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Transparency and tunable slow 
and fast light in a nonlinear 
optomechanical cavity
Ling Li1, Wenjie Nie1 & Aixi Chen1,2

We investigate theoretically the optical response of the output field and the tunable slow and fast light 
in a nonlinear optomechanical cavity with a degenerate optical parametric amplifier (OPA) and a higher 
order excited atomic ensemble. Studies show that the higher-order-excitation atom which is similar to 
the degenerate OPA that acts as a nonlinear medium, induces an additional dip in absorption spectrum 
of the probe field. The coherence of the mechanical oscillator leads to split the peak in absorption in 
the probe field spectrum so that the phenomenon of optomechanically induced transparency (OMIT) is 
generated from the output probe field. In particular, the presence of nonlinearities with the degenerate 
OPA and the higher order excited atoms can affect significantly the width of the transparency windows, 
providing an additional flexibility for controlling optical properties. Furthermore, in the presence of the 
degenerate OPA, the optical-response properties for the probe field become phase-sensitive so that a 
tunable switch from slow to fast light can be realized.

It is well-known that a three-level atomic medium driven by a strong controlling field can become transparent for 
a weak probe field, which results from the quantum interference between the two different pathways of excitation 
in atomic system. This phenomenon is a typical quantum coherent effect called the electromagnetically induced 
transparency (EIT)1–3, which has been widely investigated both in theory4–6 and in experiment2,7. It is shown that 
EIT is important for various applications8,9 such as slow light, light storage and the production of a giant non-
linear effect. The phenomenon of EIT has been recently observed in the other solid state systems, i.e., quantum 
wells10, metamaterial11 and nitrogen-vacancy centers12. In addition, the double EIT windows in multi-level atomic 
systems have been studied in detail13.

On the other hand, the propagation of a weak probe field in optomechanical system14 can be coherently 
manipulated through the driving of a strong coupling field which leads to an optomechanical coupling between 
the cavity mode and the mechanical oscillator. Several important quantum optomechanical characteristics, i.e., 
optomechanical entanglement15,16 and optically cooling mechanical mode17–20 as well as transitions between clas-
sical and quantum behaviors of a mechanical system21,22 have been extensively investigated by pumping the cavity 
with external laser fields. In particular, a phenomenon of EIT-like, called generally the optomechanically induced 
transparency (OMIT), has been shown theoretically23–29 and observed experimentally in optical cavities30–33 and 
microwave cavities34. OMIT can be designed to slow and switch a probe signal35 and further used to store light36. 
The transparency behavior in an optomechanical system also advance the ground-state cooling of mechanical 
motions and optomechanical entanglement between the optical and mechanical modes37–39.

Upon combining the optomechanical system with cavity quantum electrodynamics (QED)40, the influence 
of an additional atomic medium on the OMIT in a hybrid optomechanical system41,42 has been investigated in 
detail, where the low-atomic excitation limit of atoms requires the single-atom excitation probability to be much 
less than 143,44. However, this may restrict the amplitude of the driving field in this kind of hybrid optomechanical 
system so that the optomechanical coupling between the optical and mechanical modes can not be advanced fur-
ther by increasing the pump power. In order to relax the constraints on the driving of the system or the atom-field 
coupling strength, we need to go beyond the low-atomic excitation limit for the atomic medium embedded in an 
optomechanical system. In previous paper, we have shown that when the low excitation condition of atoms breaks 
slightly, a large driving but a relatively small atom-field detuning can be applied to help observe OMIT behavior 
in a levitated optomechanical system45.
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In addition, we know the nonlinear optical effect of the optomechanical system can be obviously enhanced by 
adding a degenerate optical parametric amplifier (OPA). The degenerate OPA placed in the optomechanical sys-
tem can increase the effective optomechanical coupling between the movable mirror and the cavity field, which 
results from increase of the photon numbers in the cavity. Some researches about the influences of the degener-
ate OPA on the propagation of the probe field are reported in refs 28,46,47, where the optical properties of the 
output field, i.e., the width of OMIT, can be controlled easily by adjusting the pump amplitude of the degenerate 
OPA. On the other hand, when the degenerate OPA is included, the quantum interference effect between the 
probe field and the generated anti-Stokes field depends strongly on the phase of the degenerate OPA so that the 
optical-response properties for the probe field will become phase-sensitive. As so far, the response of nonlinear 
optomechanical cavity with an excited atomic ensemble to a weak probe light is not reported under the condition 
of the existence of the degenerate OPA. In this paper, we investigate the properties of absorption and dispersion 
of the probe field propagating the optomechanical system including low- or high-excitation atomic medium and 
a degenerate OPA. Also, we contrast the role of the nonlinearities of the higher-order excitation of atoms with 
one of the degenerate OPA in the optical properties of the output field. Further, OMIT behavior in absorption of 
the probe field generated through the optomechanical coupling is discussed in detail, which is influenced by the 
higher order excitation of the atoms and the degenerate OPA. We also discuss in detail how to control the switch 
from slow to fast light of the output probe field by adjusting the phase of the field driving the degenerate OPA. The 
result suggests that the phase-sensitive interference effects have potential applications to provide new tools for 
controlling and engineering light propagation.

Optomechanical Model and Hamiltonian
As shown schematically in Fig. 1, the model that we consider is a nonlinear optomechanical system, where a 
degenerate OPA and N identical two-level atoms (with transition frequency ωb and decay rate γb) are placed in a 
Fabry-Férot cavity with length L consisting of one fixed mirror and one movable mirror. Specifically, we consider 
a quadrupole transition between the 6s2 1S0 ground state |g〉  and the 6s6p 3P1 excited state |e〉  of atomic barium 
for the two-level atoms48,49. The transition wavelength between the two states in atomic barium and the decay 
rate of the excited state to the ground state are λ =  791 nm and γb =  47 kHz, respectively48. Further, we consider a 
realistic optical cavity, where the intracavity photon leakage can be occurred through the input and the movable 
mirror33,50,51. We assume the decay rates of two cavity mirrors are equal without loss of generality, i.e., κ0 =  κ1, 
where κ0 and κ1 are the decay rates of the cavity field through the input and the movable mirrors, respectively.

The cavity mode with frequency ωc is driven by a classical control field with frequency ωf and amplitude εc as 
well as a weak probe field with frequency ωp and amplitude εp, which then exerts an optical radiation pressure on 
the movable cavity mirror. Moreover, the system is pumped by an additional laser beam with coupling coefficient 
β to produce parametric amplification28,46,47. In general, the movable mirror is treated as a quantum-mechanical 
harmonic oscillator with resonance frequency ωm, effective mass m and damping rate γm. Then, the total 
Hamiltonian of the system can be written as15,28,43

Figure 1. Schematic of the setup studied in the paper. The optomechanical cavity contains N identical two-
level atoms and a degenerate OPA. The cavity mode is driven by a strong input laser field and a weak probe 
field through the left cavity mirror. The nonlinear crystal is pumped by an additional laser beam to produce 
parametric amplification.
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where the first term describes the free Hamiltonian of cavity field and a (a†) is the annihilation (creation) operator 
of the cavity mode satisfying the commutation relation [a, a†] =  1. The second term is the free Hamiltonian of the 
atomic ensemble, where the ground state and the excited state of the ith two-level atom are described by |g〉 (i) and 
|e〉 (i) and therefore σ = −e e g gz

i i i i i( ) ( ) ( ) ( ) ( ) . In addition, the pseudospin-1/2 operators σ =+ e gi i i( ) ( )  and 
σ =− g ei i i( ) ( ) ( )  for the ith atom satisfy the commutation relations σ σ σ=+ −[ , ]i i

z
i( ) ( ) ( ) and σ σ σ= ±± ±[ , ] 2z

i i i( ) ( ) ( ). 
The third and fourth terms are the kinetic and potential energies of the movable mirror, respectively; q and p are 
the position and momentum operators for the movable mirror with the commutation relation [q, p] =  iħ. The fifth 
term describes the optomechanical coupling of the cavity mode with the movable mirror; G0 =  ωc/L is the optom-
echanical coupling strength between the mechanical mode and cavity mode53. L is the length of the cavity. The last 
term in the first line denotes the interaction of the atomic ensemble with the driven cavity field, where g repre-
sents the averaged atom-field coupling strength43,44,52. The first term in the second line describes the coupling of 
the cavity mode with the degenerate OPA; GA is the nonlinear gain of the degenerate OPA, which is proportional 
to the pump amplitude, EOPA, i.e., GA =  β|EOPA|; θ is the phase of the field driving the OPA28,46,47. The last terms 
describe the interaction of the cavity field with the coupling field and that of the cavity field with the probe field, 
with the amplitude 
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picture with respect to H0 =  ħωf (a†a +  B†B), the Hamiltonian of the total system, Eq. (0), is rewritten as
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where =G g N  is the collective coupling strength of the atomic ensemble with the cavity field. Δ a =  ωc −  ωf,  
Δ b =  ωb −  ωf and δ =  ωp −  ωf are the detunings. In the derivation of Eq. (2), a constant term Nωa/2 has been 
neglected.

System Dynamics and Equation of Motion
For a detailed analysis of the system, we consider photon losses in the cavity through the input mirror with decay 
rate κ0 and the movable mirror with decay rate κ1; and Brownian noise acting on the mirror as well as decays asso-
ciated with the atoms. Based on the Hamiltonian in Eq. (2), the quantum dynamics of the system can be described 
by the following Heisenberg-Langevin equation33:
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where a in
0 , a in

1  and Bin are the input vacuum noise operators with zero mean value corresponding to the input 
mirror, the movable mirror and the atomic ensemble, which are fully characterized by the nonzero correlation 
functions δ′ = − ′ =†a t a t t t j( ) ( ) ( )( 0, 1)j

in
j
in,  and δ′ = − ′†B t B t t t( ) ( ) ( )in in , respectively56. ξ(t) is the 

Brownian stochastic force with zero mean value and its correlation function is characterized by 
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57, where kB is the Boltzmann constant and T is the tem-

perature of the reservoir related to the movable mirror.
In order to studying the effect of the higher order excited atomic ensemble and the degenerate OPA on the 

optical properties of the output field in the optomechanical system, we need to investigate the motional equations 
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of the quantum fluctuations around the mean values. Further, the mean values at steady state for the movable 
mirror, atomic ensemble and cavity field can be obtained from Eq. (3) by setting all time derivatives to 0. These 
are found to be
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where Δ  =  Δ a −  G0qs, and ε= − −E iG N b b(1 /2)c c s s
2  with =b B N/s s . κ =  κ0 +  κ1 is the total cavity decay 

rate. It is seen from Eq. (4) that the steady-state values of the system depend strongly on the nonlinear gain GA and 
the phase θ. Thus, the combine of the nonlinear optics and optomechanics may be used to control the optical 
properties of the output field.

To this end, one can split each operator in Eq. (3) into the steady-state mean value at the fixed point and a 
small quantum fluctuation, i.e., O =  Os +  δO(O =  a, B, p, q). Further, we consider that there are a large number of 
photons in the cavity, i.e., |as| ≫  1, so that all the higher terms (δoδo) in Eq. (3) can be neglected. Then, the quan-
tum Langevin equations for the fluctuations can be written as
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to solve Eq. (5), we use the ansatz δO =  O+e−iδt +  O−eiδt. Substituting this ansatz into Eq. (5), we can obtain the 
following solution of interest for the response of the cavity:
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The expression (6) and the steady-state values in Eq. (4) help us investigate the component of the output field 
oscillating at the probe frequency ωp, which relates to the higher order excitation of the atomic ensemble |bs|2 as 
well as the degenerate OPA. In addition, the expression of a− is not necessary since this describes the four-wave 
mixing with frequency ωp −  2ωf for the driving field and the weak probe field. We can calculate the response of the 
system to all frequencies detected by the output field via the standard input-output theory58 
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It is noted that the second term on the right-hand side of Eq. (7) corresponds to the response of the whole system 
to the weak probe field at frequency ωp. Thus, we can examine the total output field at the frequency ωp by defining 
an amplitude of the rescaled output field corresponding to the weak probe field as

κ ε= +E a2 / , (8)out p0

where we have removed the constant term. The real and imaginary parts of the output probe field account for 
in-phase and out-phase quadratures of the output field spectra and can be written as κ ε= ++ +

⁎E a aRe( ) ( )/out p0  
and κ ε= −+ +

⁎E a aIm( ) ( )/out p0 , which describe the absorption and dispersion of the whole system to the weak 
probe field, respectively. In general, the modification of the probe response and the phenomenon of the transpar-
ency can be generated by the coupling the atoms or the mechanical motion with cavity field41,42. In the present 
optomechanical system, we investigate in detail the generation of dips in absorption induced by the atom-field 
and optomechanical couplings as well as the degenerate OPA.

Moreover, in the region of the narrow transparency window the rapid phase dispersion ϕ(ωp) =  arg(Eout) can 
cause the group delay expressed as τ = .

φ ω

ω

∂

∂g
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p
 A positive group delay with τg >  0 corresponds to slow light 
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propagation and a negative group delay with τg <  0 corresponds to fast light propagation30,32,59. In the following 
section, we also investigate theoretically a tunable switch from slow to fast light in the nonlinear optomechanical 
cavity by adjusting the nonlinear gain of the OPA and the phase of the field driving the OPA.

Results
In this section, we numerically evaluate the values of phase quadratures Re(Eout) and Im(Eout) and quantify the 
slow and fast light effects through the corresponding output field a+. Further, in order to demonstrate the phe-
nomenon of transparency and the group delay of the probe field in the system, we select the accessible param-
eters in optomechanical systems43,60, i.e., the wavelength of the driving field λf ≈  791 nm, the total cavity length 
L =  0.001 m, the total cavity decay rate κ =  2π ×  215 ×  103 Hz and κ0/κ =  0.5, the frequency of the moving mir-
ror ωm =  2π ×  947 ×  103 Hz, the mechanical factor Q =  ωm/γm =  6700, and the mass of the oscillating mirror 
m =  25 ng. In addition, we choose the parameters of atoms, i.e., the number of the atoms N =  106, the atom-field 
coupling strength g =  2π ×  2.3 ×  102 Hz and the decay rate of atom γb =  2π ×  7.5 ×  103 ≈  47000 Hz43,48. We also 
consider that the cavity is driven on its red sideband, i.e., Δ  =  ωm. The atom-field detuning Δ b and the driving 
strength of the optical cavity εc can be calculated in terms of the excitation number of the atoms |bs|2 and the 
steady-state value bs.

Transparency effect. We first consider that the low-excitation condition of atoms is satisfied, i.e., |bs|2 ≪  1. 
Moreover, the degenerate OPA and the optomechanical coupling between the cavity field and the movable mirror 
are also removed or turned off, i.e., GA =  0 and G0 =  0. In this case, the expression of a+ in Eq. (6) can be simplified 
as
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It is found that the denominator of the response function is quadratic in δ so that the coherent coupling between 
the atomic collective mode and the optical mode can lead to a dip in absorption obtained as δ ω. 0 13 m and 
therefore the generation of the transparency behavior which is shown in Fig. 2(a), where we show the absorption 
Re(Eout) of the output field as a function of δ/ωm with bs =  − 0.01 +  0.04i; the corresponding driving strength 
εc =  35.12κ, atom-field detuning Δ b =  0.43κ and excitation number of atoms |bs|2 ≈  0.002. We can see from 
Fig. 2(a) that the positions of two peaks in absorption appear at δ  0 and δ ω m, where the left peak in absorp-
tion results from the atom-field coupling42.

In order to compare with the above situation, we now explore the effect of the degenerate OPA on the 
atom-field coupled system. Correspondingly, the expression of the response of a+  in Eq. (6) is simplified as
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Figure 2. The absorption Re(Eout) (a) and dispersion Im(Eout) (b) are plotted as a function of δ/ωm in 
the absence and presence of the degenerate OPA. Here the optomechanical coupling is turned off and 
the low-excitation limit for the atoms is satisfied with bs =  − 0.01 +  0.04i. When the degenerate OPA is 
included, we select the parameters GA =  0.7κ and θ =  3π/2. Other parameters are chosen to be λf =  791 nm, 
L =  0.001 m, κ =  2π ×  215 ×  103 Hz, Δ  =  Δ a =  ωm =  2π ×  947 ×  103 Hz, N =  106, g =  2π ×  2.3 ×  102 Hz and 
γb =  2π ×  7.5 ×  103 Hz.
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The denominator of the response function is quadruplicate in δ. Then, under the condition of certain parameters, 
we can obtain more dips in absorption. Indeed, when the degenerate OPA is included in the system, i.e., GA =  0.7κ 
and θ =  3π/2 in Fig. 2(a), an additional dip in absorption appears near the left peak in absorption, i.e., 
δ ω− . 0 04 m, which results from the coupling between the degenerate OPA and the cavity field. Thus, we can 
obtain two transparent windows. Figure 2(b) depicts the dispersion shapes of the output field in the absence and 
presence of the degenerate OPA.

The additional dip in absorption that is similar to the one induced by the degenerate OPA can be generated 
by the higher order excitation of the atomic ensemble. In this case of presence of the higher order excited atomic 
ensemble and absence of the degenerate OPA and the optomechanical coupling, the amplitude of the output field 
[Eq. (6)] can be simplified as
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are the terms related to the higher order of the Holstein-Primakoff transformation. One can clearly observe from 
Eq. (10) and Eq. (11) that the higher order coupling terms of the atoms play a role of nonlinear medium similar to the 
degenerate OPA for the generation of the transparency behavior.

In Fig. 3(a), we show the absorption Re(Eout) and dispersion Im(Eout) of the output field in the absence of the 
degenerate OPA as a function of δ/ωm, where we select bs =  − 0.25 +  0.40i so that the excitation number of the 
atomic ensemble |bs|2 =  0.22, the driving strength of the cavity εc =  267.5κ and the atom-field detuning  
Δ b =  0.20κ. We see from Fig. 3(a) that for the selected system parameters there exists indeed an additional dip in 
absorption at δ ω− . 0 04 m which results from the higher order excitation of the atomic ensemble, correspond-
ing to the terms of α1,2,3,4. Further, the higher order terms related to the |bs|2 influence slightly the position of the 
dip in absorption at δ ω. 0 13 m as well as the peaks in absorption; such as, the dip in absorption is attained at 
δ ω. 0 10 m. In particular, when the low-excitation condition of atoms breaks slightly, a large driving strength i.e., 
εc =  267.5κ but a relatively small atom-field detuning i.e., Δ b =  0.20κ can be applied to help observe the transpar-
ency behavior in the atom-field coupled system. In contrast, the low-excitation limit of atoms requires a small 
driving of the cavity but a relatively large atom-field detuning. For example, in the low-excitation limit, i.e., 
|bs|2 =  0.002, the driving strength εc =  35.12κ and the atom-field detuning Δ b =  0.43κ could be used [see Fig. 2].

Figure 3(b) demonstrates the transparency behavior in absorption of output probe field in the presence of the 
optomechanical coupling between the cavity field and the movable mirror when the degenerate OPA and the 
higher order excitation of the atomic ensemble are both included, i.e., GA =  0.7κ Hz and bs =  − 0.25 +  0.40i. In this 
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Figure 3. The absorption Re(Eout) and dispersion Im(Eout) are plotted as a function of δ/ωm with 
bs = −0.25 + 0.40i. The frequency of the moving mirror ωm =  2π ×  947 ×  103 Hz, the mechanical factor 
Q =  ωm/γm =  6700 and the mass of the oscillating mirror m =  25 ng. Other parameter values are the same as in 
Fig. 2. (a) In the absence of the degenerate OPA and the optomechanical coupling. (b) In the presence of the 
degenerate OPA and the optomechanical coupling.
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case, |bs|2 =  0.22, εc =  140.78κ and Δ b =  0.21κ. We can easily find from Fig. 3(b) that there exist three dips in 
absorption, where the peak in absorption at δ ω m splits and therefore the optomechanically induced transpar-
ency (OMIT) appears due to the coupling between the cavity field and the movable mirror. This is because in 
general the strongest optomechanical coupling obtains at δ ω m so that the probe beam interferes destructively 
with the anti-Stokes field generated by the mechanical oscillator and therefore a transparency window appears in 
the probe transmission spectrum24. Moreover, the positions of the left side of the two dips in absorption are 
δ ω− . 0 04 m and δ ω. 0 11 m, respectively, which depends on the atom-field coupling and the degenerate OPA.

We can study the effect of the degenerate OPA on the transparency behaviors in the nonlinear optomechanical 
system with a higher order excited atomic medium. In Fig. 4(a), we show the absorption Re(Eout) in the presence 
of the OPA as a function of δ/ωm with different GA’s. Other parameter values are the same as in Figs 2 and 3. From 
Fig. 4(a), we see clearly that the larger the nonlinear gain of the degenerate OPA, the wider the OMIT windows. 
This is because the photon number in the cavity increases with increasing GA [see Eq. (4)]. Therefore, the effective 
optomechanical coupling G0as can be increased by adding a degenerate OPA inside the optical cavity, which leads 
to widen the OMIT window. This suggest that the nonlinear gain of the degenerate OPA can be used to control the 
optical-response properties in the nonlinear optomechanical system and the width of OMIT window. Further, in 
the presence of both the higher order excitation of the atoms and the degenerate OPA, the left dip in absorption 
shallows, i.e., GA =  0.5κ corresponds to the blue dashed line in Fig. 4(a). This means that the roles of the higher 
order nonlinearity of atoms and the degenerate OPA cancel each other for generating the dip in absorption in 
the output field. When the nonlinear gain of the OPA becomes larger, i.e., GA =  1.0κ in Fig. 4(a), the degenerate 
OPA plays a determined role for the transparency of the probe field and therefore the left transparency window 
reappears.

We now discuss the important role of excitation of the atomic ensemble in the properties of the output field and 
OMIT. In Fig. 4(b), we show the absorption Re(Eout) as a function of δ/ωm with different bs’s in the absence of the 
degenerate OPA. We consider the three cases with bs =  − 0.25 +  0.40i, bs =  − 0.25 +  0.30i and bs =  − 0.25 +  0.20i. 
The corresponding excitation numbers are calculated as |bs|2 =  0.22, |bs|2 =  0.15 and |bs|2 =  0.10, respectively. In 
addition, the corresponding atom-field detunings are Δ b =  0.20κ, Δ b =  0.22κ and Δ b =  0.23κ, respectively, and 
driving strengths of the optical cavity are εc =  267.50κ, εc =  191.99κ and εc =  137.23κ, respectively. From Fig. 4(b), 
we see that the increase of the excitation number of the atoms widens the OMIT window. This is because when the 
low-excitation condition of atoms is broken slightly, the effective optomechanical coupling strength is enhanced 
by the increase of the photon number, which depends strongly on the higher order excitation number of atoms. 
In addition, the additional dip in absorption shallows so that the left transparency behavior disappears when the 
excitation number decreases. These results can be applied to determinate the excitation number of atomic ensem-
ble and its important role in the properties of the output field.

Tunable slow and fast light. As mentioned in previous section, the optical response of the system to the 
weak probe field can be described by the group delay. In Fig. 5, the group delay of the output field at the frequency 
of the probe field is plotted as a function of δ/ωm with different GA’s and θ’s (a) and different bs’s (b). Here we 
consider the driving of the cavity field is so large that the low-excitation condition of atoms is broken slightly. For 
example, in Fig. 5(a) we still select bs =  − 0.25 +  0.4i and therefore |bs|2 =  0.22. This leads to generate an additional 
dip in absorption at δ ≈  0 even in the absence of the degenerate OPA [see the red line in Fig. 4(b)]. In Fig. 5(b), 
we always remove the degenerate OPA, i.e., GA =  0 and focus justly on the effect of the higher-order excitation of 
atoms on the optical properties of the system. Other parameter values are the same as in Fig. 4.

We see clearly from Fig. 5(a) that in the absence of the degenerate OPA, a positive group delay of the output 
field is obtained at δ ≈  0 or δ ≈  ωm, which corresponds to the slow light effect of the output probe field and results 
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from the enhancement of the optical transparency induced by the higher order excitation of the atoms and the 
optomechanical coupling, respectively [see the red line in Fig. 5(a)]. When the degenerate OPA is included in the 
system, i.e., GA =  1.5κ and θ =  π/2, the group delay at δ ≈  0 can be turned to negative value and therefore the out-
put probe field contains fast light. In contrast, the positive group delay at δ ≈  ωm is decreased due to the effect of 
the degenerate OPA. Moreover, when the degenerate OPA with the phase θ =  3π/2 is included, the group delays at 
δ ≈  0 and δ ≈  ωm can be decreased due to the influence the degenerate OPA. In Fig. 5(b), we see that in the absence 
of the degenerate OPA, the group delay of the output field is always positive with different steady-state excitation 
number. Thus, only the phenomenon of slow light can be appeared.

In Fig. 6, we show the group delays τg at δ ≈  0 and δ ≈  ωm, respectively, as a function of the phase θ/π with 
different GA’s. In Fig. 6(a), we can see that in the absence of the degenerate OPA, i.e., GA =  0 Hz, the group delay 
with δ ≈  0 induced by the higher order excitation of the atoms is positive with τg =  2.2μs and the transmitted 
probe field contains slow light. In the presence of the degenerate OPA, i.e., GA =  0.3κ, the positive group delay 
is not a monotonous function of the phase and a peak appears in the intermediate value of the phase. When the 
nonlinear gain of the OPA becomes larger, i.e., GA =  0.6κ, the group delay can be negative corresponding to the 
fast light within a finite interval of the phase around θ =  0.88π, whose position moves in the positive direction 
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with increasing GA for the selected range of the parameters [see the dash-dot and dot lines in Fig. 6(a)]. Physically, 
when the degenerate OPA is added inside the atom-field coupled system, the quantum interference effect between 
the probe field and the anti-Stokes field generated by the atoms is related directly to the phase of the degenerate 
OPA by the coupling coefficient G4 [see Eq. (6) or Eq. (10)]. Therefore, the optical-response properties for the 
probe field become phase-sensitive so that a tunable switch from slow to fast light can be realized by adjusting the 
phase of the degenerate OPA.

In Fig. 6(b), we can see that in the absence of the degenerate OPA, i.e., GA =  0, the group delay with δ ≈  ωm 
induced by the OMIT is τg =  54.5μs, which is much greater than that induced by the higher order atomic excitai-
ton. When the degenerate OPA is included, i.e., GA =  0.5κ, the effect of the degenerate OPA on the optomechan-
ical system leads to the increase in the group delay for the intermediate value of the phase. In particular, when 
the nonlinear gain of the OPA becomes larger, i.e., GA =  2.5κ, a negative group delay and therefore the fast light 
appears in a small interval of the phase around θ =  0.36π. Similarly, the tunability of the group delay induced by 
the OMIT results from the quantum interference effect between the probe field and the anti-Stokes field generated 
by the mechanical oscillator, which depends strongly on the phase of the degenerate OPA. These results suggest 
that the phase-sensitive interference effect can be used to control the light propagation from slow to fast light of 
the transmitted probe field.

Discussion
In conclusion, we have studied a nonlinear optomechanical cavity with a degenerate OPA and a higher order 
excited atomic ensemble, which is driven by pump and probe laser fields. We derive the expression of the response 
of probe field in the system and demonstrate numerically the optical properties of the output field with exper-
imentally accessible parameters. It is shown that there exist three dips in absorption in the output field in the 
presence of a higher order excited atomic medium, which induced by the optomechanical and atom-field cou-
plings as well as the higher order excited terms related to the atom-field coupling, respectively. Further, the OMIT 
behavior in absorption of probe field can be generated through the optomechanical coupling between the cavity 
field and the movable mirror. We show that the higher order excitation of the atoms and the degenerate OPA can 
significantly affect the width of these transparency windows, which can be applied to determinate the excitation 
number of atoms and the important roles of nonlinear media in the optical properties of the output field. In 
particular, we find that the higher order excitation of the atoms and the degenerate OPA play a similar role of 
nonlinear medium in the generation of the additional transparency behavior in the probe field spectrum. We also 
discuss in detail the change in the magnitude of the group delay as well as a tunable switch from slow to fast light 
of the output probe field, where the group delay tunability is mainly due to the phase of the degenerate OPA. The 
phase-sensitive interference effects in the optical-response properties have potential applications to provide new 
tools for controlling and engineering light propagation.
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