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Influence of molecular designs 
on polaronic and vibrational 
transitions in a conjugated push-
pull copolymer
Christoph Cobet1,*, Jacek Gasiorowski2,*, Reghu Menon3, Kurt Hingerl1, Stefanie Schlager4, 
Matthew S. White5, Helmut Neugebauer4, N. Serdar Sariciftci4 & Philipp Stadler4

Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually 
described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich 
model in quasi-confined chains. However, recent developments in conjugated polymers have diversified 
the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to 
investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in 
the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using 
in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain 
the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich 
model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in 
agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-
pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem 
difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by 
the push-pull concept in the doped state - an important view in light of the main purpose of push-pull 
polymers for photovoltaic devices.

In-situ (operando) spectroscopy on free carrier induced absorption in π-conjugated polymers displays the pro-
nounced electron-phonon coupling due to π-fluctuations. Similar to Raman modes in the ground state, vibronic 
terms in doped polymers known as infrared-activated vibrations (IRAVs) display symmetry breaking due to 
presence of charge carriers1–4. Originally, these modes have been described in doped and photoexcited simple 
conjugated systems such as polyacetylene and polythiophenes, where all CSC, CCC and CCH vibrations can 
be assigned to the spectral response. Meanwhile, polymers developed to more complicated macromolecular 
structures, so that one-to-one vibrational assignments become difficult. However, there exists crucial interest 
to resolve the doped state electronics as it provides an insight to optoelectronic devices during operation5–10. 
In this work we took such an in-situ operando view to these electronic transitions, which emerge only in the 
doped state. Electronically these are polaron transitions, which qualitatively relate to the coupling of phonons 
and free charge carriers. Fitting of these transitions allows an estimation of the strength of inter- and intramo-
lecular forces and hence provides substantial information about carrier dynamics, which can be directly proved 
in device-structures. We elucidate these dynamics for the first time in a sophisticated push-pull polymer such as 
PBDTTT-c both in the material and in a device-related style. Interestingly we find agreement with earlier results 
on 1D delocalization, which appears specifically enhanced by push-pull molecular structures.
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Results
Typically polarons emerge from electron-phonon interactions. Their binding energy and the intensity of IR 
absorption due to polaron excitations scales with a dimensionless coupling constant according to Froehlich
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where mc the effective electron mass and ωPh is the LO-phonon frequency. In conjugated polymers polaron 
absorption depends strongly on dielectric function between ε∞ and ε0 (high-frequency electronic and static  
dielectric constant). The term ε ε−∞
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1  defines the effective dielectric constant related to the lattice polarisa-
bility. For a given electronic polarisability ε∞ maximizes if the measurable static dielectric constant becomes large. 
Furthermore it is evident that the electron-phonon coupling and thus the intensity of polaronic absorption 
increase with electron localization i.e. in case of a high effecitve electron mass mc.

In this study we compare regioregular poly-3-hexylthiophene (rr-P3HT) and a prominent push-pull system 
poly[(4,8-bis-(2-ethylhexyloxy)-benzo(1,2-b:4,5-b’)dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]
thiophene-)-2-6-diyl] (PBDTTT-c)11,12. The latter reflects exactly recent developments, where intramolecu-
lar dipoles red-shift the band gap to explore infrared (IR) activity. In PBDTTT-c, it is benzodithiophene and 
thienothiophene, which serve as sequential donor-acceptor pair13–18. The IR-activity in push-pull polymers usu-
ally pays off by an extraordinary molecular complexity - the number of carbon atoms per monomer increased 
by a factor of 4 from P3HT to PBDTTT-c. Typically, push-pull polymers afford also an elaborate side-chain 
engineering to obtain solubility19–23. Taking PBDTTT-c as an example, little is know about the influence of such 
complexity to the polaron levels. Therefore we pursue an operando spectroscopic study to achieve this insight, in 
particular on polaron dynamics24–30.

On basis of ground-state and doped-state data we create optical models to visualise polaron differences. 
Generic oscillators are useful here to assemble these corresponding delta-functions with strong broadening 
effects (Lorentz-type or Gaussian-type). This allows us to conclude on the molecular interactions dominating 
the solid-state system31,32. Interestingly we find the complex push-pull polymer to suppress intermolecular forces 
consequently fitting well 1D-delocalization. This is opposite to highly-crystalline rr-P3HT, where the wave func-
tions spread into inter- and intramolecular identities with diverging intensity. Our results show, that the push-pull 
concept strengthens the 1D-character - it can drive a conjugated polymer with complex molecular structure 
towards a simple advantageous optoelectronic structural fingerprint.

The experimental optical model for the pristine polymers (Fig. 1) are shown in the dielectric functions (and 
the absorption coefficient α) for PBDTTT-c and rr-P3HT, respectively. The latter (Fig. 1a) has maxima at 2.1 and 
2.3 eV (imaginary part left scale, ε2). The feature splitting is a signature of intra- and intermolecular alignment 
and therewith π −  π stacking33: This is true for the absorption features between 2 and 4 eV. In detail the shoulder 
at 2.07 eV is attributed to interchain-delocalized exciton, while the following peaks at 2.27 eV and 2.49 eV are 
phonon replica of the exciton. The broad absorption shoulder at 2.6 eV refers to the screened π - π* transition34. 
The onset of the absorption is found at 1.9 eV35. The dispersion - consistent with absorption - is reflected in 
the plot of the real part ε1 having two strong variations that are connected with two oscillators with maxima at 
1.95 and 2.1 eV. All mentioned assignments fit measurements on films and dilluted rr-P3HT. Thus we derive a 
consistent value for the average LO-phonon frequency ωPh at 190 to 200 meV. PBDTTT-c shows different absorp-
tion features: Uniting donor (thieno[2,3-b]thiophene) and acceptor (benzodithiophene with alkoxy-side-chains) 
red-shift the absorption onset to 1.55 eV. The dielectric functions is presented in Fig. 1b with two sharp peaks at 
1.75 eV (π-π* transition) and 1.9 eV. Unlike rr-P3HT, this splitting is not originated from π-π - stacking but rather 
a fingerprint of the push-pull character. In addition to the dielectric function we include the absorption coeffi-
cients α for both polymers (Fig. 1c). In rr-P3HT, a different spectral shape of α as compared to ε2 is apparent - it 
originates from the important role of the refractive index ni in thin films. The absorption coefficient has a broad 
peak with maximum at 2.4 eV, which is a result of dispersion from three oscillators describing the optical transi-
tions. Differently, the absorption coefficient for PBDTTT-c correlates better to the ε1-function.

For conducting in-situ spectroscopy on the doped-state, we create a long-lived (persistent) species, which 
allows elucidation by variable angle spectroscopic ellipsometry (VASE) and attenuated total reflection (ATR) 
FTIR. Persistency is achieved by iodine-doping rr-P3HT and PBDTTT-c while recording spectra. Alternatively, 
dynamic doping uses the photo-excitation of the polymer in presence of electron acceptor phenyl-C61-butyric 
acid methyl ester (PCBM). The latter method mimics the charge-separation processes in an organic photovoltaic 
cell (bulk-heterojunction). We denote that photo-induced in-situ absorption (PIA) measurements are presented 
for ATR-FTIR in the mid-IR36,37. Combined with persistent doping we obtain a complete survey covering the 
spectral region between 5.5 and 0.075 eV exactly where vibronic transitions (IRAVs), polaron transitions (P1,2 and 
ground state transitions occur (Fig. 2).

At first we present datasets in the UV-visible and near-IR (5 to 1.0 eV) of doped-state levels introduced by per-
sistent chemical doping (Fig. 3). We show the real (ε1) and imaginary part (ε2) of the dielectric function of doped 
polymers rr-P3HT* and PBDTTT-c*, respectively. For P3HT* ε2 shows a quenched and broad main absorption 
peak signal with a maximum at 2.3 eV and a transition betweeen localized polaron state at 1.5 eV, denoted as 
P1. Above 3 eV we cannot observe changes as compared to the ground-state, so we conclude that doping affects 
mainly π-levels (polarons disrupt loosley-bound HOMO and LUMO states). Contributions from iodine are not 
apparent (rr-P3HT and PBDTTT-c*). The rr-P3HT* real dielectric function ε1 repeats the ground state oscillator 
quenching and displays the concomitant formation of an in-gap P1 transition at 1.5 eV.

For PBDTTT-c*, we see a similar impact: Quenching in the active absorption region and rise of P1. The max-
ima of PBDTTT-c* are red-shifted as compared to rr-P3HT* due to the lower absorption edge in the ground state. 
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Concretely, P1 arises at 1.2 eV (ε2) (absorption coefficients in Fig. 3c). Between P3HT and P3HT* the decrease 
of the original absorption feature is significant, which is not the case between PBDTTT-c and PBDTTT-c* - the 
quantitative changes due to doping are minor, which correlates to the higher oxidation potential of PBDTTT-c.

Figure 1. Ellipsometric spectra of ground state rr-P3HT and PBDTTT-c including molecular structure. 
(a,b) The dielectric functions ε1, ε2 correspond to the real (left, ε1) and imaginary (right, ε2) part as indicated in 
the graphs. In (c) we plot the absorption coefficient of both polymers.

Figure 2. Schematic illustration of the ground state and doped state in a π-conjugated polymer. The 
characteristic in-gap polaron transitions P1,2 are indicated.
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To probe the low-energy regime with the continuum polaronic excitations (P2) and the IRAVs, we change to 
in-situ ATR-FTIR to cover the spectral mid-IR region between 0.6 to 0.075 eV. For P3HT* we see a characteristic 
broad P2 feature above 0.18 eV to 0.19 with a maximum at 0.35 eV. Below 0.18 eV IRAVs emerge characterized 
by multiple, intense absorption peaks. In parallel, PBDTTT-c* exhibits a broad P2 transition with a maximum at 
0.39 eV including IRAVs. The latter are broadened as compared to rr-P3HT.

In ATR-FTIR, photo-inducted absorption is accessible too. We crosschecked, how doped-state levels are 
affected by the origin of excitation. In both polymers we cannot report on substantial differences in the spectral 
response (Fig. 4), unless taking into account quantitative evaluations. Persistent doping with iodide yield quan-
titative changes, while photo-induced changes are relatively small and, though noise-reduced due to lock-in data 
acquisition, less precise. Qualitatively, we find the maxima for IRAVs and P2 transitions at the same positions 
with minor deviations as indicated in Fig. 4, independently, which method for excitation has been applied. For 
comparison, we sum up all data on in-gap states in Table 1.

Discussion
The interesting part in evaluation of the presented doped-state spectra affects the differences within the polymer sys-
tems. Common rr-P3HT has a simple molecular desing but features  a complex physical insight: Our approach fitting 
spectra with a minimum amount of generic oscillators fails, when we stick to a 1D Froehlich-model (details explained 
in SI). As already discussed in Fig. 1c, rr-P3HT exhibits strong dispersion effects in the ground state likely originating 
from the strong π-stacking. Therefore the minimum amount of generic oscillators used to reasonably fit the data are 3, 
which are illustrated in Fig. 4, left. The polaronic absorption lines are then in agreement, if additional intermolecular 
forces are considered. In the literature, this effect has been also assigned as 2D-polaron8,38–40 - accordingly we illustrate 
the in-gap states in a schematic (Fig. 5). In light of its complex electronic insight, PBDTTT-c appears plain and simple, 
as far as doped-state dynamics are concerned. This is in contrast to its complicated molecular design consisting of two 
heterocycles and extensive side-chain branches. In PBDTTT-c, we observe classic 1D-delocalization in agreement 

Figure 3. Ellipsometric doped-state spectra on persistently doped rr-P3HT and PBDTTT-c. In (a,b) the 
rise of the P1 polarons for both systems (with different intensities) is indicated. The response function of the 
absorption coefficient in the doped state is also shown in (c).
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with the spectral response. The absorption line shape fits a textbook example for 1D Froehlich polaron excitations 
with relatively high coupling strength and higher effective hole mass. We fit the spectra using two generic oscillators, 
(Fig. 4, right) and find a proper match with the doped-state spectral features. The latter is not possible in rr-P3HT: 
P2 transitions are weaker despite more intense P1. We conclude that we have simply more polaronic states, a weaker 
Froelich coupling constant, thus less 1D-character. These conclusions are furthermore backed by the ground state 
spectra: In PBDTTT-c dispersion effects are minor as compared to rr-P3HT seen in the qualitative match of ε2 and the 
absorption coefficient α. In summary, we show that PBDTTT-c fits the classic description of a 1D Froelich polaron, 
while rr-P3HT has more complex spectral responses. This structural insight backs the concept of a 1D-polymers hence 
1D-delocalization enhanced by push-pull systems. We conclude it is the inferior molecular symmetry of PBDTTT-c, 
which features suppressed π-stacking and thus translates to a plain doped-state electronic structure. This work aims to 
visualize the transition from pristine form to a doped-state for PBDTTT-c as part of a prominent family of push-pull 
type IR-active polymers for high-performance polymer photovoltaic cells. In direct comparison to rr-P3HT having 
a simpler core unit and stronger tendency to crystallize, PBDTTT-c offers suppressed π-stacking due to its complex 
structural asymmetry. In first view we find correlative spectral responses - both systems show intense polaron transi-
tions and IRAV bands. The detailed scans, however, reveal the distinct difference, which highlights the simplicity of the 
electronic structure of PBDTTT-c. The systems resembles a similar response function in the doped state, as found for 
original conjugated polymers following the concept of 1D-delocalization. This insight points at the impact of molec-
ular design, which can conserve a major polymer fingerprint - a 1D-character packed in an advanced, sophisticated 
chemical structure. In light of the high performance response from PBDTTT-c family in organic photovoltaics, our 
study supports the direction to assemble molecular designs, that foster a 1D-character.

Figure 4. Juxtaposition of persistently- and photodoped in-situ spectra by ATR-FTIR exploring P2 
transitions. In the mid-IR regime rr-P3HT (left) and PBDTTT-c (right) show the broad polaronic transitions 
(P2) and lower energy IRAV modes. We included generic oscillators (dashed lines) from the underlying model 
fit - their superposition renders the experimental spectra in precision.

Polymer absorption edge π-π* π-π-stacking P1 P2

rr-P3HT 1.90 2.30 2.10 1.50 0.35

PBDTTT-c 1.55 1.75 1.90 1.20 0.39

Table 1.  Summary of all measured optical transitions referring to the peak maxima (all units in eV). We 
denote the broadened shape of polaronic transitions.
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Methods
PBDTTT-c was purchased from Solarmer Inc., and used as received. P3HT bought from Rieke Metals (98%) and 
has been purified prior to use by re-crystallization in n-hexane. As electron acceptor the soluble fullerene deriv-
ative, (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) was used. PCBM was purchased from Solenne Inc. 
(Groningen, The Netherlands). PBDTTT-c or P3HT and PBDTTT-c:PCBM or P3HT:PCBM (1:1 weight ratio) 
were dissolved in chlorobenzene with concentration of 10 g L−1 and 20 g L−1, respectively.

To measure the optical properties of the pristine and doped materials, NIR-Vis-UV variable angle spectro-
scopic ellipsometry (VASE) is used. The characterization is performed using a Woollam M-2000 (rotating com-
pensator) ellipsometer (spectral range 0.73 to 6.5 eV). VASE results are analysed using WVASE software on basis 
of three phase layer model. The polymer film dielectric function is fitted using a parametric dispersion model 
based on generic oscillators. The layer thickness is measure beforehand by DekTak (Bruker). The as-derived 
preliminary optical model is consequently refined by point-to-point fits and the resulting ε1- and ε2-functions. 
The results are crosschecked in terms of the Kramers-Kronig consistency41,42. All VASE measurements are per-
formed on polymer layers deposited by spin coating of the polymer solution on a glass substrate. Doped-state 
in-situ spectra are generated by exposing the sample to iodine vapor - after a saturation time (10 min) numerous 
VASE-spectra are recorded subsequently31.

The mid-IR spectra are recorded using a FTIR spectrometer (Bruker IFS66S) in attenuated total reflection 
(ATR) mode. A ZnSe crystal is used as the reflection element. The setup used for in-situ probing is presented in the 
supplementary part. Doped-state spectra are recorded in presence of an iodine crystal, which is placed in a closed 
volume box on top of the polymer-film and ATR-FTIR spectra are recorded in-situ. The plots relate the ground 
state signal (Tref, T is transmission) and subsequent doped-state spectra Ts to a differential spectra (− Δ T/T).  
We denote that (− Δ T/T) is absorbance A, in first approximation. For quantitative evaluations, we consider the 
intensity of transmission T as product of all 6 reflections (T equals R6). We can calculate intensities including 
Fresnel reflection coefficients assuming an isotropic material and the single attenuated total reflection from 
ZnSe-parallelepiped at 45° total reflection. In ATR-mode also photo-induced absorption is measured. We apply 
a lock-in mode, amplified by the FTIR spectrometer and a mechanical shutter. The polymer-fullerene blend is 
deposited on a ZnSe crystal and photo-excited at 532 nm (P3HT) and 664 nm (PBDTTT-c) diode-lasers thought 
the shutter. A differential spectra (−Δ T/T, Tdark and Tlight) are calculated from sequences of 1000 repetitions of 
recording 10 single beam spectra in the dark and light, respectively, to reduce the noise level. We denote that 
photo-induced VASE is not accessible with our equipment to date.

To evaluate the ATR-FTIR spectra for a quantitative analysis we relate the intensities of polarons and IRAVs 
to the electron-phonon coupling. The Froehlich interaction turns out to be suitable for polymers: The basis of the 
model is given by following Hamiltonian41:
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Figure 5. Simplified schematic of 1D and 2D-polarons as found for PBDTTT-c and rr-P3HT. We point at 
the main finding of in-situ spectroscopy that the push-pull system enhances 1D-delocalization, while the single 
unit system shows a comparatively complex doped-state electronic structure.
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In those equations q is a phonon wave vector, +cq  and c.c. are creation and annihilation operators, ωPh is a pho-
non frequency, N  is the number of charges and V  is a volume. The values of ε∞ and ε0 are high- and low-frequency 
dielectric constants. In this picture, electron phonon coupling is either enhanced, if the phonon frequency ωPh 
increases, or when the ‘‘static’’ dielectric constant ε0 (below the energy of a selected vibronic transition) is strongly 
different from the dielectric constant ε∞ (above the energy of a selected vibronic transition), or equivalently,

ε ε
ε ε
ε ε

− =
−

∞
− − ∞

∞
( ) (4)
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0

1 0

0

decreases. Our assumption is now based on the substitution of the phonon frequency by vibrational frequencies -  
in particular the IRAVs, which appear due to symmetry breaking (polymer deformation). Each one contributes 
to the difference (ε0 −  ε∞), as well as in the strength of the polaron transition. For the case of chemical doping of 
rr-P3HT it is clear that the static dipole moment ε0 increases, which means that ε−0

1 vanishes and the coupling 
coefficient increases in the Fröhlich model - thus allowing a quantitative interpretation.
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