is the brief elaboration on how to encode RNA sequences using pseudo nucleotide composition. 
For more details of pseudo nucleotide composition, see a recent review27.

Suppose a RNA sequence with L nucleic acid residues, the pseudo nucleotide composition can be defined as,
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In Eq. 2, fu (u =  1, 2, … ., 4k) is the normalized occurrence frequency of the non-overlapping k-tuple nucleotides 
in the RNA sequence. λ is the number of the total counted ranks of the correlations along a RNA sequence, and 
w is the weight factor. It is through the λ correlation factors that not only considerable global sequence-order 
effects can be incorporated but the RNA sequences in the benchmark dataset with extreme difference in length 
can also be converted into a set of feature vectors with a same dimension. The correlation factor θj represents the 
j-tier structural correlation factor between all the j-th most contiguous k-tuple nucleotide Ti =  RiRi+1… Ri+k−1 and 
is defined as,

∑θ λ λ=
− − +

Θ = <
=

− − +

+ 

L j k
T j L1

1
( , T ) ( 1, 2, , ; )

(3)j
i

L j k

i i j
1

1

For example, θ1 is called the first-tier correlation factor that reflects the sequence order correlation between all 
the most contiguous k-tuple nucleotide along a RNA sequence; θ2, the second-tier correlation factor between all 
the second most contiguous k-tuple nucleotide; θ3, the third-tier correlation factor between all the third most 
contiguous k-tuple nucleotide; and so forth. The correlation function Θ (Ti, Tj) is given by
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where v is the number of RNA physicochemical properties. Pu(Ti) is the numerical value of the u-th (u =  1, 2, … ., 6)  
property for the dinucleotide Ti at position i, and Pu(Tj) is the corresponding value for the dinucleotide Tj at 
position j.

Before substituting them into Eq. 4, all the original values Pu(Ti) (u =  1, 2, … , 6) were subjected to a standard 
conversion as described by the following equation,
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where the symbol < >  means taking the average of the quantity therein over the 16 different dinucleotides, and 
SD means the corresponding standard deviation. The converted values obtained by Eq. 5 will have a zero mean 
value over the 16 different dinucleotides.

RNA physicochemical properties. It has been reported that A-to-I editing are correlated with RNA struc-
tures2. Since RNA structure is determined by the complex pattern of base-base interaction28–31, the RNA local 
structural properties were used to define the pseudo nucleotide composition, of which three are local trans-
lational parameters (Shift, Slide, Rise) and the other three the local angular parameters (Twist, Tilt, Roll). The 
detailed values for the six local structural property parameters are given in Table 2. Therefore, k is equal to 2 
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meaning that the pseudo dinucleotide composition (PseDNC) was used, and v is equal to 6 reflecting the number 
of RNA physicochemical properties considered.

Support Vector Machine. As a smart supervised machine learning algorithm, support vector machine 
(SVM) has been widely employed to build classifiers in the realm of computational genomics and proteomics32–36. 
Its basic idea is to transform the input data into a high dimensional feature space and then determine the optimal 
separating hyperplane. In the current study, the LibSVM package 3.18 (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) 
was used to perform the predictions. The radial basis function (RBF) was chosen as the kernel of SVM, where the 
regularization parameter C and kernel parameter γ were optimized using a grid search approach as defined by

γ
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Performance evaluation. The performance of the proposed method was evaluated by using the widely used 
four metrics, namely sensitivity (Sn), specificity (Sp), Accuracy (Acc) and the Mathew’s correlation coefficient 
(MCC), which are expressed as
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where TP represents the number of the correctly recognized A-to-I editing site containing sequences, TN rep-
resents the number of the correctly recognized non-A-to-I editing site containing sequences, FP represents the 
number of non-A-to-I editing site containing sequences recognized as A-to-I editing site containing sequences 
and FN represents the number of A-to-I editing site containing sequences recognized as non-A-to-I editing site 
containing sequences, respectively.

References
1. Gray, M. W. Evolutionary origin of RNA editing. Biochemistry 51, 5235–5242, doi: 10.1021/bi300419r (2012).
2. Barraud, P. & Allain, F. H. ADAR proteins: double-stranded RNA and Z-DNA binding domains. Current topics in microbiology and 

immunology 353, 35–60, doi: 10.1007/82_2011_145 (2012).
3. Bass, B. L. RNA editing by adenosine deaminases that act on RNA. Annual review of biochemistry 71, 817–846, doi: 10.1146/annurev.

biochem.71.110601.135501 (2002).
4. Rosenthal, J. J. The emerging role of RNA editing in plasticity. The Journal of experimental biology 218, 1812–1821, doi: 10.1242/

jeb.119065 (2015).
5. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annual review of biochemistry 79, 321–349, doi: 

10.1146/annurev-biochem-060208-105251 (2010).
6. Lev-Maor, G. et al. RNA-editing-mediated exon evolution. Genome biology 8, R29, doi: 10.1186/gb-2007-8-2-r29 (2007).
7. Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80, doi: 10.1038/19992 (1999).

Dinucleotide Shift (nm) Slide (nm) Rise (nm) Tilt (°) Roll (°) Twist (°)

AA − 0.08 − 1.27 3.18 − 0.80 7.00 31.00

AC 0.23 − 1.43 3.24 0.80 4.80 32.00

AG − 0.04 − 1.50 3.30 0.50 8.50 30.00

AU − 0.06 − 1.36 3.24 1.10 7.10 33.00

CA 0.11 − 1.46 3.09 1.00 9.90 31.00

CC − 0.01 − 1.78 3.32 0.30 8.70 32.00

CG 0.30 − 1.89 3.30 − 0.10 12.10 27.00

CU − 0.04 − 1.50 3.30 0.50 8.50 30.00

GA 0.07 − 1.70 3.38 1.30 9.40 32.00

GC 0.07 − 1.39 3.22 0.00 6.10 35.00

GG − 0.01 − 1.78 3.32 0.30 12.10 32.00

GU 0.23 − 1.43 3.24 0.80 4.80 32.00

UA − 0.02 − 1.45 3.26 − 0.20 10.70 32.00

UC 0.07 − 1.70 3.38 1.30 9.40 32.00

UG 0.11 − 1.46 3.09 1.00 9.90 31.00

UU − 0.08 − 1.27 3.18 − 0.80 7.00 31.00

Table 2.  The original values for the six RNA dinucleotide physical structures.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/


www.nature.com/scientificreports/

6Scientific RepoRts | 6:35123 | DOI: 10.1038/srep35123

8. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140,  
doi: 10.1126/science.1138050 (2007).

9. Kawahara, Y. et al. Frequency and fate of microRNA editing in human brain. Nucleic acids research 36, 5270–5280, doi: 10.1093/nar/
gkn479 (2008).

10. Ramaswami, G. et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nature methods 9, 579–581,  
doi: 10.1038/nmeth.1982 (2012).

11. Bahn, J. H. et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome research 22, 
142–150, doi: 10.1101/gr.124107.111 (2012).

12. Sakurai, M. et al. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome research 24, 522–534, 
doi: 10.1101/gr.162537.113 (2014).

13. Alon, S. et al. The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing. eLife 4, doi: 
10.7554/eLife.05198 (2015).

14. St Laurent, G. et al. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nature structural & 
molecular biology 20, 1333–1339, doi: 10.1038/nsmb.2675 (2013).

15. Frank, E., Hall, M., Trigg, L., Holmes, G. & Witten, I. H. Data mining in bioinformatics using Weka. Bioinformatics 20, 2479–2481, 
doi: 10.1093/bioinformatics/bth261 (2004).

16. Yu, Y. et al. The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection. PLoS genetics 12, e1006191, 
doi: 10.1371/journal.pgen.1006191 (2016).

17. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 
3150–3152, doi: 10.1093/bioinformatics/bts565 (2012).

18. Chen, W., Feng, P. M., Lin, H. & Chou, K. C. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. 
Nucleic acids research 41, e68, doi: 10.1093/nar/gks1450 (2013).

19. Chen, W., Feng, P. M., Deng, E. Z., Lin, H. & Chou, K. C. iTIS-PseTNC: a sequence-based predictor for identifying translation 
initiation site in human genes using pseudo trinucleotide composition. Analytical biochemistry 462, 76–83, doi: 10.1016/j.
ab.2014.06.022 (2014).

20. Chen, W., Feng, P. M., Lin, H. & Chou, K. C. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed 
research international 2014, 623149, doi: 10.1155/2014/623149 (2014).

21. Chen, W., Feng, P., Ding, H., Lin, H. & Chou, K. C. iRNA-Methyl: Identifying N(6)-methyladenosine sites using pseudo nucleotide 
composition. Analytical biochemistry 490, 26–33, doi: 10.1016/j.ab.2015.08.021 (2015).

22. Lin, H., Deng, E. Z., Ding, H., Chen, W. & Chou, K. C. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 
promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic acids research 42, 12961–12972, doi: 10.1093/nar/
gku1019 (2014).

23. Chen, W., Lei, T. Y., Jin, D. C., Lin, H. & Chou, K. C. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide 
composition. Analytical biochemistry 456, 53–60, doi: 10.1016/j.ab.2014.04.001 (2014).

24. Chen, W. et al. PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. 
Bioinformatics 31, 119–120, doi: 10.1093/bioinformatics/btu602 (2015).

25. Liu, B. et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. 
Nucleic acids research 43, W65–W71, doi: 10.1093/nar/gkv458 (2015).

26. Liu, B., Liu, F., Fang, L., Wang, X. & Chou, K. C. repDNA: a Python package to generate various modes of feature vectors for DNA 
sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics 31, 1307–1309,  
doi: 10.1093/bioinformatics/btu820 (2015).

27. Chen, W., Lin, H. & Chou, K. C. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic 
sequences. Molecular bioSystems 11, 2620–2634, doi: 10.1039/c5mb00155b (2015).

28. Xu, X. & Chen, S. J. Physics-based RNA structure prediction. Biophysics reports 1, 2–13, doi: 10.1007/s41048-015-0001-4 (2015).
29. Perez, A., Noy, A., Lankas, F., Luque, F. J. & Orozco, M. The relative flexibility of B-DNA and A-RNA duplexes: database analysis. 

Nucleic acids research 32, 6144–6151, doi: 10.1093/nar/gkh954 (2004).
30. Zou, Q. et al. Improving tRNAscan-SE Annotation Results via Ensemble Classifiers. Molecular informatics 34, 761–770,  

doi: 10.1002/minf.201500031 (2015).
31. Zou, Q., Mao, Y., Hu, L., Wu, Y. & Ji, Z. miRClassify: an advanced web server for miRNA family classification and annotation. 

Computers in biology and medicine 45, 157–160, doi: 10.1016/j.compbiomed.2013.12.007 (2014).
32. Feng, P., Lin, H., Chen, W. & Zuo, Y. Predicting the types of J-proteins using clustered amino acids. BioMed research international 

2014, 935719, doi: 10.1155/2014/935719 (2014).
33. Lin, H., Chen, W., Yuan, L. F., Li, Z. Q. & Ding, H. Using over-represented tetrapeptides to predict protein submitochondria 

locations. Acta biotheoretica 61, 259–268, doi: 10.1007/s10441-013-9181-9 (2013).
34. Ding, H. et al. Prediction of Golgi-resident protein types by using feature selection technique. Chemometrics and Intelligent 

Laboratory Systems 124, 9–13 (2013).
35. Chen, W. & Lin, H. Prediction of midbody, centrosome and kinetochore proteins based on gene ontology information. Biochemical 

and biophysical research communications 401, 382–384, doi: 10.1016/j.bbrc.2010.09.061 (2010).
36. Feng, P., Chen, W. & Lin, H. Prediction of CpG island methylation status by integrating DNA physicochemical properties. Genomics 

104, 229–233, doi: 10.1016/j.ygeno.2014.08.011 (2014).

Acknowledgements
This work was supported by Program for the Top Young Innovative Talents of Higher Learning Institutions of 
Hebei Province (No. BJ2014028), the Outstanding Youth Foundation of North China University of Science and 
Technology (No. JP201502), China Postdoctoral Science Foundation (No. 2015M582533), and the Fundamental 
Research Funds for the Central Universities, China (Nos ZYGX2015J144, ZYGX2015Z006).

Author Contributions
W.C. and H.L. conceived and designed the experiments; P.F. and H.D. analyzed the m1A-seq data; W.C. and H.L. 
implemented SVM and created the back end server; W.C. and H.L. performed the analysis and wrote the paper. 
All authors read and approved the final manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Chen, W. et al. PAI: Predicting adenosine to inosine editing sites by using pseudo 
nucleotide compositions. Sci. Rep. 6, 35123; doi: 10.1038/srep35123 (2016).



www.nature.com/scientificreports/

7Scientific RepoRts | 6:35123 | DOI: 10.1038/srep35123

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	PAI: Predicting adenosine to inosine editing sites by using pseudo nucleotide compositions
	Introduction
	Result and Discussion
	Parameter optimization
	A-to-I editing site sites prediction
	Comparison with other classifiers
	Webserver
	Step 1
	Step 2
	Step 3


	Conclusions
	Materials and Methods
	Dataset
	Pseudo nucleotide composition
	RNA physicochemical properties
	Support Vector Machine
	Performance evaluation

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                PAI: Predicting adenosine to inosine editing sites by using pseudo nucleotide compositions
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35123
            
         
          
             
                Wei Chen
                Pengmian Feng
                Hui Ding
                Hao Lin
            
         
          doi:10.1038/srep35123
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep35123
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep35123
            
         
      
       
          
          
          
             
                doi:10.1038/srep35123
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35123
            
         
          
          
      
       
       
          True
      
   




