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The smallest chimera state for 
coupled pendula
Jerzy Wojewoda1, Krzysztof Czolczynski1, Yuri Maistrenko1,2,3 & Tomasz Kapitaniak1

Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which 
different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite 
homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, 
recently it has been suggested that chimera states may occur in the systems with small numbers of 
oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern 
of the smallest chimera state, which is characterized by the coexistence of two synchronized and one 
incoherent oscillator. We show that this chimera state can be observed in simple experiments with 
mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton’s 
laws. Our finding suggests that chimera states are observable in small networks relevant to various real-
world systems.

The coexistence of the phase locked oscillators with desynchronized and incoherent oscillators in the network 
of identical oscillators creates the spatiotemporal patterns known as chimera states1–23. These patterns are typ-
ical for the large networks of different topologies and have been reported both in simulations1–16 and experi-
ments17–23. Recently it has been suggested that chimera states can also be observed in small networks24–26. Ashwin 
& Burylko24 have defined a weak chimera state as one referring to a trajectory in which two or more oscillators 
are frequency synchronized and one or more oscillators drift in phase and frequency with respect to the synchro-
nized group. First, it has been found out that these states can be observed in small networks of as few as 4 phase 
oscillators24–26.

Here, we show that the pattern of the smallest chimera state, which is characterized by two synchronized 
oscillators and one incoherent oscillator can be observed in the networks of 3 identical nodes. As the proof of the 
concept we use the network of coupled Huygens clocks27, i.e., the system of coupled pendula which are excited by 
the escapement clock’s mechanism28–30.

We consider the system of 3 coupled pendula shown in Fig. 1(a). which is shown in Fig. 1(a). Pendula of length 
l, mass m and moment of inertia B which hung from the unmovable disc are coupled to the nearest neighbor 
through the linear spring with stiffness coefficient kx and linear dampers with damping coefficient cx (shown in 
red). Pendula’s displacements are given by angles φi. The springs and the dampers are connected to each pendu-
lum at distance ls from the pivot. Additionally, the motion of each pendulum is damped by the linear damper 
characterized by damping coefficient cϕ. The energy is transmitted to each pendulum by the escapement mecha-
nism which generate excitation torque MD (in the first stage when 0 <  φi <  γN then MD =  MN and when φi <  0 then 
MD =  0 and for the second stage for − γN <  φi <  0 MD =  − MN and for φi >  0 MD =  0)28,29. The described system can 
be experimentally implemented using three metronomes whose pendula are connected by the spring elements as 
shown in Fig. 1(b). The metronomes’ parameters, details about coupling and measurement techniques are given 
in the Methods. Each uncoupled pendulum is multistable and has three attractors: fixed points A1
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1 N  and limit cycle A2 shown in Fig. 1(c). The boundaries between the basins of attraction of A1
+ and 

A1
− attractors and A2 attractor are given by the ellipsoid + =

ϕ

γ

ϕ

ω γ

 1
N N

0
2

2
0
2

2 2
, where ω  is frequency of oscillations and 

γN is constant given by the design of the escapement mechanism. The basins of attraction of A1
+, A1

− and A2 are 
shown respectively in yellow and green colors. The boundaries between basins of A1

+ and A1
− attractors have not 

been determined as they play no role in the explanation of the observed behavior.
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The dynamics of the system in Fig. 1(a) can be analyzed using the equations of motion which are derived from 
the principles of classical mechanics (see the Methods). Due to the model of the escapement mechanism these 
equations are not differentiable so is the limit cycle A2 (discontinuity is shown in the inlet of Fig. 1(c)).

Figure 1. (a) 3 pendula coupled on the ring through springs and dampers, (b) experimental implementation 
of the system of Fig. 1(a) with 3 metronomes which pendula are coupled by spring elements, (c) coexisting 
attractors of each uncoupled pendulum (metronome).
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Results
For nonzero coupling stiffness kx >  0 we observe broad range of parameters and initial conditions (whole basin of 
A2 attractor, i.e., green region in Fig. 1(c)) in which the synchronization of all metronomes emerges. We have 
assumed that all metronomes are synchronized when the phase differences between metronomes’ pendula are 
zero (in numerical simulations) or close to zero (in experiments), i.e., φi(t) −  φj(t) =  0 (in numerical simulations) 
and φi(t) −  φj(t) ≈  0 (in experiments), i, j =  1, 2, 3, i ≠ j. For sufficiently small coupling stiffness kx (smaller than the 
threshold value kth) chimera states can be generated by the perturbation of the state of complete synchronization 
(one pendulum is stopped for a moment, i.e., when φi =  0, ϕ

 i is set to 0) as can be seen in Fig. 2(a–d). Figure 2(a) 
presents time series of the displacement of all metronomes’ pendula φ1−3(t). The perturbation has been intro-
duced to metronome 1 at the time indicated by the arrow. One can observe that pendula 2 and 3 are synchronized, 
the phase difference between them is equal to zero (φ2(t) −  φ3(t) =  0) and pendulum 1 performs uncorrelated 
oscillations (φ1(t) −  φ2,3(t) ≠  constant). Notice that the amplitudes of the oscillations are not equal and all pendula 
exhibit chaotic oscillations as can be seen in the enlargement shown in Fig. 2(b). The uncorrelated behavior of 
metronome 1 is confirmed in Poincare maps shown in Fig. 2(c,d). The points for the maps have been taken in the 
time moments when φ2(t) and φ3(t) reach maximum (ϕ ϕ ϕ ϕ ϕ= = =

 
t, max ( ), 0t2 3 2,3 2 3 ). The numerical 

Figure 2. (a) Time series of displacement of all metronomes’ pendula φ1−3(t), originally all pendula have been 
synchronized, at the time indicated by arrow pendulum 1 has been stopped for a moment, (b) enlargement of 
the part of (a), (c,d) Poincare maps of pendula 1–3, (c) numerical results, (d) experimental results (e,f) 
snapshots of the phases of each metronomes θ1−3(t), (e) initial phases θ − (0)1 3 , (f) final phases θ1−3(T), 
T =  1500[s], (g) mean frequencies of metronones ωi normalized by the frequency of uncoupled metronome ω  
(red dots and blue triangles indicate respectively numerical and experimental results).
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(Fig. 2(c)) and experimental (Fig. 2(d)) maps show that the behavior of synchronized metronomes 2 and 3 is 
restricted to the short interval on the line (ϕ ϕ= =

 
02 3 ) while ϕ ϕ


,1 1 points of metronome 1 are distributed in the 

set bounded by white squares in the center of Fig. 2(d,c). To show that the observed behavior is a chimera state we 
calculated phases of each metronome θ1−3(t), (using the Fourier transformation - see Methods). Figure 2(e,f) 
shows that the phases of two metronomes (2 and 3) are approximately equal and different from the phase of met-
ronome 1, i.e., θ2 ≈  θ3 ≠  θ1 (red dots and blue triangles indicate respectively numerical and experimental results). 
The mean frequencies of each metronome ωi normalized by the frequency of uncoupled metronome ω  are shown 
in Fig. 2(g). It is clearly visible that the drifting pendulum 1 is not frequency synchronized to the others. For the 
coupling stiffness kx >  kth after the transient the perturbed metronome synchronizes with other two metronomes 
so the complete synchronization is restored (there are no phase differences between metronomes’ pendula).

Generally, in the described system the state of complete synchronization of all pendula (see Movie M1) 
co-exists with the state of partial phase synchronization in which two pendula oscillate in antiphase and the third 
one is at rest (see Movie M2) and the smallest chimera state (see Movie M3). Chimera state can be obtained also 
from random initial conditions when initial conditions of two metronomes belong to the basin of attractor A2 and 
initial conditions of the third one to the basins of attractors A1

+ and A1
−.

In the considered system of coupled metronomes chimera states can be observed due to: (i) the self-exited 
nature of its oscillations (ii) the multistability (co-existence of A1

+, A1
− and A2 attractors) of each metronome, and 

(iii) sufficiently small (too small to forced synchronization via the energy transfers between metronomes28–30). 
These conditions can be generalized for the networks of coupled mechanical oscillators.

In summary, we have constructed the simple experimental setup to show the existence of the smallest chimera 
state in the network of three coupled pendula. The nodes in the network are locally coupled pendula (Huygens’ 
clocks realized by metronomes). We observe the formation of coexisting coherent (two synchronized pendula) 
and incoherent (the third pendulum) groups. This behavior is observed experimentally and confirmed in numer-
ical simulations. It seems that such chimera states are common in the small networks of coupled multistable 
systems.

Methods
The dynamics of the system of coupled pendula shown in Fig. 1(a) is given by:
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where i =  1, 2, 3, ϕ0 =  ϕn, ϕn+1 =  ϕ1. System (1) is symmetrical on the ring, i.e., pendulum i is coupled with pen-
dula i +  1 and i −  1 (local coupling).

Numerical simulations. The following parameter values have been used: m =  0.044 [kg], l =  0.011[m], 
ls =  0.005[m], B =  0.0000974 [kgm2], cϕ =  0.00000107 [Nms], MD =  0.00022 [Nm], γ N =  17°, cx =  0.035 [Ns/m], 
kx =  0.444 [N/m]. The frequency of uncoupled metronome’s pendulum is equal to ω =  6.97[s−1]. With these 
parameters values the escapement mechanism generates oscillations of the uncoupled pendulum with amplitude 
A ≈  0.75 [rad] ≈  43°. The 4th order Runge-Kutta method has been used for integration of eq. (1). The phases 
θ1−3(t) of the metronomes are obtained from numerical and experimental time series φ1−3(t) using Hilbert trans-
formation: ∫θ τ=

π

ϕ

τ− −∞

∞

−
−t d( )

t

t1 3
1 ( )1 3 . Further, the phases are used to obtain the averaged frequencies over time 

T: ω θ θ≈ −− − −T T[ ( ) (0)/1 3 1 3 1 3 . The averaging has been performed over the time interval T =  1500 [s].

Experimental visualization. The set of 3 coupled metronomes shown in Fig. 1(b) has been used to confirm 
experimentally the existence of chimera states in the small network. Wittner Maelzel metronomes (Model No. 
802K) covering frequency range of 40 (largo) to 208 (prestissimo) tics per minute, with a standard deviation of 
relative frequencies of ~1% have been used. Depending on the adjusted frequency each metronome ticks for a 
duration of approximately 25 min (when fully wound up). We have measured the angular displacements of met-
ronomes’ pendula ϕi to quantitatively analyze the behavior of the coupled metronomes

The metronomes have been placed on the equilateral triangle as shown in Fig. 1(b). The triangle’s side has 
the length of 0.43 [m]. We have used the rubber bands (with the cross section radius 0.0001 [m]) of the length 
0.43 [m] connecting the nearest neighbors as the spring elements. The estimated stiffness coefficient kx is equal 
to 0.444 [N/m]. The threshold value on coupling stiffness is equal to kth =  1.51[N/m]. The motion of the set of 
coupled metronomes has been recorded in two ways: (i) with a single Phantom v711 camera capable of high speed 
image acquisition, one at the time of a record (to obtain data shown in Fig. 2(c), and (ii) with the set of 4 general 
purpose devices: 3 Canon 5D facing directly each metronome’s pendulum respectively plus Sony HDR-MV1 
observing the overall behavior from the top of the rig (Figs 1(b) and 2(d) and Movie W1). High speed camera 
Phantom v711 camera has been set to the speed of 100 or 150 fps recording in order to cover long time of the 
oscillator’s work, more than 1500 periods. The markers have been applied at the arms of the metronomes for 
further investigation with motion analysis program. TEMA software by Image Systems has been applied to con-
secutive movies (image sequences) which delivered digital values of angle, velocity and acceleration data obtained 
from tracing the markers on the arm of each metronome. Such time series allowed for the construction of the 
map presented in Fig. 2(c,d). As the method of observation, 4 recordings from 4 general purpose cameras have 
been gathered as the combination of views of behavior of the investigated oscillators in chosen examples. The 
final, rendered view from them has been synchronized within single frame accuracy.
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