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Effects of contrast-enhancement, 
reconstruction slice thickness 
and convolution kernel on the 
diagnostic performance of 
radiomics signature in solitary 
pulmonary nodule
Lan He1,2,*, Yanqi Huang1,*, Zelan Ma1, Cuishan Liang1, Changhong Liang1 & Zaiyi Liu1

The Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on 
the diagnostic performance of radiomics signature in solitary pulmonary nodule (SPN) remains 
unclear. 240 patients with SPNs (malignant, n = 180; benign, n = 60) underwent non-contrast CT 
(NECT) and contrast-enhanced CT (CECT) which were reconstructed with different slice thickness 
and convolution kernel. 150 radiomics features were extracted separately from each set of CT and 
diagnostic performance of each feature were assessed. After feature selection and radiomics signature 
construction, diagnostic performance of radiomics signature for discriminating benign and malignant 
SPN was also assessed with respect to the discrimination and classification and compared with net 
reclassification improvement (NRI). Our results showed NECT-based radiomics signature demonstrated 
better discrimination and classification capability than CECT in both primary (AUC: 0.862 vs. 0.829, 
p = 0.032; NRI = 0.578) and validation cohort (AUC: 0.750 vs. 0.735, p = 0.014; NRI = 0.023). Thin-slice 
(1.25 mm) CT-based radiomics signature had better diagnostic performance than thick-slice CT (5 mm) in 
both primary (AUC: 0.862 vs. 0.785, p = 0.015; NRI = 0.867) and validation cohort (AUC: 0.750 vs. 0.725, 
p = 0.025; NRI = 0.467). Standard convolution kernel-based radiomics signature had better diagnostic 
performance than lung convolution kernel-based CT in both primary (AUC: 0.785 vs. 0.770, p = 0.015; 
NRI = 0.156) and validation cohort (AUC: 0.725 vs.0.686, p = 0.039; NRI = 0.467). Therefore, this study 
indicates that the contrast-enhancement, reconstruction slice thickness and convolution kernel can 
affect the diagnostic performance of radiomics signature in SPN, of which non-contrast, thin-slice and 
standard convolution kernel-based CT is more informative.

Solitary pulmonary nodule (SPN) is defined as approximately rounded opacity measuring up to 3 cm in diameter 
appears on imaging as focal opacities surrounded by aerated lung1,2. Differential diagnosis of SPN ranges from 
the primary lung cancer to various benign lesions, such as hamartoma3,4. However, 20–50% of SPNs are found as 
early sign of lung cancer5, which remain the leading cause of cancer related incidence and mortality worldwide6,7. 
Therefore, accurate differential diagnosis of SPN can reduce cancer related mortality by characterizing malignant 
tumors and thus spare patients with benign disease from undergoing unnecessary surgery.

Computed tomography (CT) as a widely available noninvasive modality for detecting lung cancer in clinical 
practice, has an important role in the differential diagnosis of SPN8–11. However, conventional visual assessment 
of SPN on CT, such as tumor size, density and margins, has an lower diagnostic accuracy of approximately 60% 
in differentiating benign from malignant SPN12. Unlike the traditional interpretation of CT images, “Radiomics”, 
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which is the practice of processing high-throughput extraction of quantitative features to convert images into 
mineable data for decision support13, has been proposed to noninvasively decode tumor phenotype14–16. Among 
the diagnostic objective features of SPN, CT-based texture analysis could effectively differentiate benign from 
malignant lesions17,18. However, a recent study by Dennis et al. indicated that the inter-scanner differences exist-
ing among different CT scanner could affect the variability in the values of radiomics features19. Being the most 
common varied factors in clinical settings on the imaging modality, whether the imaging acquisition parame-
ters of contrast-enhancement, reconstruction slice thickness and convolution kernel could affect the diagnos-
tic performance of radiomics features on the differential diagnosis of SPN is an interesting field that has been 
explorated13,20. Although individual CT texture feature is useful in the characterization of SPN17,18,21, integrating 
multiple features into a predictive panel as a radiomics signature may be a robust approach for quantifying tumor 
phenotype22,23. Thus, regarding the influence of scanning parameters on the individual feature performance in the 
previous studies13,19,24, radiomics signature could consequently make impact on the performance of differential 
diagnosis of SPN.

Therefore, the purpose of this study was to investigate the effects of contrast-enhancement, reconstruction 
slice thickness and convolution kernel on the differential diagnosis performance of radiomics signature in SPN, 
and to determine the optimal imaging parameters (contrast-enhancement, reconstruction slice thickness and 
convolution kernel) for extracting radiomics features.

Methods
Patients. The retrospective study was approved by the Research Ethics Committee of Guangdong General 
Hospital, Guangdong Academy of Medical Sciences (protocol No. GDREC2015192H). Due to the retrospective 
nature of the study, our institutional review board approved the review of patient data before its commencement 
and waived the requirement for informed consent. The institutional database was evaluated to collect a primary 
cohort of this study from January 2010 to December 2012. Patients with biopsy- or surgery-proven primary lung 
malignancy or benign lesions were enrolled. From January 2013 to July 2015, patients who met the same criteria 
were included to form an independent validation cohort. Baseline clinical data including age and gender were 
recorded, and the dates of baseline CT imaging were also recorded.

CT Image Acquisition. All patients underwent non-contrast and contrast-enhanced CT with a 
multi-detector row CT (GE Light-speed Ultra 8; GE Healthcare, Hino, Japan). Contrast-enhanced CT image 
was performed after 25 s delay following intravenous administration of 85 ml of iodinated contrast material 
(Ultravist 370, Bayer Schering Pharma, Berlin, Germany) at a rate of 3.0 ml/s with a pump injector (Ulrich CT 
Plus 150, Ulrich Medical, Ulm, Germany) after routine non-contrast CT. The fixed acquisition parameters were 
as follows: 120 kV; 160 mAs; 0.5- or 0.4-second rotation time; detector collimation: 8 ×  2.5 mm or 64 ×  0.625 mm; 
field of view, 350 ×  350 mm; matrix, 512 ×  512. Each patient of the study had four sets of chest CT images with 
different imaging parameters of contrast-enhancement parameter (non-contrast or contrast-enhancement), 
reconstruction slice thickness (5 mm or 1.25 mm) and convolution kernel (standard or lung), which were sep-
arately labeled as group 1 (non-contrast +  1.25 mm +  standard convolution kernel), group 2 (contrast enhance-
ment +  1.25 mm +  standard convolution kernel), group 3 (non-contrast +  5 mm +  standard convolution kernel) 
and group 4 (non-contrast +  5 mm +  lung convolution kernel). Generation of CT images utilizing different con-
volution kernels can optimize lesion detection. Lung convolution kernel is generated when high-pass filter algo-
rithm is used, with high spatial frequencies and noise preserved; while low-pass algorithm enables the generation 
of standard kernel image, with high spatial frequency contribution and noise decreased. The lung convolution 
kernel and standard convolution kernel are dependent on the vendor of GE.

Radiomics feature extraction. All 4 sets of the CT images were used for radiomics feature extraction, after 
retrieved from the picture archiving and communication system (PACS) (Carestream, Canada). In-house feature 
extraction algorithm was implemented in Matlab 2014a (Mathworks, Natick, USA). In total, 150 radiomics fea-
tures which covered the category of gray-level histogram and gray-level co-occurrence matrix (GLCM) were 
extracted from each set of CT image. A region of interest (ROI) was delineated initially around the tumor outline 
for the largest cross-sectional area on each set of CT images. Figure 1 demonstrates the ROI delineations for 2 
patients who have malignant and benign tumor respectively, with their size and diameter being listed 
Supplementary Table S1, respectively. The ROI was further refined by excluding air area with a threshold that 
removed from analysis any pixels with attenuation values below − 50 HU and beyond 300 HU. A Laplacian of 
Gaussian spatial band-pass filter (∇ G2 ) was used to derive image features at different spatial scales by turning the 
filter parameter between 0 and 2.5 (0, 1.0, 1.5, 2.0, 2.5). The Laplacian of Gaussian filter (∇ G2 ) distribution is 
given by
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x, y denote the spatial coordinates of the pixel and σ  is the value of filter parameter.
The feature extraction algorithms are described in Supplementary Method S1, and series of gray-level histo-

gram and gray-level co-occurrence matrix (GLCM) features derived were also listed in Table 1.

Intra-reader reproducibility of radiomics features. Intra-reader reproducibility of radiomics fea-
ture extraction was initially analyzed with 40 randomly chosen patients (30 malignant and 10 benign) for ROI 
delineation. The same radiologist who has 10 years’ experience in chest CT interpretation repeated the genera-
tion of radiomics features twice in a 1-week period followed the same procedure. The size and diameter of each 
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delineated ROI were measured and recorded. Intra-class correlation coefficients (ICCs) were used to evaluate the 
intra-reader agreement of the size and diameter of the tumor and each of the 150 radiomics features extracted 
from the delineated ROIs with a value greater than 0.75 indicating good intra-reader agreements25.

Statistical analysis. All statistical analysis in this study was conducted with R software, version 3.2.1 (http://
www.Rproject.org).

Differences in age, gender of patients between benign and malignant in both the primary and validation 
cohort were compared by using the independent sample t test or the Mann-Whitney U test, the Chi-Squared test 
or the Fisher exact test, where appropriate. And the same tests were also applicable for the assessment of differ-
ence in patients’ age, gender between primary and validation cohort.

Diagnostic performance of radiomics features. The association of the radiomics features on discrim-
ination between benign and malignant SPN in both primary cohort and validation cohort across different sets 
of CT images was assessed using Mann-Whitney U test due to its non-normal distribution. Then, the diagnostic 
performance of the radiomics features was assessed with respect to the area under the curve (AUC) of the receiver 
operating characteristic curve (ROC). An AUC of 1 indicates perfect discrimination, and random guess gives an 
AUC of 0.5.

Feature selection and radiomics signature building. Based on the results of univariate analysis of 
radiomics features, feature selection and data dimension reduction were done using least absolute shrinkage and 
selection operator method (LASSO) logistic regression model26 to select the most useful prognostic features of 
all the associated radiomics features identified with the primary cohort. The LASSO, which is suitable for the 
regression of high dimensional data using the “glmnet” package in R software, is a penalized estimation technique 
in which the estimated regression coefficients are constrained so that the sum of their scaled absolute values falls 
below some constant k chosen by cross-validation. This kind of constraint forces some regression coefficient 
estimates to be exactly zero, thus achieving variable selection while shrinking the remaining coefficients toward 
zero to reflect the overfitting caused by data-based model selection. The radiomics signature was built for each 
patient in both the primary and the validation cohort through the linear combination of features selected by 
their respective coefficients, with a radiomics score calculated for each patients. A larger score indicates a higher 
probability to be malignant.

Diagnostic performance and comparison of radiomics signature derived from different CT sets.  
The potential association of radiomics signature on discrimination between benign and malignant SPN was also 
assess using Mann-Whitney U test. The diagnostic performance of radiomics signature was assessed in terms of 
discrimination and classification. ROC curves for each group dataset were constructed and the area under the 
curves (AUC) were calculated with histopathological diagnosis of SPNs as outcome. Sensitivity, specificity, and 
accuracy were also derived as the methods of classification measurement.

For the comparison of discrimination ability for radiomics signatures on diagnostic performance in 
SPN, the nonparametric test of Delong test was used for comparing the difference in AUC of ROC between 
groups27. A two-sided P value less than 0.05 was considered to indicate the statistical significant difference.  

Figure 1. The delineations of ROI for 2 patients who have benign tumor (hamartoma) in group 1 (a), group 2 
(b), group 3 (c) and group 4 (d), and malignant tumor (adenocarcinoma) in group 1 (e), group 2 (f), group 3  
(g) and group 4 (h).

http://www.Rproject.org
http://www.Rproject.org
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A net reclassification improvement (NRI) calculation which is regarded as an increasingly popular measure for 
evaluating improvements in risk predictions28–30 was also applied for assessing whether one group of prediction 
performance is better than another. The formula for calculating the NRI (Net Reclassification Index):

= | − | + | − |NRI P(up event) P(down event) P(down nonevent) P(up nonevent)

In this formula, upward movement (up) was defined as a change into higher category based on the new biomarker 
and downward movement (down) as a change in the opposite direction. The value of NRI can either be positive 
or negative. A positive value of NRI derived in this study indicates a net improvement in risk classification for 
patients with SPN.

Finally, the same comparison for each group of radiomics signatures was assessed in the independent valida-
tion cohort.

Results
Clinical characteristics and distribution of patients. In total, we retrospectively identified 240 con-
secutive patients with SPN (benign, n =  60, such as hamartoma (33), pulmonary crytococcosis (5), inflammatory 
pseudotumor (5), inflammatory granuloma (10), pulmonary sclerosing hemangioma (7); malignant, n =  180, 
such as lymphoepithelioma (6), squamous-cell carcinoma (22), adenocarcinoma (145), metastatic tumor (7)) 
between January 2010 and July 2015 who underwent chest CT as the whole study cohort. 120 cases of the institu-
tional database from January 2010 to December 2012 were identified as the primary cohort and other 120 cases 

Description Calculation formula Feature derived

Gray-level histogram

Mean measures the average value of the histogram = ∑ =mean X i( )N i
N1

1 his_mean_σ 

SD measures the stability of the gray level histogram = ∑ −=SD X i X( ( ) )N i
N1

1
2 his_SD_σ 

Percentile mean and SD measures are calculated from the top 
50%, 25%, and 10% of the histogram curve
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Skewness describes the degree of asymmetry around the mean 
value in the gray level histogram =
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Gray-Level Co-Occurrence Matrix (GLCM)

Contrast measures local intensity variation, reflects the 
uniformity of image grayscale distribution and the degree of 
thickness in texture

= ∑ ∑ −= =contrast i j P i j( , )i
N g

j
N g

1 1
2 contrast_α _σ 

Correlation measures the gray level linear dependence between 
the pixels at the specified positions relative to each other =

µ µ

σ σ

∑ = ∑ = −
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Entropy describes the inhomogeneity of an image = −∑ ∑= =entropy P i j P i j( , )log[ ( , )]i
N g

j
N g

1 1
entropy_α _σ 

Energy is the sum of squares of entries in the GLCM, measures 
the image homogeneity = ∑ ∑= =energy P i j[ ( , )]i

N g
j
N g

1 1
2 energy_α _σ 

Homogeneity weights as the inverse of the Contrast weight = ∑ ∑= = + −
homogeneity i

N g
j
N g P i j

i j1 1
( , )

1 2
homogeneity_α _σ 

Table 1.  Feature extraction algorithms and lists of features derived. Note: X(i) indicates the intensity of gray 
level i; N denotes the sum of pixels in the image; β  indicates the top percentage of the histogram curve, which 
could be 50%, 25%, and 10%; M denotes the number of pixels in the histogram on the percentage of (1 −  β ); x, 
y denote the spatial coordinates of the pixel; P(i, j) is the co-occurrence matrix by the δ  =  1 and θ (0°, 45°, 90°, 
135°); Ng denotes the number of discrete intensity levels in the image; μ is the mean of P(i, j); μx(i) is the mean 
of Px(i); μy(j) is the mean of Py(j); σx(i) is the standard deviation of Px(i); σy(j) is the standard deviation of Py(j).  
σ represents the filter value applied, which could be 0, 1.0, 1.5, 2.0 and 2.5. α  represents the considered 
direction, which could be 0°, 45°, 90°, and 135°. β  represents the top percentage of the histogram curve, which 
could be 50%, 25%, and 10%.
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from January 2013 to July 2015 were identified as the validation cohort, respectively. Distribution of patients’ 
characteristics in both primary and validation cohorts between the benign group and malignant group are pre-
sented in Table 2. The patients in benign group were younger than that in malignant group (p <  0.001 for both 
primary and validation cohort), but there was no significant difference in gender between benign and malignant 
group in both primary (p =  0.745) and validation cohort (p =  0.832). No difference was found between the pri-
mary and the validation cohort in the clinical characteristics (p =  0.253 for age, and p =  0.514 for gender).

Intra-reader reproducibility of radiomics features. Satisfactory intra-reader reproducibility of ROI 
delineation for the 4 groups was achieved, with an intra-class correlation coefficient (ICC) of 0.795 and 0.802 for 
the size and diameter, respectively. The ICCs for 150 radiomics features had been listed in the Supplement Table S2,  
ranged from 0.752 to 1.000.

Diagnostic performance of radiomics features. There were 66, 52, 39 and 62 features which showed 
significant association between the radiomics features and the status of SPN in group 1, group 2, group 3 and 
group 4, respectively (p <  0.05) (Fig. 2). The univariate analysis between each of the significant associated radi-
omics features were presented in Fig. 2 and listed in Supplementary Table 3. As shown in Fig. 2, the number of 
the features showing significant association with status of SPN derived from group 1 was the largest compared 
to other groups. Furthermore, the number of features showing good diagnostic performance (AUC >  0.75) was 
also the largest.

Feature selection and radiomics signature building. There were 12, 4, 3 and 3 features with non-zero 
coefficients in the LASSO logistic regression model selected in group 1, group 2, group 3 and group 4, respectively 
(Supplementary Figure S1–S4). These selected features and their individual coefficients were displayed in the 
form of histogram in Supplementary Figure S5 and listed in Supplementary Table S4. The corresponding radi-
omics signature score calculation formula was presented in the Supplementary Equations S1–S4. The number of 
selected features varied greatly among 4 groups. In addition, the categories of selected features also varied across 
different radiomics signatures.

Diagnostic performance of radiomics signature derived from different groups. There was signif-
icant difference in radiomics signature scores between benign and malignant patients for four groups in primary 
cohort (p <  0.001), which was consistent with the validation cohort (p <  0.001). Malignant patients generally had 
higher scores in both the primary cohort and validation cohort (Table 2). The distribution of radiomics signature 
scores for classification of SPN status in the primary cohort and validation cohort are shown in Fig. 3. Further, the 
diagnostic performance of radiomics signature varied greatly in both the primary and validation cohort across 
all 4 groups with a varied AUC of 0.686–0.862, sensitivity of 0.667–0.944, specificity of 0.533–0.867 and accuracy 
of 0.708–0.858 (Table 3).

Comparison of diagnostic performance of radiomics signatures derived from different 
groups. As listed in Table 3, there was significant variability in the diagnostic performance of radi-
omics signatures in SPN based on features extracted from CT images acquired with different parameters 
(contrast-enhancement, reconstruction slice thickness and convolution kernel). Although AUCs were different 
between groups in both primary cohort and validation cohort, the NRIs were also analyzed (Table 4). Our results 
showed NECT-based radiomics signature demonstrated better discrimination and classification capability than 
CECT in both primary (AUC: 0.862 vs. 0.829, p =  0.032; NRI =  0.578) and validation cohort (AUC: 0.750 vs. 
0.735, p =  0.014; NRI =  0.023). Thin-slice (1.25 mm) CT-based radiomics signature had better diagnostic perfor-
mance than thick-slice CT (5 mm) in both primary (AUC: 0.862 vs. 0.785, p =  0.015; NRI =  0.867) and validation 

Characteristics

Primary cohort

P

Validation cohort

PBenign Malignant Benign Malignant

Age (yr, mean ±  SD) 49.60 ±  12.94 62.78 ±  11.59 < 0.001* 50.43 ±  14.55 59.77 ±  11.42 < 0.001*

Gender

 Male 17 (56.7%) 54 (60%) 0.745 17 (56.7%) 49 (54.4%) 0.832

 Female 13 (43.3%) 36 (40%) 13 (43.3%) 41 (45.6%)

Score (Median[IQR])

 Group 1 − 0.091 (− 1.170, 1.052) 2.004 (1.155, 2.448) < 0.001* 0.250 (− 0.713, 1.449) 1.776 (0.938, 2.248) < 0.001*

 Group 2 0.374 (− 1.031, 1.273) 1.870 (1.218, 2.341) < 0.001* 0.508 (− 0.717, 1.526) 1.606 (0.916, 2.339) < 0.001*

 Group 3 0.393 (− 0.254, 1.307) 1.548 (1.177, 2.180) < 0.001* 0.458 (− 0.607, 1.634) 1.620 (1.096, 1.966) < 0.001*

 Group 4 0.636 (− 0.190, 1.390) 1.474 (1.046, 1.897) < 0.001* 0.622 (− 0.064, 1.603) 1.358 (1.102, 1.746) < 0.001*

Table 2.  Characteristics of the patients in the primary cohort and validation cohort. Note: IQR =  inter-
quartile range; Group 1 =  non-contrast +  1.25 mm +  standard convolution kernel; Group 2 =  contrast 
enhancement +  1.25 mm +  standard convolution kernel; Group 3 =  non-contrast +  5 mm +  standard 
convolution kernel; Group 4 =  non-contrast +  5 mm +  lung convolution kernel. p-value is derived from the 
univariable association analyses between each of the clinicopahological variables and the SPN status.  
“*” indicates a p-value less than 0.05.
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cohort (AUC: 0.750 vs. 0.725, p =  0.025; NRI =  0.467). Standard convolution kernel-based radiomics signature 
had better diagnostic performance than lung convolution kernel-based CT in both primary (AUC: 0.785 vs. 0.770, 
p =  0.015; NRI =  0.156) and validation cohort (AUC: 0.725 vs. 0.686, p =  0.039; NRI =  0.467).

Discussion
This study demonstrated that incorporating individual radiomics features extracted from CT images as a 
radiomics signature facilitated the differential diagnosis of SPN, and the variability of acquisition parameters 
(contrast-enhancement, reconstruction slice thickness and convolution kernel) had effects on the diagnostic per-
formance of radiomics signature in SPN. In addition, we also demonstrated that radiomics signature based on CT 
images acquired with non-contrast, thin-slice and standard convolution kernel had better performance on the 
differential diagnosis of SPN.

As one processes of radiomics studies, optimum protocols for image acquisition and reconstruction algorithm 
have to be identified and harmonized13,20. The variation caused by different parameters implies that it should be 
possible to make consistency for this acquisition parameters used in radiomics studies13,19. To date, most studies 
of radiomics features have focused on finding robustness features19,31–33. Among the above studies, Leijenaar 
et al. studied the stability of radiomics features32, and Hunter et al. identified the high quality machine-robust 
image features33. Although robustness radiomics features were presented in the above previous study, it’s worthy 
of notice that the impact of acquisition parameters on radiomics signatures could vary widely, which has never 
been investigated. As expected, our study showed that the contrast-enhancement, reconstruction slice thickness 
and convolution kernel affected the diagnostic performance of radiomics features as revealed by the univariate 
analysis, and as well as the corresponding radiomics signatures constructed by LASSO regression method in SPN.

Radiomics signature built based on the non-contrast CT images showed better performance in the differ-
ential diagnosis of SPN, compared with the contrast-enhanced CT images. The underlying reason for the bet-
ter performance on non-contrast images may be that the biological heterogeneity within the tumor that can be 
depicted by radiomics features may be confounded by the intravenous injected contrast material, which may then 

skewness
kurtosis

contrast_0
contrast_45
contrast_90

contrast_135
correlation_0

correlation_45
correlation_90

correlation_135
energy_0

energy_45
energy_90

energy_135
homogeneity_0

homogeneity_45
homogeneity_90

homogeneity_135
entropy_0

entropy_45
entropy_90

entropy_135
his_mean

his_SD
his_50_mean

his_50_SD
his_25_mean

his_25_SD
his_10_mean

his_10_SD

0 1.0 1.5 2.0 2.5

Filter

0 1.0 1.5 2.0 2.5

Filter

0 1.0 1.5 2.0 2.5

Filter

0 1.0 1.5 2.0 2.5

Filter

0 1.0 1.5 2.0 2.5

Filter

0 1.0 1.5 2.0 2.5

Filter

0 1.0 1.5 2.0 2.5

Filter

0 1.0 1.5 2.0 2.5

Filter

Primary cohort Primary cohort Primary cohort Primary cohortValidation cohort Validation cohort Validation cohort Validation cohort

Group 1 Group 2 Group 3 Group 4

No statistically signaficant 0.600 - 0.649 0.650 - 0.699 0.700 - 0.749 0.750 - 0.799

( non-contrast + 1.25 mm +
standard convolution kernel)

( contrast-enhancement + 1.25 mm 
+ standard convolution kernel)
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Figure 2. Color mapping for the univariate analysis for each of radiomics features on discrimination 
between benign and malignant SPNs in both primary cohort and validation cohort across different groups. 
The y-axis presents the categories of radiomics features; the x-axis presents the different filter values for the 
features extraction in both primary and validation cohort across the different groups. Blue cell represents the 
feature showed no significant association with the status of SPN, while other color cells represent the features 
showed significant association, with different ranges of AUC derived.
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result in poorer discrimination between malignant and benign tumors due to the existing intratumoral contrast 
material34–36.

Regarding the reconstruction slice thickness of CT images, the radiomics signature built based on thin slice 
thickness (1.25 mm) was found to have better performance in the differential diagnosis of SPN as compared 
with that built on thick slice thickness (5 mm) in our study. Similarly, previous studies had presented that slice 
thickness could significantly affect the quantification of CT image features, and illustrated that slice thickness of 
1.25 mm and 2.5 mm were better than 5 mm for texture features37. The underlying reason for the better perfor-
mance of thin-slice images may be that thicker slice images introduce larger partial pixel artifacts as compared to 
thinner slice images37,38.

Figure 3. Distributions of score for the radiomics signature on classification SPN status in the primary and 
validation cohort in different sets of CT imaging (group 1 to group 4). Y axis indicated the true categories of 
SPNs and X axis indicted the scores of radiomics signatures, which can be used for predicting the categories of 
SPNs in each group with the best cutoff. The green dotted vertical lines were drawn for the best cutoff on each 
group.
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Furthermore, we found that radiomics signature built based on standard convolution kernel CT had better 
diagnostic performance than that built based on lung convolution kernel CT. The underlying reason for the bet-
ter performance on standard convolution kernel images may be that generation of CT images utilizing different 
convolution kernels can optimize lesion detection. Lung convolution kernel is generated when high-pass filter 
algorithm is used, with high spatial frequencies and noise preserved; while low-pass algorithm enables the gener-
ation of standard kernel image, with high spatial frequency contribution and noise decreased, and work best for 
tissues with inherently lower contrast, such as lung tissues39.

As discussed above, the acquisition parameters (contrast-enhancement, reconstruction slice thickness and 
convolution kernel) affected the features selection (12, 4, 3 and 3 features selected out of the significant associated 
radiomics features in group 1, group 2, group 3 and group 4, respectively), with which the corresponding radiom-
ics signature was constructed. Accordingly, the variability of radiomics signature demonstrates different diagnos-
tic performance in SPN. Our results showed that radiomics signature based on the non-contrast, thin-slice and 
standard convolution kernel-based CT was more informative on differential diagnosis of SPN.

Limitation of this study includes the fact that the variability in radiomics signature on differential diagnosis of 
SPN could be caused by different types of CT scanners. All sets of images in our study were generated by the same 
CT scanner. Among the previous study, Dennis et al. found that the inter-scanner differences on the variability 
in the values of radiomics features should be considered19. Therefore, there might be an interesting attempt to 
explore the effects of different CT inter-scanners on the differential diagnostic performance of radiomics signa-
ture on differential diagnosis of SPN in future studies. Another limitation of this study includes the fact that the 
dataset may be skewed, with which 180 patients with malignant cancer and only 60 patients with benign tumor 
composed the whole study cohort. However, our study consists of all consecutive solitary pulmonary nodules 
that were biopsy- or surgery-proven malignant or benign nodules in our institution collected from January 2010 
to July 2015. All images were collected from patients scanned with the same scanner, since there is variability in 
the quality and repeatability of radiomics features between CT scanners observed in a previous study19. Although 
the dataset was skewed with limited benign cases, the incidence ratio between benign and malignant cases was 
representative of the intended population in clinical practice. As noted in the TRIPOD statement (Transparent 
Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis)40, selectively choosing 
or omitting participants may cast doubt on the representativeness of the sample to the population in which the 
marker or model is to be applied and affect its generalizability. So despite that ideally the inconsistence should be 
minimized to reduce the impact on the comparison of the radiomics signature performance, our study enrolled 
all consecutive patients eligible to the generalizability.

In conclusion, this study presents that the contrast-enhancement, reconstruction slice thickness and convolu-
tion kernel can affect the diagnostic performance of radiomics signature in SPN, of which non-contrast, thin-slice 
and standard convolution kernel-based CT is more informative. The impact of different CT image acquisition 
parameters on the performance of radiomics signatures should be considered in the future radiomics studies in 
SPN.

Group

Primary cohort Validation cohort

AUC 95%CI SEN SPE Accuracy AUC 95%CI SEN SPE Accuracy

1 0.862 0.847–0.877 0.944 0.633 0.858 0.750 0.728–0.772 0.922 0.567 0.833

2 0.829 0.813–0.845 0.667 0.867 0.708 0.735 0.715–0.757 0.867 0.533 0.783

3 0.785 0.765–0.805 0.889 0.667 0.825 0.725 0.703–0.747 0.878 0.567 0.800

4 0.770 0.749–0.791 0.878 0.667 0.817 0.686 0.663–0.709 0.822 0.600 0.767

Table 3.  Diagnostic performance of discrimination and classification of radiomics signature. Note: 
95%CI: 95% confidence interval. AUC: area under curve. SEN: sensitivity; SPE: specificity. Group 1 =  non-
contrast +  1.25 mm +  standard convolution kernel; Group 2 =  contrast enhancement +  1.25 mm +  standard 
convolution kernel; Group 3 =  non-contrast +  5 mm +  standard convolution kernel; Group 4 =  non-
contrast +  5 mm +  lung convolution kernel.

Groups

Primary cohort Validation cohort

NRI 
Events

Non-NRI 
Events

Total NRI 
Events

NRI 
Events

Non-NRI 
Events

Total NRI 
Events

1 vs. 2 0.244 0.333 0.578 0.022 0.001 0.023

1 vs. 3 0.333 0.533 0.867 0.200 0.267 0.467

3 vs. 4 0.089 0.067 0.156 0.267 0.200 0.467

Table 4.  NRI of inter-group comparison for the primary cohort and validation cohort. Note: NRI =  Net 
Reclassification Improvement; NRI Events =  Net Reclassification Improvement for events; Non-NRI 
Events =  Net Reclassification Improvement for non-events. Group 1 =  non-contrast +  1.25 mm +  standard 
convolution kernel; Group 2 =  contrast enhancement +  1.25 mm +  standard convolution kernel; Group 
3 =  non-contrast +  5 mm +  standard convolution kernel; Group 4 =  non-contrast +  5 mm +  lung convolution 
kernel.
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