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Smartphone-Based Accurate 
Analysis of Retinal Vasculature 
towards Point-of-Care Diagnostics
Xiayu Xu1,2, Wenxiang Ding1,2, Xuemin Wang1,2, Ruofan Cao1,2, Maiye Zhang3, Peilin Lv1,2 & 
Feng Xu1,2

Retinal vasculature analysis is important for the early diagnostics of various eye and systemic diseases, 
making it a potentially useful biomarker, especially for resource-limited regions and countries. Here 
we developed a smartphone-based retinal image analysis system for point-of-care diagnostics that 
is able to load a fundus image, segment retinal vessels, analyze individual vessel width, and store 
or uplink results. The proposed system was not only evaluated on widely used public databases and 
compared with the state-of-the-art methods, but also validated on clinical images directly acquired 
with a smartphone. An Android app is also developed to facilitate on-site application of the proposed 
methods. Both visual assessment and quantitative assessment showed that the proposed methods 
achieved comparable results to the state-of-the-art methods that require high-standard workstations. 
The proposed system holds great potential for the early diagnostics of various diseases, such as diabetic 
retinopathy, for resource-limited regions and countries.

Retinal vasculature changes have been associated with various eye diseases (e.g., diabetic retinopathy) and sys-
temic diseases (e.g., hypertension), which manifest themselves on the retina by altering vessel topological features, 
such as vessel width and tortuosity1–6. Analysis of retinal vessel thus holds great potential to assist the early diag-
nostics and treatment of these diseases. This is of particular importance for resource-limited regions and coun-
tries because retinal vessel is the only part of human blood circulation that can be optically and non-invasively 
observed in vivo, making it relatively easy, safe, and cost-effective7,8. Diabetic retinopathy (DR), for instance, is a 
severe complication of diabetes mellitus that can be diagnosed and treated in its early stage to prevent from blind-
ness via regular retinal screening with fundus image. It is estimated that 75% of people with DR live in developing 
countries (e.g., China and India), where most of the patients are not even diagnosed due to the lack of medical 
resources and well-trained clinicians9. It is also pointed out that the screening program for DR at developing 
countries should be cost-effective and the decision-making should be automatic in order to reduce workload9. 
Thus there is an urgent need for low-cost, easy-access systems, i.e., point-of-care (POC) diagnostic systems, which 
are able to provide automatic or semi-automatic diagnostics of diseases, such as DR, in resource-limited settings.

Although significant efforts have been put in the establishment of an automatic POC diagnostic system for 
resource-limited settings, there are still several important challenges. First of all, the conventional fundus camera 
used to capture a retinal image, called desktop fundus camera (DF-camera), is bulky and costly, making it not 
portable and beyond affordability for resource-limited settings. Recently, the rapid development of technologies 
has driven the advent of various low-cost handheld fundus cameras (HF-camera), providing an alternative option 
for retinal image acquisition in resource-limited settings. Some of the popular prototypes, including some com-
mercialized devices, attach external optics to a smartphone to capture and store fundus images, greatly reduc-
ing the cost and increasing the portability of the device10–12. Yet the drawbacks of HF-camera include smaller 
field-of-view (FOV) and lower image quality as compared to DF-camera. Second of all, the lack of well-trained 
clinicians and specialists in resource-limited settings indicates an urgent need for on-site automatic diagnostics 
and decision-making, which is also desired in healthcare cost. containment. Towards this angle, enormous auto-
matic or semi-automatic diagnostic systems based on retinal image analysis have been developed13–25. However, 
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methods with high accuracy often target at high quality images captured with DF-cameras. Moreover, these meth-
ods often utilize complicated algorithm designs, such as large-scale data training on high quality images, and are 
implemented in high-standard workstations. Although there are a few attempts in the establishment of a portable 
POC diagnostic system12,26, they were only tested on public databases consisting of high-quality fundus images 
captured with DF-cameras. Therefore, there is still an unmet need for automatic systems working with low qual-
ity fundus images as obtained by the emerging HF-camera. The desired algorithms for a POC diagnostic system 
should be not only accurate and robust enough to work at resource-limited settings, but also fast and simple 
enough to be implemented in a portable device (e.g., smartphone).

In this study, we developed a fully automatic retinal image analysis system that can deal with low quality 
images captured with a HF-camera combined with a smartphone (iExaminer, Welch-Allyn Inc., Skaneateles Fall, 
NY, USA). This system can read a fundus image, segment retinal vessels, analyze individual vessel width, and store 
or uplink the results. More specifically, we developed a visual saliency based vessel segmentation method and also 
a graph-theoretic vessel width measurement method. These two methods were compared with existing methods 
on high quality fundus images, and also tested on low quality clinical images taken with a smartphone. At last, the 
proposed system was implemented independently in a smartphone app, which provides a user-friendly interface 
for image acquisition, test analysis, and result management.

Results and Discussion
An overview of the whole system is given in Fig. 1. The visualized results of proposed method is given in Fig. 2. 
Taking a typical image in the DRIVE (Digital Retinal Image for Vessel Extraction) dataset as an example, the 
results are demonstrated in detail. Starting from the original fundus image (Fig. 2a), the blood vessels are detected 
(Fig. 2b). We can see the vessel segmentation method was able to detect most of the large vessels, but it missed 
some of the fine vessels. It also showed high false positives around the optic disc. Then the vessel width was 
measured at locations where the blood vessel was detected (Fig. 2c). We can see that both large and fine ves-
sels were accurately measured. Figure 2d–g show the inset view of the original fundus image, vessel segmenta-
tion, vessel centerline, and vessel width measurement. Specifically, Fig. 2f shows the vessel centerline used in the 
two-dimensional graph construction, in which the vessel segments with a length smaller than certain pixels were 
excluded from further vessel width measurement.

To quantitatively assess the performance of the vessel segmentation algorithm, we evaluated the proposed 
method on the DRIVE and STARE (Structured Analysis of the Retina) databases by comparing the proposed 
method with existing methods in Table 1 (Hoover et al.15, Jiang et al.18, Staal et al.19, Mendonca et al.20, etc.). The 
average accuracy (Acc), sensitivity (SN), and specificity (SP) obtained from our method are 0.933, 0.786, and 
0.955 for the DRIVE database, and 0.920, 0.825, and 0.931 for the STARE database, respectively. Even though the 
proposed method was implemented in a Java Android platform for a smartphone, it showed comparable results 
with the state-of-the-art methods implemented in standard computer workstations. The running time using the 
proposed method is ~118 seconds for an image from the DRIVE database (565 ×  584 RGB color image) and ~130 
seconds for an image from the STARE database (700 ×  605 RGB color image). To show the overall performance of 
the method as the threshold varies, we assessed the receiver operating characteristic (ROC) curve of the proposed 
method on DRIVE and STARE databases (Fig. 3). For the DRIVE database, the proposed method showed results 
comparable with human observer (with the red star on the red line), while for the STARE database, the human 
observer showed a slightly better result than that from the proposed method (with the green star to the left up 
corner of the green line). The area under the ROC curve (AUC) for DRIVE and STARE were 0.9585 and 0.9590, 
respectively.

To assess our method for measuring the vessel width, we evaluated the proposed method on the REVIEW 
database and compared the performance with various existing methods (Table 2 and Table 3). The proposed 
two-dimensional graph method showed comparable results with the state-of-the-art methods in mean and stand-
ard deviation of average vessel width and mean and standard deviation of individual differences. Specifically, com-
pared with the three-dimensional method, the proposed method showed a great improvement in running time. 
For an image of size 2160 ×  1440, the three-dimensional method took 41 seconds to solve all graphs on a standard 
computer workstation (3.40GHz Intel®  Core™  i7-3770 CPU with 8 GB of RAM) and the two-dimensional graph 
took around 90 seconds to solve all graphs on a smartphone (Qualcomm snapdragon 801, 2.5GHz, RAM 2 GB).

To assess the ability of the proposed system to work as a POC diagnostic tool, we evaluated the performance of 
the proposed method on low quality clinical images acquired with a smartphone (Fig. 4). For all images, the blood 
vessels were segmented with the proposed method. To assess the consistency of width measurement, individual 
vessel segment from the high quality image and its counterpart from the low quality image were selected and 
measured. For each image, the three widest vessel segments around the optic disc were manually selected by one 
observer and visually checked by a second observer to guarantee the validity of the vessel, resulting in 30 pairs of 
vessel segments in total. For each selected vessel, the average vessel width was calculated and adjusted to physical 
unit (μ m) for comparison. The visualized results are given in Fig. 4a,b, in which the left images are high quality 
images and the right images are the low quality counterparts from the same participant. As can be observed, 
the low quality images showed smaller FOV, lower image resolution, and poorer contrast compared with their 
high quality counterpart. To quantitatively assess the algorithmic consistency between high quality images and 
low quality images, we performed the paired student’s t-test and found no significant difference between the 
two measurements (with a p-value of 0.07 in the paired t-test). The scatter plot shows good agreement between 
the two measurements with a Pearson’s correlation of 0.922 (Fig. 4c). These results indicate that the proposed 
method can give consistent results on high quality image and low quality image. Therefore, the developed system 
holds great potential as a POC diagnostic tool at resource-limited settings. A user-friendly app was developed to 
facilitate on-site image acquisition, analysis, and management (Fig. 5). Figure 5a shows the image acquisition and 
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Fig. 5b shows screenshots of the app, which are the home screen, a low quality image after vessel segmentation, 
and a low quality image after width measurement, respectively.

Retinal vasculature analysis is important for the early diagnostics of various microvascular diseases, as the 
changes in retinal vessel usually precede the advent of other signs, making it a potentially useful biomarker. 
However, the manual segmentation and measurement is extremely tedious, difficult, and prone-to-error. The pro-
posed system is proved to be a valuable tool for retinal vasculature analysis at resource-limited settings. Validation 
on various public databases indicated that this system showed comparable results to the state-of-the-art methods 
that are complex in design and require high standard workstations as platforms. Testing on low quality images 

Figure 1. Flowchart of the proposed POC diagnostic system for resource-limited settings. A fundus image 
is acquired and stored in a smartphone app at resource-limited settings. Then blood vessels are detected and 
measured inside the app. At last, the results are displayed and saved.
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captured by smartphone further confirmed that the proposed system was able to handle low quality images taken 
at resource-limited settings.

POC diagnostics at resource-limited settings puts high requirements on the on-site diagnostic tools. In 
smartphone-based image analysis, the first challenge is the ability to deal with low quality images taken with 
HF-camera. In this study, we not only showed that the proposed system was able to deal with low quality images, 
but also showed that the performance on low quality images was consistent with the performance on their coun-
terpart high quality images. This is important not only because high quality images are regarded as golden stand-
ard and almost all clinical studies are based on high quality images, but also because it provides the patients 
with a wider choice in later clinical visits. Another important challenge in POC diagnostics is the large variety 
in test samples. Human retina and retina images show large diversity in background color and vascular geom-
etry because of systemic, environmental and genetic factors27. In this respect, one advantage of the proposed 
system is its independence from any training data, making it readily applicable to unknown images obtained at 
resource-limited settings. A third challenge in POC diagnostics is its requirements on real-time analysis. Taking 
advantage of the smartphone, we were able to achieve real-time analysis by keeping the whole test inside a smart-
phone, including image loading, analysis, and result display. Even though it takes ~3 minutes to finish a test, 
it is still able to provide on-site and real-time analysis, which is important for resource-limited settings where 
well-trained clinicians and tele-medicine are not always available.

Although the proposed system has proved to be promising for the detection of within-subject follow-up 
changes of retinal vasculature, which is important for individual monitoring of disease progression, the 
between-subject differences also need to be addressed. As discussed above, human retina and retina images show 
large diversity in background color as well as vascular characteristics, meaning the baseline for health and disease 

Figure 2. Illustration of the image analysis results. (a–c) Original fundus image, vessel segmentation result, 
and vessel width measurement. (d–g) Inset view of original fundus, vessel segmentation, vessel skeleton, and 
vessel width measurement.
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may vary greatly between individuals with different ethnicity, age, etc. Future studies will focus on how these 
between-subject variabilities can be appreciated.

Conclusion
In this study, we developed a smartphone-based retinal image analysis system targeting at POC diagnostics at 
resource-limited settings. This system shows comparable performance with the state-of-the-art methods with a 
much lower computational complexity. This system can be further combined with commercialized HF-cameras 
for POC diagnostics or large population screening at resource-limited settings. Future work will include studies 
on between-subject vascular variability and implementing this algorithm in a POC diagnostic system for the early 
diagnostics of DR.

Materials and Methods
Public database. The vessel segmentation method was evaluated on two popular public databases, which are 
widely used for the evaluation of retinal vessel segmentation methods. The DRIVE database consists of a set of 40 
RGB color fundus photographs obtained from a diabetic retinopathy screening program17. The images (565 ×  584 
pixels) were acquired using a Canon CR5 non-mydriatic 3-CCD camera with a FOV of 45o. DRIVE database is 

Data DRIVE Test STARE

PlatformMethods Acc SP SN AUC Time Acc SP SN AUC Time

Human 0.947 0.972 0.776 — — 0.935 0.938 0.895 — — —

Niemeijer et al.17 0.942 0.969 0.689 0.930 — — — — — — —

Hoover et al.15 — — — — — 0.9275 0.81 0.65 — 5min SunSPARCstation 20

Jiang et al.18 0.891 0.90 0.830 0.932 8–36s 0.901 0.90 0.857 0.929 8–36s 600 MHz PC

Staal et al.19 0.944 0.977 0.719 0.952 15min 0.952 0.981 0.697 0.961 15min 1.0 GHz, 1GB RAM

Mendonca et al.20 0.945 0.976 0.734 — 2.5min 0.944 0.973 0.699 — 3min

Soares et al.30 0.946 0.978 0.733 0.961 ~3min 0.948 0.975 0.72 0.967 ~3min 2.17GHz, 1GB RAM

Ricci et al.21 0.959 0.972 0.775 0.963 — 0.965 0.939 0.903 0.968 — —

Al—Diri et al.22 — 0.955 0.728 — 11min — 0.968 0.752 — — 1.2 GHz

Marin et al.13 0.945 0.98 0.706 0.958 ~90s 0.952 0.982 0.694 0.977 ~90s 2.13GHz, 2GB RAM

Fraz et al.31 0.948 0.981 0.74 0.974 ~100s 0.953 0.976 0.755 0.976 ~100s 2.27GHz, 4GB RAM

Lam et al.23 0.947 — — 0.961 13min 0.957 — — 0.974 13min 1.83GHz, 2GB RAM

Budai et al.32 0.957 0.987 0.644 — ~5s 0.938 0.982 0.58 — ~6s 2.3 GHz, 4GB RAM

Perez et al.33 0.925 0.967 0.644 — ~2min 0.926 0.944 0.769 — ~2min Parallel Cluster

Miri et al.34 0.943 0.976 0.715 — ~50s — — — — — 3 GHz, 1 GB RAM

Roychowdhury et al.24 0.949 0.978 0.739 0.967 2.45s 0.956 0.984 0.732 0.967 3.95s 2.6 GHz, 2GB RAM

Proposed 0.933 0.955 0.786 0.959 ~118s 0.920 0.931 0.825 0.959 ~130s Android Samsung 
Galaxy S5

Table 1.  Comparative performance of different segmentation methods on the DRIVE and STARE 
databases.

Figure 3. ROC curve for vessel segmentation on the DRIVE and STARE databases. The AUC is 0.9585 for 
DRIVE and 0.9590 for STARE.
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divided into two sets, the training set and the test set, each containing twenty images. The test set was manually 
segmented by two observers and the first observer is accepted as ground truth. The STARE database contains a set 
of twenty images, ten of which show signs of pathology15. The images (700 ×  605 pixels, 8-bit per color channel) 
were captured using a TopCon TRV-50 fundus camera with a FOV of 35o. Two experts manually segmented all 
images and the first observer is regarded as ground truth.

The vessel width measurement method was evaluated on the REVIEW database, which is widely used for 
the evaluation of vessel width measurement methods28. The REVIEW database contains four image sets with 
vessel measurement from three observers. The VDIS dataset contains severe disease cases and the KPIS dataset 
includes only parts of retinal images. These two datasets were thus excluded in this study. The other two datasets  
(i.e., HRIS and CLRIS) were included for validation. The HRIS dataset represents different stage of DR and con-
sists of 2368 manual vessel profiles from 90 vessel segments. The CLRIS dataset includes a strong central light 

Method Name Success Rate %

Measurement Difference

μ σ μ σ

Observer 1 100 4.12 1.25 − 0.23 0.29

Observer 2 100 4.35 1.35 0.002 0.26

Observer 3 100 4.58 1.26 0.23 0.29

Gregson’s Algorithm25 100 7.64 — 3.29 2.84

Half-height full-width (HHFW)35 88.3 4.97 — 0.62 0.93

1D Gaussian Model-fitting36 99.6 3.81 — − 0.54 4.14

2D Gaussian Model-fitting37 98.9 4.18 — − 0.17 6.02

Extraction of Segment Profiles22 99.7 4.63 — 0.28 0.42

3D Graph-Based Method29 100 4.56 1.30 0.21 0.57

2D Graph-Based Method 94.0 4.16 1.20 − 0.18 0.70

Table 2.  Comparison of vessel width measurement methods on HRIS dataset.

Method Name Success Rate %

Measurement Difference

μ σ μ σ

Observer 1 100 13.19 4.01 − 0.61 0.57

Observer 2 100 13.69 4.22 − 0.11 0.70

Observer 3 100 14.52 4.26 0.72 0.57

Gregson’s Algorithm25 100 12.8 — − 1.0 2.84

Half-height full-width (HHFW)35 0 — — — —

1D Gaussian Model-fitting36 98.6 6.3 — − 7.5 4.14

2D Gaussian Model-fitting37 26.7 7.0 — − 6.8 6.02

Extraction of Segment Profiles22 93.0 15.7 — − 1.9 1.50

3D Graph-Based Method29 94.1 14.05 4.47 0.08 1.78

2D Graph-Based Method 93.4 13.84 4.82 0.04 1.89

Table 3.  Comparison of vessel width measurement methods on CLRIS dataset.

Figure 4. Test on clinical images. (a) Visualization of vessel width measurement on high quality image (left) 
and low quality image (right) of subject one. (b) Visualization of vessel width measurement on high quality 
image (left) and low quality image (right) of subject two. (c) The scatter plot of vessel widths by the smartphone 
with respect to vessel widths by the DF-camera. The Pearson’s correlation is 0.922.
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reflex phenomenon and contains 285 vessel profiles from 21 vessel segments. Each profile in the REVIEW data-
base consists of fifteen numbers: series number, image number, segment number, and the coordinates of the left 
and right boundaries (x1, y1, x2, y2) from three observers (O1, Ο2, and O3).

Clinical data. The clinical images were collected at Xi’an No.1 Hospital. Ten normal eyes from ten partic-
ipants were included in this study. We captured both high quality fundus images using a DF-camera (Topcon 
TRC-NW8 fundus camera, FOV of 45o) and low quality fundus images using a HF-camera (iExaminer plus 
‘Panoptic’, FOV of 25o, Welch-Allyn Inc., Skaneateles Fall, NY, USA)10). The low quality images showed a smaller 
FOV, lower resolution, and poorer contrast due to the hardware limitations, greatly increasing the difficulties of 
image analysis. Informed consent for research use of data was sought and obtained from each study participant 
before participation. The study was approved by the Ethics Committee of Xi’an Jiaotong University. The methods 
were carried out in accordance with the approved guidelines.

Visual saliency based vessel segmentation. The vessel analysis system contains a vessel segmenta-
tion algorithm and a vessel width measurement algorithm. Vessel segmentation is the fundamental task for fur-
ther analyses of retinal vasculature, such as vessel width, vessel tortuosity, branching angle, and arteriovenous 
ratio. In this study, a fast and accurate vessel segmentation algorithm based on visual saliency is introduced. 
One advantage of saliency based method is that only global operators and linear local neighborhood operators 
are used, meaning it is simple in algorithmic design and fast in computational performance. In this method, 
multi-scale salient features are generated, including spectral residual, orientation, morphological features, and 
self-information. When all four salient features are extracted, a gray scale vessel image is created by a linear com-
bination of all normalized saliency features. A binary vessel image is created using Triangle thresholding. More 
details are given in Supplementary Materials.

Graph-theoretic vessel width measurement. We previously reported a vessel width measurement 
method based on three-dimensional graph search, which converts the simultaneous two-boundary detection 
problem into a two-slice three-dimensional minimum closed set problem29. This method achieves high accuracy 
but suffers from high computation complexity because of the three-dimensional graph design. Here, we improved 
this method by breaking the three-dimensional graph down to two separate two-dimensional graphs. To do this, 
the inter-slice smoothness constraint, i.e., the connection between the two slices, is removed and the intra-slice 
smoothness constraint is strengthened. In this way, the computational performance can be greatly improved with 
limited sacrifice in accuracy. After the two-dimensional graphs are constructed, they are solved as separate mini-
mum closed set problems. Once both vessel boundaries are solved, the vessel width is determined as the distance 
between the left boundary and the right boundary along the normal direction of the blood vessel. More details are 
given in Supplementary Materials.

Smartphone-based GUI system. We developed an Android app as a graphical user interface (GUI). 
Specifically, this app is designed for multiple tasks. (a) account management;(b) loading fundus images;(c) fully 
automatic image analyses;(d) result display, storage, and up-linking;(e) user instruction. The details are described 
below:

(a)  Account management: this system allows multiple users on a single smartphone, each of which is protected by 
a user name and a password.

(b)  Loading fund images: the system allows loading fundus images from the smartphone gallery or capturing new 
fundus images if the smartphone is equipped with a portable fundus camera.

Figure 5. Illustration of the POC diagnostic system and its app. (a) Image acquisition. (b) Screenshots of the 
retinal vessel analysis app.
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(c)  Automatic image analyses: the system allows automatic analyses of a fundus image, including vessel segmen-
tation and width measurement as described above.

(d)  Result display, storage, and up-linking: both the visualized result and quantitative result can be displayed, 
stored, or emailed to a professional personnel.

(e)  User instruction: the system provides detailed instruction on how to perform a new test and how to under-
stand the results.

Statistical analysis. Statistical analysis was performed using the Statistical Package for the Social Sciences 
(SPSS ver. 19.0, Chicago, IL, USA). For vessel segmentation, SN, SP, Acc, and ROC curve were calculated and 
compared with other reported methods. SN is defined as TP/(TP +  FN), reflecting the ability of an algorithm to 
find vessel pixels, where TP means true positives and FN means false negative. SP is defined as TN/(TN +  FP), 
reflecting the ability of an algorithm to find non-vessel pixels, where TN means true negative and FP means false 
positive. Acc is defined as the ratio of the total number of correctly classified pixels (TP +  TN) to the total number 
of pixels in the image. The ROC curve shows the tradeoff between sensitivity and specificity as its discrimina-
tion threshold varies. The closer an ROC curve approaches the top left corner, the better the performance of the 
method. The AUC, ranging from 0 to 1, reflects the overall performance of the method, in which a perfect test 
has an AUC of 1.

In the vessel width measurement, for each measurement from each observer, the vessel centerline is defined as 
+ +x x y y[( )/2, ( )/21 2 1 2  and vessel width as − + −x x y y( ) ( )1 2

2
1 2

2 . A reference standard (RS) is created by 
averaging the manual measurements from the three observers. Comparison between different methods was per-
formed by five parameters: success rate, mean and standard deviation of average vessel width, and mean and 
standard deviation of individual differences. The success rate is defined as the ratio between matched points and 
total RS centerline points, in which a matched is defined as success if at least one detected centerline pixel is found 
within certain distance to an RS centerline point. The mean and standard deviation of the average vessel width 
reflect the overall similarity between different methods while the mean and standard deviation of the individual 
differences reflect the overall differences between individual measurements.

In the validation on low quality clinical images, the paired student’s t-test was used to evaluate the difference 
between the vessel widths from high quality image and low quality image. A p value of <  0.05 was considered 
statistically significant. The scatter plot and Pearson’s correlation were also reported.

Platform. The proposed methods were implemented in Android 4.2.2. Java library OpenCV was included for 
basic image processing and library JGraphT was used for basic graph construction and solution. All tests were 
performed on a Samsung Galaxy S5 smartphone (Qualcomm snapdragon 801, 2.5GHz, RAM 2 GB).
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