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Aberrant Meiotic Prophase I Leads 
to Genic Male Sterility in the Novel 
TE5A Mutant of Brassica napus
Xiaohong Yan*, Xinhua Zeng*, Shasha Wang, Keqi Li, Rong Yuan, Hongfei Gao, Junling Luo, 
Fang Liu, Yuhua Wu, Yunjing Li, Li Zhu & Gang Wu

Genic male sterility (GMS) has already been extensively utilized for hybrid rapeseed production. TE5A is 
a novel thermo-sensitive dominant GMS line in Brassica napus, however, its mechanisms of GMS remain 
largely unclear. Histological and Transmission electron microscopy (TEM) analyses of anthers showed 
that the male gamete development of TE5A was arrested at meiosis prophase I. EdU uptake of S-phase 
meiocytes revealed that the TE5A mutant could accomplish DNA replication, however, chromosomal 
and fluorescence in situ hybridization (FISH) analyses of TE5A showed that homologous chromosomes 
could not pair, synapse, condense and form bivalents. We then analyzed the transcriptome differences 
between young floral buds of sterile plants and its near-isogenic fertile plants through RNA-Seq. A total 
of 3,841 differentially expressed genes (DEGs) were obtained, some of which were associated with 
homologous chromosome behavior and cell cycle control during meiosis. Dynamic expression changes 
of selected candidate DEGs were then analyzed at different anther developmental stages. The present 
study not only demonstrated that the TE5A mutant had defects in meiotic prophase I via detailed 
cytological analysis, but also provided a global insight into GMS-associated DEGs and elucidated the 
mechanisms of GMS in TE5A through RNA-Seq.

Both cytoplasmic male sterility (CMS) and genic male sterility (GMS) are common pollination control systems 
for hybrid rapeseed production1–3. However, GMS, which is considered as an efficient alternative to the CMS sys-
tem, presents some merits, including stable and complete male sterility, ease of transfer of male sterility genes, and 
rich sources of cytoplasm that avoids the possible risk of utilizing a single cytoplasmic source4. To date, various 
double low GMS lines have been comprehensively exploited to develop heterotic hybrids5–11. S45 AB, as a reces-
sive GMS line derived from a spontaneous mutant of the canola variety, Oro, is widely used for rapeseed heterosis 
in China12,13. GMS line Rs1046AB is derived from a natural mutation of Yi3A14. TE5A is a novel thermo-sensitive 
dominant GMS line that originated from the spontaneous mutation of the B. napus inbred line TE5, which is 
controlled by only one dominant gene and serves as a promising system for the development of hybrid cultivars15. 
However, the molecular mechanisms underlying the control of these GMS lines remain obscure.

In the developmental process of gametogenesis, some cells in the anther, firstly, differentiate into archespo-
rial cells, which produce the primary sporogenous cells. Then the primary sporogenous cells give rise to pollen 
mother cells (PMCs) and primary parietal cells16. Finally, primary parietal cells lead to the tapetum, endoth-
ecium, and the middle layer of the anther, and meiosis occurs in PMCs16. Meiosis, which is related to gamete 
development that produces four uniform haploid spores from one diploid PMC, plays a major role in the sexual 
reproduction process of organisms. During meiosis, two consecutive chromosome divisions follow a single DNA 
replication17. In meiosis I, a coordinated chain of events in the extended prophase I results in pairing, synapsis of 
homologous chromosomes and recombination of non-sister chromatids in each bivalent. Chromosome number 
is cut in half in anaphase I owing to the separation of homologous chromosomes18. During meiosis II, sister chro-
matids segregate, following a similar mechanism to that observed in mitosis (equational division). The proper 
partitioning of genetic material during cell division requires the precise orchestration of cell cycle events19.

To produce haploid spores, meiocytes must succeed in entering meiosis I, pass through the transition 
of the meiosis I to meiosis II, and exit meiosis II. Some errors in these processes are usual and can result in 
parthenogenesis, teratoma generation, or the production of 2n gametes without a reduction in the number of 
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chromosomes20,21. The complexes of cyclins and cyclin-dependent kinases (Cdks) play an essential role in the 
control of the cell cycle. In addition, the activity of Cdk-cyclin complexes regulate the progression of both the 
meiotic and mitotic cell cycles at determined checkpoints22,23. Little is known about the control of the plant meio-
sis. The maize elongate mutant, generates 2n female gametes as a result of the failure in female meiosis II, although 
the related gene has not been identified to date24. In the Arabidopsis thaliana tam-1 mutant, only one replacement 
of an amino acid (Thr283Ile) disorders the cell cycle control associated with male meiosis, resulting in a failure to 
enter meiosis II, thus leading to the generation of dyad and diploid spores, thereby suggesting that CYCA1;2/TAM  
plays a crucial role in the transition from meiosis I to meiosis II25,26. Moreover, osd1 mutants are unable to enter 
meiosis II during male and female meioses, leading to the generation of functional diploid gametes and polyploid 
progeny27.

In the present study, cytological analysis indicated that the male development in the novel TE5A GMS line 
was arrested at meiosis prophase I, as shown by its inability to undergo pairing, recombination and synapsis, and 
eventually, the PMCs degenerated, thereby giving rise to a relatively stable and complete GMS phenotype. Anther 
and pollen development are precisely regulated by several external and internal cues, and these processes are 
crucial for male reproduction. Besides the essential genes in the male developmental network, several plant hor-
mones, such as jasmonic acids, ethylene, auxin, gibberellins, and cytokinins, have an affect on male fertility28–32, 
and various biosynthetic phytohormones or signaling mutants of plant hormones have reduced male fertility. In 
the present study, to elucidate the underlying molecular mechanism of the TE5A GMS that is associated with 
abnormal meiosis prophase I phase, we used young floral buds (0.5–1.0 mm in diameter, at meiotic prophase 
I stage) of sterile plants and fertile plants of the BC3 population derived from the successive backcrossing of 
heterozygous TE5A sterile plants with the maintainer line GY12 to perform a genome-wide high-throughput 
transcriptome sequencing analysis (RNA-Seq) to identify differentially expressed genes (DEGs) participating in 
the control of fertility.

Results
Selection of fertile and sterile plants with the closest genic background. TE5A is a novel DGMS 
line that originated from a spontaneous mutant of the inbred line TE5. It exhibits ecotypic temperature sensitivity, 
it is fertile at low temperatures, and transforms to a completely sterile phenotype at temperatures of > 20 °C dur-
ing florescence. Therefore, the critical temperature controlling the fertility of TE5A was 20 °C. To acquire plants 
with the most similar genetic background, one heterozygous TE5A sterile plant was utilized as the female parent 
and crossed with the temporary maintainer GY12, resulting in an F1 population that presented fertility segrega-
tion. Sterile F1 plants were backcrossed to GY12 to produce the BC1 population. The BC3 population was then 
obtained by backcrossing sterile plants of the BC2 population with GY12. Its fertility was determined during flow-
ering when the temperature was > 20 °C. Sterile plants and fertile plants with a 1:1 fertility segregation ratio were 
derived from the BC3 population of the same genic background besides the sterile gene locus residing in sterile 
plants. At the same temperature (> 20 °C), the fertile plants showed normal floral morphology and architecture, 
whereas sterile plants presented defective male floral organs (abnormal anthers, no pollen was produced, and sta-
mens showing a reduction in size), and had normal flowers in other respects (Fig. 1A). During the early stages of 
stamen development, the sterile plants showed full and well developed stamens compared to that observed in the 
wild plants. Alterations were observed at the later stamen stage, stamens of fertile plants exhibited well-developed, 
yellow anthers, whereas sterile plants presented withered anthers with no pollen (Fig. 1B).

Phenotypic characteristics of TE5A male gamete development. Male gamete development is initi-
ated within the anther, where sporogenous initial cells, also called PMCs, enter the meiotic cycle to form a tetrad 
of cells that eventually differentiate into reproductive tissues. Mitotic divisions and microspore maturation fol-
lows meiosis of the PMCs, leading to mature pollen grains. Highly specialized anther tissues acquire reproductive 
(male gamete formation) or non-reproductive (such as stomium for dehiscence, the tapetum for support) func-
tions. Microspore and tapetum development are both essential to male fertility, and numerous studies on male 
sterile mutants have been reported33–39.

Figure 1. Comparison of floral morphology between sterile and fertile plants. (A) young buds of sterile and 
fertile plants (left, fertile; right, sterile); (B) anthers corresponding to different lengths of young buds (0.5, 0.8, 
1.0, 1.5, 2.0, and 4.0 mm; upper, sterile; down, fertile).
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To determine which step of male development was disrupted in the TE5A mutant, paraffin-cross sections 
of anthers from different developmental stages were analyzed through DAPI staining (Fig. 2). There are 14 
well-ordered stages for anther development which is based on the morphological characteristics of Arabidopsis40. 
In the TE5A mutant, the early anther PMC development stage appeared normal compared to the wild-type 
(Fig. 2A,F). However, several differences in anther development between the wild-type and the TE5A mutant 
occurred after the early PMC stage. Alterations initially appeared at the MC stage, chromosomes were normally 
condensed into thread-like structures during wild-type meiosis, corresponding to the zygotene phase of prophase 
I (Fig. 2B), whereas chromosomes of the mutant were aberrantly condensed into crescent-like structure (Fig. 2G). 
In the later stages, in the wild-type, dyads were generated, indicating meiosis I had been completed (Fig. 2C), 
which was subsequently followed by the formation of tetrads (Fig. 2D) and microspores (Fig. 2E). In contrast, 
in the TE5A mutant, chromosomes were further condensed and eventually degenerated, and thus no dyads or 
tetrads were generated, thereby suggesting that the TE5A mutant failed in accomplishing meiosis I and entering 
meiosis II, and PMCs were arrested at meiosis I (Fig. 2H).

Analysis of paraffin-cross sections of anther sections had indicated that the early detectable defect in the TE5A 
mutant involved the disruption of meiosis I, which then led to a failure in dyad or tetrad generation in the anther. 
To further understand the abnormalities in the mutant, TEM was used to compare the differences in anther 
development between the mutant and wild-type plants. First, tapetal development during meiosis was normal in 
the TE5A mutant compared to that in the wild-type (Fig. 3). For male mate development, similar to the obser-
vations using paraffin-cross sections, no detectable differences in the early PMC stage were observed between 
the TE5A mutant and the wild-type (Fig. 3A,F). However, some differences in male mate development after the 
early PMC stage were observed between the mutant and the wild-type. In the wild-type, the PMCs completed 
meiosis I and entered the tetrad stage (Fig. 3G). However, at this stage, no dyads or tetrads were observed in the 
TE5A mutant, and only PMCs were observed (Fig. 3B). Subsequently, the wild-type microspores were released 
from the tetrads and were covered with a microspore wall (Fig. 3H,I), and in contrast to that observed in the 
wild-type, the PMCs of the mutant did not accomplish meiosis I and developed into pseudo-microspores that 
were surrounded by a layer of grains, instead of the a typical microspore wall (Fig. 3C,D). Finally, the wild-type 
microspores underwent mitosis and developed into mature pollen grains with the normal exine wall (Fig. 3J), 
whereas the pseudo-microspores of the TE5A mutant degenerated and instead showed an empty locule (Fig. 3E). 
TEM analysis suggested that the abnormal anther development in the TE5A mutant was also primarily due to 
defects in male mate development during meiosis I.

Homologous chromosomal behavior is aberrant in the gametophyte development of the TE5A 
mutant. To more precisely detect the gametophyte development defects in TE5A, we examined chromosome 
spreads from different stages of meiosis in the wild-type and the TE5A mutant. For wild-type meiosis, chromo-
somes condensed and appeared as thin threads in the nucleus at leptotene, and several bright stained chromatin 
centers were visible (Fig. 4A), which was followed by a progression of recombination and initiation of synapsis 
between chromosomes during the zygotene phase (Fig. 4B) and full synapsis of homologous chromosomes dur-
ing the pachytene phase (Fig. 4C). At diakinesis, homologous chromosomes underwent desynapsis and further 

Figure 2. DAPI-stained cross-sections of anthers in both the wild-type (A–E) and the TE5A mutant  
(F–H). (A,F), the early PMC stage; (B,G), the meiosis stage; (C) the dyad stage; (D) the tetrad stage; (E) the 
microspore stage; (H) the degenerating meiocyte stage. PMC, pollen mother cell; MC, meiotic cell; Dds, dyads; 
Tds, tetrads; Ms, microspore; DM, degenerating meiocyte. Scale bars =  50 μ m.
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condensation, thereby forming bivalents (Fig. 4D). Homologous chromosomes moved to opposite poles with 
their separation from each other at telophase I (Fig. 4E). Subsequently, tetrads were formed during telophase II 
(Fig. 4F).

In the TE5A mutant, the PMC nuclei showed the normal leptotene phase and chromosomes also exhibited 
thin thread-like structures (Fig. 4G). Alterations were initially observed at the zygotene phase and the meiotic 

Figure 3. TEM micrographs of the anthers from the wild-type (F–J) and the TE5A mutant (A–E). (A,F), early 
meiotic PMC stage with no detectable differences between the TE5A mutant (A) and the wild type (F); (B,G), 
the tetrad stage, in the wild type, the PMCs could complete meiosis I and enter the tetrad stage with tetrad 
formation (G), whereas no dyads or tetrads were observed in the TE5A mutant (B); (C,D,H,I), the microspore 
stage, microspores were released from the tetrads and covered with an microspore wall in the wild-type 
(H,I). However, the PMCs of the mutant did not undergo meiosis and developed into pseudo-microspores 
surrounded by a layer of grains, instead of a typical microspore wall (C,D); (E,J), the pollen grain stage, the 
wild-type microspores developed into mature pollen grains with the normal exine wall (J), whereas pseudo-
microspores of the TE5A mutant were degenerated, resulting in an empty locule. T, tapetum; PMC, pollen 
mother cell; Tds, tetrad; Msp, microspore; Psm, pseudo-microspore; Dps, degenerating pseudo-microspore; PG: 
pollen grain; Scale bars =  10 μ m.

Figure 4. Male meiosis in fertile and sterile pollen mother cells (PMCs) prepared using the spreading technique 
and stained with DAPI. (A–F), meiosis in fertile PMCs; (G–J), meiosis in sterile PMCs; (A,G), leptotene. several 
bright stained chromatin centers were visible; (B,H), zygotene; (C) wild-type fertile pachytene showing full 
chromosome synapsis; (D) fertile diakinesis showing moderately condensed, unaligned bivalents; (E) telophase I, 
dyads were formed; (F) telophase II, tetrads were formed; (I) arrangement of chromosomes was disordered, and 
chromosomes formed the crescent-like structure; (J) the final arrested PMCs. Chromosomes remain together as 
a diffused mass. Neither meiosis I nor meiosis II is completed in these MMCs, showing meiosis being completely 
arrested. Scale bars =  5 μ m.
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chromosomes seemed to become diffused (Fig. 4H). Thereafter, a disruption of chromosomal arrangement was 
observed, as indicated by the appearance of the crescent-like structure (Fig. 4I). Finally, the nuclei became more 
and more compact. A second meiotic division was not observed. Meanwhile, chromosomes were underwent fur-
ther condensation, thereby losing its the typical chromosome morphology until fully degrading (Fig. 4J). During 
the entire male meiosis in the TE5A mutant, no bivalent or chromosome segregation was detected, and no dyads 
or tetrads were observed. We examined more than 100 meiocytes at different developmental stages in the TE5A 
mutant and found that they all showed the same aberrant phenotypes. These observations indicated that homol-
ogous chromosomal behavior in the male mate development was aberrant, and meiotic chromosomes might be 
arrested at prophase I of meiosis in the TE5A mutant.

Homologous chromosome pairing is defective in the TE5A mutant. Further confirmation of 
the failure of pairing in the TE5A mutant was achieved via fluorescence in situ hybridization (FISH) using 45S 
rDNA as probe to determine the pairing status of the homologous chromosomes in PMCs during meiosis I 
(Fig. 5). In Brassica napus, there are 12 to 14 repeated 45S rDNA loci on somatic chromosomes of wild-type 
plants. Therefore, 12 to 14 signals should be observed in unpaired chromosomes and only six or seven in paired/
synapsed chromosomes in meiosis. In both wild-type plants and the TE5A mutant, 12 to 14 45S rDNA signals 
were observed at leptotene (Fig. 5A,E). During early pachytene, paired signals (six signals) were detected in the 
wild-type (Fig. 5B), whereas 12 to 14 45S rDNA signals were also observed, thereby suggesting that a defective 
pairing of homologous chromosomes in the mutant (Fig. 5F). After that, the number of chromosomes was halved 
in the dyads (Fig. 5C) and tetrads (Fig. 5D) of the wild-type. In contrast, the number of 45S rDNA FISH foci was 
not halved, and unpaired 45S rDNA FISH foci were observed at the corresponding stage in the TE5A mutant with 
a significantly higher number of chromosomes (Fig. 5G). These results confirmed that pairing did not occur in 
TE5A mutant, and the arrest of prophase I might be caused by defective pairing.

TE5A mutants have no effect on meiotic DNA replication. Recently a new thymidine analog 
5-ethynyl-2-deoxyuridine (EdU), was developed and utilized in investigating meiotic DNA replication. DNA is 
labeled through EdU uptake by S-phase meiocytes undergoing DNA replication. EdU labeling of DNA is detected 
with a fluorophore-tagged azide that forms a covalent bond with the terminal acetylene group on the ethynyl 
component of EdU. This new technology has been extensively employed in animals to study cell proliferation41–43. 

Figure 5. FISH analysis of meiosis in both the wile-type and the TE5A mutant. Meiotic chromosomes 
probed with 45S rDNA (green). Chromosomes were stained with DAPI (blue). (A,E), at leptotene stage, 12 to 
14 45S rDNA signals were observed in the wild-type (A) and in the TE5A mutant (E), respectively; (B,F), at 
pachytene stage, six paired signals (half of the total number) were detected in the wild type (B), whereas 12 to 
14 45S rDNA signals were still observed in the mutant (F,C,D,G) signals in half were observed in dyads (C) and 
tetrads (D) of the wild-type, in contrast, the number of 45S rDNA FISH foci was not halved, and unpaired 45S 
rDNA FISH foci were still observed in the mutant (G). Scale bars =  5 μ m.
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EdU uptake of S-phase meiocytes revealed that TE5A mutants could succeed in completing DNA replication 
(Fig. 6A–C) compared to the wild-type (Fig. 6D–F).

Illumina sequencing and annotation. Genes other than that of the typical meiotic genes also play an 
important role in the male gamete development. During meiosis, hormone metabolism genes, serine-proteases, 
genes participating in cell wall biosynthesis, tapetum differentiation genes, and even polyamine biosynthesis and 
ribonucleases are all modulated in terms of expression44.

To uncover the underlying the molecular mechanism of the TE5A GMS that is associated with abnormal 
meiosis prophase I phase, we used young floral buds (0.8–1.0 mm in diameter, at meiotic prophase I stage) of 
sterile plants and fertile plants of the BC3 population derived from the successive backcrossing of heterozy-
gous TE5A sterile plants with the maintainer line GY12 to perform a genome-wide high-throughput transcrip-
tome sequencing analysis (RNA-Seq) to identify DEGs participating in the control of fertility. Table 1 shows 
the results of RNA-Seq and annotation of clean reads. The floral bud cDNA libraries of sterile (A1) and fertile 
(B1) plants were sequenced on an Illumina platform, resulting in 49,957,498 and 48,192,158 raw reads, with a 
total of 4,085,700,660 and 3,959,934,750 nucleotides, respectively. After filtering out reads containing unknown 
base N, low-quality data, and only adaptor reads, 45,396,674 and 43,999,275 reads (designated herein as “clean” 
reads) remained in A1 and B1 libraries, respectively, for further analysis. The full genome sequence for B. napus 
is now available. By assigning the experimental clean reads to the B. napus reference sequences, we observed 
that 29,578,223 (65.16%) and 29,370,312 (66.75%) reads matched (including perfect match and 1-bp or 2-bp 
mismatch) with the A1 and B1 libraries, respectively. Out of the reads mapped to the reference genes, 21,924,241 
and 22,040,364 reads were uniquely matched, corresponding to 56,215 and 58,776 mapped genes for A1 and B1, 
respectively, and approximately 16% were matched to multiple locations, which included reads that came from 
repetitive sequences and were matched to highly conserved domains shared by various genes, and low-complexity 
reads containing poly(A) tails. The unmapped reads might be non-coding transcripts of inter-genic regions or 
non-annotated genes.

Sequencing saturation analysis of the two libraries was performed to assess whether the sequencing depth was 
of sufficient transcriptome coverage. Supplementary Figure S1 shows that with the increase of clean reads, more 
genes were detected. However, when the read number reached 2 million, the increase curve of the detected genes 
reached a plateau, which indicated that the number of acquired genes had reached saturation.

Sequence read preference of certain gene regions had a direct effect on subsequent bioinformatics analysis. 
Therefore, we utilized the distribution of reads on the reference genes to evaluate randomness. Supplementary 
Figure S2 shows that the randomness of RNA fragmentation from two samples was good, and the distributions of 
reads on reference genes were even.

Figure 6. Confocal images of EdU labeled meiocytes. EdU labeling of DNA is detected by a green fluorescent 
signal. DNA was counterstained with DAPI (blue). EdU uptake of S-phase meiocytes revealed that TE5A 
mutant could succeed in completing DNA replication (A–C) compared with the wild-type (D–F). Scale 
bars =  5 μ m.
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Gene ontology (GO) function and pathway analysis of DEGs. There were 3,841 genes in B. napus 
that were detected with significant differential expression levels between A1 and B1 (Supplementary file 1). These 
included both 2,939 upregulated and 902 downregulated genes in B1. Of the 2,939 upregulated DEGs in B1, 511 
genes were uniquely expressed in B1, which were postulated to participate in the normal development of male 
gametes, and only 16 of the 902 downregulated genes in B1 were specially expressed in A1, which were assumed 
to be involved in the abnormal development of male gametes (Fig. 7).

GO is a usual standardized gene analysis classification system which categorizes genes and gene products in 
terms of their biological process, cellular component, and molecular function. A total of 2,339 DEGs belonging 
to 37 different categories were recognized (Fig. 8). For the biological processes category, genes involved in metab-
olism were the predominant activity (31.5%), followed by those involved in cellular processes (24%), biological 
regulation (6.9%), and pigmentation (6.6%). Among those with a molecular function role, 37.3% were assigned 
to binding, 29.2% to catalytic, and 4.1% to transporter activities. For the cellular component category, 16.1% tar-
geted cells and cell parts, 4.3% were directed toward organelles, and 2.2% to macromolecular complexes.

To analyze the important biological functions of the DEGs, GO enrichment analyses of DEGs were performed. 
Supplementary file 2 shows the significantly enriched GO terms of DEGs. A comparison of the genome back-
ground with that of their function identified 7 GO terms for cellular components such as the extracellular region, 
external encapsulation structures, apoplasts, cell wall, cullin-Ring ubiquitin ligase complexes, liquid particles, and 
monolayer-surrounded lipid storage bodies. There were 27 other GO terms that were associated with transport, 
catabolism, transcription, and lipid localization. An additional 41 GO terms were assigned to molecular functions 
such as transferase, hydrolase, and enzyme inhibitor activities. Further analysis led to the assignment of 7 DEGs 
to the histone acetyl transferases Fna019097, Fna026265, Fna006674, Fna008350, Fna060150, Fna009968, and 
Fna079142, which were all upregulated in B1. Histone acetyltransferases acetylate specific lysine residues that are 
mainly located at the amino terminal tail of histones45, thereby participating in the recruitment of trans-acting 
regulatory factors46,47, chromosome segregation, and the establishment of chromatin boundaries48,49.

Genes usually play a role in special biological functions by interacting with each other. Pathway-based analysis 
helps to further elucidate the biological functions of DEGs. KEGG is the major public pathway-related database50.  
Pathway enrichment analysis identifies significantly enriched metabolic pathways or signal transduction path-
ways in DEGs relative to the background of the entire genome. In the present study, the enriched pathways 
included flavonoid biosynthesis, linoleic acid metabolism, carotenoid biosynthesis, alpha-linolenic acid metab-
olism, phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant circadian rhythm, and glucosinolate 
biosynthesis (Supplementary file 3). Further research on these genes that were involved in certain pathways would 
help to elucidate the mechanisms underlying GMS in TE5A mutants.

DEGs are involved in homologous chromosome behavior during meiosis. TE5A meiocytes exhib-
ited abnormal chromosome behavior during meiosis (Fig. 4), prompting us to further investigate whether meiotic 
gene expression was affected. Prophase I of meiosis is characteristic of homologous chromosome pairing, cohe-
sion, recombination, and synapsis51. Three upregulated DEGs (Fna021329, Fna087283, and Fna002253) encoding 
helicases were identified in B1 (Table 2). RECQ HELICASES are involved in DNA recombination and replication 
during later phases of DSB repair and are possibly related to branch migration at the Holliday junction52. Eight 
DEGs (Fna064688, Fna018802, Fna063085, Fna048643, Fna072157, Fna002765, Fna044947, and Fna086175) 

Sample ID Raw reads Clean reads Total base pairs Total mapped reads Perfect match Mismatch Unique match Multip -osition match Total unmapped genes Mapped genes

A1 49,957,498 45,396,674 4,085,700,660 29,578,223 20,400,456 9,177,767 21,924,241 7,653,982 15,818,451 56,215

B1 48,192,158 43,999,275 3,959,934,750 29,370,312 20,122,638 9,247,674 22,040,364 7,329,948 14,628,963 58,776

Table 1.  Summary statistics of RNA-Seq and annotation of clean reads against reference sequences of 
Brassica napus.  Mismatch <  =  2 bp.

Figure 7. Changes in gene expression in A1 and B1 libraries. The number of upregulated and downregulated 
genes specific to A1 and specific to B1 are summarized.
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encoding topoisomerases (including DNA topoisomerase III and DNA topoisomerase I) were observed, of 
which five were upregulated in B1 (Table 2). In the budding yeast, SPO11 is essential for the initiation of meiosis  
recombination53, catalyzing DSB formation by using the activity of a topoisomerase-like enzyme54. Two addi-
tional Spo11 genes, namely, AtSPO11-2 and AtSPO11-3, have been identified and were reported to interact with a 
subunit B of archaebacterial-type topoisomerase 6 in A. thaliana55. These results thus showed that DNA recom-
bination might be affected in A1.

In addition, specific sequence distribution, chromosome morphology, and the chromosome condensation 
patterns that give a chromosome a characteristic shape may be involved directly or indirectly in homologous 
chromosome recognition56. REC8/RAD21 is involved in chromosome pairing, condensation, and cohesion 
of sister chromatids in mitosis57–59. In the present study, two DEGs encoding REC8/RAD21 (Fna075597 and 
Fna016698) were upregulated in B1 (Table 2). Four other DEGs involved in the regulation of chromosome con-
densation (Fna070368, Fna077294, Fna054687, and Fna058087) were also upregulated in B1 (Table 2), indicating 
that chromosome condensation associated with chromosome pairing was affected in A1.

DEGs are involved in the meiotic cycle control. Meiosis-specific modulatory mechanisms have been 
developed for the successive separation of homologous chromosomes during meiosis I and separation of sis-
ter chromatids in meiosis II. Oscillations in CDK activity play an important role in meiosis progression60,61. 
In meiosis, exit from anaphase depends on loss of cyclin-dependent kinase (CDK) activity, whereas entry into 
the M-phase requires high activity60. Morphological analysis of gametogenesis and male meiosis has indicated 
that loss of CDKA;1 resulted in complete sterility62,63. The TE5A mutants were infertile due to meiotic arrest at 
prophase I. One gene (Fna032795) encoding cyclin-dependent kinase C;1 (CDKC;1) and another gene encoding 
Cdk-activating kinase assembly factor (MAT1) (Fna008591) were upregulated in B1 (Table 3). Seven genes encod-
ing CDK inhibitors (Fna043714, Fna060576, Fna040927, Fna008334, Fna063948, Fna018615, and Fna060445) 
were also upregulated in B1 (Table 3). These results indicated that an oscillation failure of CDK activity  
regulation might be associated with prophase I arrest in TE5A mutants.

CDK activity is regulated at various levels, and an important determinant of CDK is the type and amount 
of available cyclin partners64. For the detected DEGs in the present study, 108 cyclin genes showed significant 
differential expression levels, most of which contain the F-box domain (Supplementary file 4). These included 
101 upregulated and 7 downregulated genes in B1. Of the 101 upregulated genes encoding cyclin, 57 genes 
were uniquely expressed in B1. However, these cyclins has not yet been functionally characterized in meiosis. 
Cyclin-CDKs form different complexes that control the progression of the meiotic cell cycle. Additional studies 
aimed to fully elaborate the modulatory network underlying meiosis progression in TE5A are thus required.

Figure 8. Histogram showing Gene Ontology functional analysis of DEGs. The frequency of GO terms was 
analyzed by using GO Slim Assignment. The y-axis and x-axis indicated the names of clusters and the ratio of 
each cluster, respectively.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:33955 | DOI: 10.1038/srep33955

Dynamic expression changes of candidate DEGs at different anther developmental stages.  
For Brassica napus, the relationship between bud lengths and anther developmental stages has been identified. 
Bud lengths < 0.5, 0.5–1, 1–1.5, and 1.5–2.0 mm represented the PMC stag, the meiosis stage, the tetrad stage, 
and microspore release stage, respectively65. To further investigate the expression levels of some candidate genes 
identified by RNA-Seq, total RNA was isolated from buds from lines A1 (sterile ) and B1 (fertile) at four specific 
stages (< 0.5, 0.5–1, 1–1.5, and 1.5–2.0 mm) and analyzed by using real-time PCR, respectively. All primers are 
listed in Supplemental Table S1.

RECQ HELICASES are involved in DNA recombination during later phases of DSB repair and are possibly 
related to branch migration at the Holliday junction52. In the present study, the differential expression of two 
DEGs encoding helicase, Fna021329, and Fna087283 were examined during above four anther developmental 
stages in A1 (sterile) and B1 (fertile) lines by using real-time PCR. Both Fna021329 and Fna087283 were not 
expressed during the four stages in line A1, whereas these were expressed at the PMC stage, and further upregu-
lated at the meiosis, in the tetrad, and the microspore stage in the B1 line (Fig. 9).

Topoisomerases are involved in various cell processes, including transcription, recombination, chromatin 
remodeling, and DNA replication by cutting DNA strands in a irreversible manner, which in turn release impend-
ing topological forces. Two DEGs encoding topoisomerases, namely Fna048643 and Fna063085, were analyzed by 
real-time PCR. The expression of Fna048643 was lower at various anther development stages in line A1 compared 
to that in the B1 line, and its expression markedly increased after the PMC stage in line B1 (Fig. 9). The expression 
of Fna063085 was not detected in line A1 at various anther development stages, whereas its expression level was 
high at the tetrad and the microspore stages in the B1 line (Fig. 9).

Cohesins are conserved proteins that have been implicated in the cohesion of sister chromatids in meiosis 
and mitosis and are responsible for DSB repair and meiotic recombination. In the present study, the expression 
of Fna016698, which encodes members of the REC8/RAD21 cohesin family, was suppressed at the PMC and the 
meiosis stages in the A1 line, whereas at the tetrad and the microspore stages, its expression showed little detect-
able differences between the A1 and B1 lines (Fig. 9).

Oscillations in CDK activity play an important role in meiosis progression61. In the present study, one gene, 
Fna032795, which encodes cyclin-dependent kinase C;1 (CDKC;1), was upregulated at the meiosis stage, the 
tetrad stage, and the microspore stage in the B1 line (Fig. 9). In addition, differential expression of Fna032795 was 
observed at the PMC stage, the meiosis stage, the tetrad stage, and the microspore stage in the B1 line, whereas no 
obvious changes of expression were detected at the four stages in the A1 line (Fig. 9).

TE5A mutants as a model for GMS. Cytological observation and the differential gene expression data 
generated from RNA-Seq indicate that TE5A mutants can be utilized as a model for GMS (Fig. 10). Successful 
male development are related to various important development events, including cell differentiation, meristem 
specification, communication among cells, mitosis and meiosis51,60. Paraffin-cross sections of anthers showed 
that male gamete development was arrested at the first meiotic division stage, and TEM analysis of cross sections 
of anthers indicated that PMCs were arrested at prophase I, which eventually resulted in the degeneration of 
meiotic PMCs in TE5A. Meiotic prophase I in the wild-type is characterized by pairing, chromosome cohesion, 
and recombination51. Chromosome spreads and FISH showed that homologous chromosomes could not pair, 

Gene ID log2 Ratio (B1/A1) Up/Down (B1/A1) Funtional annotation

Recombination helicase

 Fna021329 9.212104581 Up DNA recombination; ATP-dependent helicase activity

 Fna087283 4.107856066 Up DNA recombination; ATP-dependent helicase activity

 Fna002253 1.259859159 Up helicase activity; DNA repair and recombination protein RAD54

Topoisomerase

 Fna064688 9.413224204 Up DNA topoisomerase II, DNA gyrase subunit B

 Fna018802 8.983925591 Up DNA topoisomerase III

 Fna063085 5.607088692 Up DNA topoisomerase I

 Fna048643 4.484231944 Up DNA topoisomerase I

 Fna072157 3.992378848 Up DNA topoisomerase I

 Fna002765 − 1.48155234 Down DNA topoisomerase III

 Fna044947 − 1.30118435 Down DNA topoisomerase, nuclear transcription factor Y, beta

 Fna086175 − 1.22206482 Down DNA topoisomerase, nuclear transcription factor Y, beta

Chromosome condensation

 Fna070368 3.301131554 Up Regulator of chromosome condensation (RCC1)-like protein

 Fna077294 1.918378267 Up Regulator of chromosome condensation, RCC1

 Fna054687 1.219447757 Up Regulator of chromosome condensation, RCC1

 Fna058087 1.21914971 Up Regulator of chromosome condensation, RCC1

Rad21/Rec8-like protein

 Fna075597 1.689451715 Up cohesin complex subunit SCC1

 Fna016698 1.374249483 Up cohesin complex subunit SCC1

Table 2.  DEGs involved in homologous chromosome behavior during meiosis.
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synapse, condense, and form bivalents in the TE5A mutant. RNA-Seq further uncovered DEGs associated with 
the defects observed during TE5A mutant gametogenesis, including DEGs that were involved in homologous 
chromosome behavior and the cycle control during meiosis.

Discussion
The present study examined the cytological defects of anther development in the TE5A mutant. The TE5A mutant 
showed abnormal homologous chromosomal behavior during prophase I. In addition, EdU uptake of S-phase 
meiocytes revealed that TE5A mutants could accomplish DNA replication. To gain a deeper insight into the 
GMS of TE5A mutant, the RNA-Seq approach was used to identify DEGs between the sterile mutant (A1) and 
the fertile wild-type (B1). DEGs responsible for recombination, pairing and meiotic cycle control were identified. 
Finally dynamic expression changes of candidate DEGs at different developmental stages of anthers were analyzed 
by real-time PCR in both the TE5A mutant and the wild-type. Because of without biological replicates, additional 
studies that would verify the candidate DEGs are warranted.

Gene ID log2 Ratio(B1/A1) Up-Down (B1/A1) Funtional annotation

Fna043714 11.86690003 Up CDK inhibitor

Fna060576 4.812557811 Up CDK inhibitor

Fna040927 4.79973377 Up CDK inhibitor

Fna008334 3.636235038 Up CDK inhibitor

Fna063948 2.833681102 Up ankyrin repeat protein nuc-2, putative; CDK inhibitor PHO81

Fna008591 2.259165389 Up Cdk-activating kinase assembly factor (MAT1)

Fna018615 2.005052678 Up CDK inhibitor

Fna060445 1.600061425 Up CDK inhibitor

Fna032795 1.029090626 Up Cyclin-dependent kinase C;1 (CDKC;1)

Table 3.  Some DEGS involved in Cell cycle.

Figure 9. Dynamic expression changes of candidate DEGs at different developmental stages based on real-
time PCR. A total of six DEGs, Fna021329, Fna087283, Fna048643, Fna063085, Fna016698, and Fna032795 
were selected for further analysis at different anther development stages in the A1 and B1 lines. Relative levels of 
genes in real-time PCR are presented by 2−ΔΔCT.
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Defects in male gamete development of the TE5A mutant. The TE5A mutant showed normal floral 
morphology and architecture as that in the wild-type, except for the withered anthers with no pollen (Fig. 1). 
Successful male reproductive development within the anther, includes a number of critical developmental events 
such as meristem specification, cell differentiation, cell-to-cell communication, meiosis and mitosis51,60. Analysis 
of paraffin-cross sections of anthers and TEM analysis showed that the male gamete development was arrested 
at meiosis I. Eventually, meiotic PMCs underwent degeneration, thereby resulting in an empty locule, and no 
pollen grains were generated in the TE5A mutant (Figs 2 and 3). Chromosome spreads and FISH showed that 
homologous chromosomes could not pair, synapse, condense, and form bivalents in TE5A mutant, and meiotic 
chromosomes might have been arrested at prophase I of meiosis in the TE5A mutant (Figs 4 and 5).

Prophase I which is the longest and most complex phase of meiosis, is a vital stage that ensures the correct 
completion of the meiotic program. A series of chromosome dynamics associated events during meiotic prophase 
I such as chromosomal reorganization and condensation, establishment of meiotic-specific chromosome struc-
ture, homologous chromosome pairing, and dynamic chromosome movements are closely integrated and finely 
controlled temporally and spatially to contribute to meiosis66–71. At the end of meiotic prophase I bivalents are 
present. These bivalents consist of highly condensed paired homologous chromosomes joined at chiasmata, 
which are the physical sites of crossover between homologous chromosomes and are only established if pairing 
and recombination occur normally. There are many mutations affecting meiotic prophase I that often result in 10 
univalents instead of bivalents in Arabidopsis30,57,58,64,65,72,73. This can result in a random unbalanced segregation 
of univalents in meiosis. In most cases the cells produced are aneuploid and abort during development. However, 
in the present study, aberrant PMCs were eventually degraded, thereby resulting in complete sterility. It has been 
postulated that this result may have been caused by a defect in a cell cycle-checkpoint.

DEGs associated with homologous chromosomal behaviour during meiosis. Meiosis is a spe-
cialized cell division with two successive rounds of chromosome segregation following a single round of DNA 
replication, by which haploid cells are generated74. Chromosome dynamics during meiotic prophase I are 
associated with a series of major events. In early meiosis, adoption of the meiosis specific chromosome struc-
ture by chromatin condensation in the leptotene stage is one of the key processes in meiotic prophase I70,71. 

Figure 10. Model of GMS in TE5A. The network of GMS in TE5A based on the analysis of cytological 
observation and RNA-seq. Red boxes indicate no difference between the wild-type and the TE5A mutant.
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Homologous chromosome pairing has been shown to be tightly linked to the progression of meiotic recom-
bination69. Homologous recombination is essential for acquiring physical juxtaposition between homologous 
chromosomes75. The following homologous chromosome pairing is colsely tightly linked to the progression of 
meiotic recombination69. Synapsis and recombination ensure the establishment of chiasmata that hold homolo-
gous chromosomes together allowing their correct segregation. Several genes have already been identified to play 
essential roles in meiotic recombination particularly in the establishment of their functions, interactions, and 
timing, ultimately facilitating in building a comprehensive network that is related to the recombination pathway 
of meiosis76–78. In general, recombination genes are highly conserved and direct homologues have been identified 
in various organisms.

TE5A meiocytes exhibited abnormal chromosome behavior during meiosis (Figs 4 and 5). In this study, 3 
DEGs encoding RECQ HELICASES, 5 out of 8 DEGs encoding topoisomerase, and 6 DEGs associated with chro-
mosome morphology and condensation, including two REC8/RAD21 cohesin family members were all upregu-
lated in B1 (Table 2). RECQ HELICASES are involved in DNA recombination during later phases of DSB repair 
and are possibly related to branch migration at the Holliday junction52. In Saccharomyces cerevisiae, Sgs1, a the 
BLM helicase ortholog, is involved in normal meiosis recombination, other than its activity of restricting abnor-
mal recombination intermediates79. In addition, Sgs1 helicase is also essential for meiotic recombination in a pro-
tist that does not develop synaptonemal complexes80. Topoisomerases are involved in DNA metabolism and the 
DNA supercoiling steady-state level in eukaryotes and prokaryotes81,82. Topoisomerases are involved in various 
cell processes, including transcription, recombination, chromatin remodeling, and DNA replication by cutting 
DNA strands in an invertible manner, which in turn release impending topological forces. Topoisomerase II is 
essential for chromosome segregation in meiosis I, thus helping the separation of recombined chromosomes83.  
In Arabidopsis, the top3α -2 mutant shows stunted growth and complete sterility. Specific sequence distribution, 
chromosome morphology, and the chromosome condensation patterns that give a chromosome a characteris-
tic shape may be directly or indirectly involved in the homologous chromosome recognition56. The DIF1 gene 
of Arabidopsis, one member of the REC8/RAD21 cohesin family, is essential for meiosis chromosome separa-
tion. Mutations in the DIF1 gene mainly lead to female and male sterility57. Two major cohesins, REC8 and 
RAD21, function in meiosis of S. pombe. RAD21 interacts with telomeres, whereas REC8 mainly associates with 
centromeres84.

During meiosis in most organisms, production of haploid gametes is accompanied by frequent recombina-
tion between homologous parental chromosomes. Recombination occurs after meiotic DNA replication. Borde 
et al.53 have clearly shown that DNA replication is required for DSBs as a safety check to ensure that breakage is 
not induced before sister chromatids are available for repair, in case corresponding sequences on homologous 
chromosomes could not be found85. In the yeast Saccharomyces cerevisiae, blocking meiotic replication has been 
shown to prevent recombination86–88. S-phase is the important portion meiotic cell cycle when DNA replicates. 
Systematic studies have revealed that the S-phase that precedes meiosis prophase I is required for double-strand 
break (DSB) formation89. EdU uptake of S-phase meiocytes revealed that TE5A mutants could succeed in com-
pleting DNA replication (Fig. 6) compared to the wild-type.

DEGs associated with the meiotic cycle control. Meiosis has two consecutive rounds of chromosome 
division and only one DNA replication compared to mitosis90. Meiosis specific events are closely integrated 
and finely controlled temporally and spatially66–68. The oscillations in CDK activity can coordinate the various 
events of the cell cycle and develop a unidirectional process during the cell cycle through preventing untimely the 
nuclear DNA re-replication before mitosis. Although meiosis-specific modulatory mechanisms were developed 
to accomplish successive separation of homologous chromosomes during meiosis I and separation of sister chro-
matids in meiosis II, meiosis and mitosis share important principles controlling cell cycle. Exit from anaphase 
depends on a loss of cyclin-dependent kinase (CDK) activity, whereas entry into the M-phase in meiosis requires 
a high activity. The most noticeable meiotic event is that DNA replication is suppressed after meiosis I. This is 
accomplished by precise modulation of CDK activity which decreases to a certain level that allows spindle rear-
rangement and chromosome decondensation and is still adequate to suppress the assembly of pre-replicative 
complexes60.

Early experiments using temperature-sensitive Cdc28/Cdc2 yeast mutants and Xenopus oocytes have shown 
that CDKs play a central role in meiosis progression, similar to that observed in mitosis61. Five central CDKs, 
CDKA;1, CDKB1;1, CDKB2;2, CDKB1;2, and CDKB2;1, have already been reported so far in Arabidopsis91. 
Arabidopsis CDKA;1 demonstrates the highest similarity with Cdk2 and Cdk1 in animal species92. CDKA;1 
mutants are completely sterile, and morphological analysis of gametogenesis and male meiosis has indicated 
that it plays an important role during meiosis62,63. CDKA;1 apparently plays an essential role throughout meiosis; 
A high kinase activity of seems to be crucial in preventing premature meiosis I exit92. In the present study, one 
gene (Fna032795) encoding cyclin-dependent kinase C;1 (CDKC;1) and another gene encoding Cdk-activating 
kinase assembly factor (MAT1) (Fna008591) were upregulated in B1 (Table 3). However, it was puzzling that 7 
genes encoding CDK inhibitor (Fna043714, Fna060576, Fna040927, Fna008334, Fna063948, Fna018615, and 
Fna060445) were also upregulated in B1 (Table 3).

CDK activity is regulated at various levels, and an important determinant of CDK is the type and amount 
of available cyclin partners93. Cyclins are common CDK activity activators and regulators of the cell cycle94. 
Prediction analysis of the Arabidopsis genome indicates that there are approximately 21 B- and A-type cyclins95, 
however, our understanding of the function of the majority of cyclins in meiosis is limited. Only two cyclins have 
already been reported to play an important role in meiosis, namely, SDS96 and TAM97. For the detected DEGs 
in the present study, 108 cyclin genes showed significant differential expression levels (Supplementary file 4).  
However, these cyclins has not yet been functionally characterized in meiosis. Cyclin-CDKs form different com-
plexes that control the progression of the meiotic cell cycle. Altered expression of these cyclins in TE5A is thus 
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required to further examine its activity and function. The results of the present study indicated that the obae-
rved prophase I arrest in TE5A mutants was likely caused by an oscillation failure of CDK activity regulation. 
More studies that would elucidate the regulatory network underlying meiotic cell cycle progression in TE5A are 
warranted.

Conclusions
TE5A is a newly bred DGMS line that is characterized by abnormal meiotic chromosome behavior. In the present 
study, paraffin-cross sections of anthers showed that male gamete development was arrested at the first meiotic 
division stage, and TEM analysis of cross-sections of anthers showed that PMCs were arrested at prophase I. EdU 
uptake of S-phase meiocytes revealed that TE5A mutant could accomplish DNA replication, and chromosome 
spreads and FISH showed that homologous chromosomes could not pair, synapse, condense, and form bivalents 
in TE5A mutants. To elucidate the underlying molecular mechanism of the TE5A GMS that is associated with 
abnormal meiosis prophase I phase, RNA-Seq was performed, identifying DEGs between floral buds of fertile and 
sterile plants. A total of 3,841 DEGs were detected, some of which were associated with homologous chromosome 
behavior and cell cycle control during meiosis. These DEGs represented a set of potential candidate genes associ-
ated with GMS in the TE5A. Finally dynamic changes in the expression of candidate DEGs were then detected at 
different anther developmental stages. The present study provided a global assessment of the differences between 
sterile plants and its near-isogenic fertile plants, as well as identified new fertility-associated genes, which may 
lie a strong foundation for future research on GMS in the TE5A line. Although we have identified a number of 
DEGs, most of which are due to secondary and/or tertiary actions from the gene conferring male fertility. If the 
MS (male sterile) gene is mapped, we should compare these DEGs that are mapped to the MS locus to see which 
genes may have sequence variation. Only these genes that are differentially expressed with sequence variation 
surrounding the MS locus may be considered the candidate genes for a further analysis.

Methods
Plant materials. To directly assess fertility, plants were grown in Xining (a spring oilseed rape area in 
Qinghai Province, Northwest China), in which the temperature is > 20 °C during florescence, and the TE5A 
line is completely male sterile. One heterozygous TE5A sterile plant, as the female parent, was crossed with the 
temporary maintainer, GY12, resulting in a fertility segregation F1 population. Sterile F1 plants were backcrossed 
to GY12 to produce the BC1 population. The BC3 population was obtained by successive backcrossing of sterile 
plants of the BC population to GY12. Sterile and fertile plants with 1:1 fertility segregation ratio derived from 
the BC3 population were near-isogenic lines (NILs), differing only in the fertility trait. Fertility of the plants was 
determined during flowering. For RNA-Seq, a total of 0.5 g young floral buds (0.5–1.0 mm in diameter) was col-
lected and stored at 80 °C until analysis.

Light microscopy and TEM analyses. Morphological observations of paraffin-cross sections and DAPI 
staining were performed according to the described methods98. Micrographs of fluorescence of chromosomes 
were captured by the Nikon Eclipse 80i fluorescence microscope, equipped with the appropriate filter and illumi-
nated by using ultraviolet light. Fresh anthers of the wild-type and 7365A mutant plants at various developmental 
stages were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) for TEM analysis. The following 
procedures were performed as previously described99.

RNA-Seq. Total RNA of young floral buds (0.8–1.0 mm in diameter) from five sterile and fertile individual 
plants, respectively, was extracted using the TRIzol reagent (Invitrogen, CA, USA) and bulked as pools. Total 
RNA samples were, first, treated with DNase I to eliminate DNA contamination. Then, the mRNA samples were 
gathered by utilizing magnetic beads. The mRNA samples, which were dissolved in the appropriate buffer, were 
fragmented into short segments (about 200 bp in length). cDNA was then synthesized by utilizing random hex-
amer primers and was purified by using magnetic beads. The reparation of DNA ends and 3′ -end adenine (A) 
addition were then conducted. Finally, adaptors were linked to the fragments, and the fragments were amplified 
by PCR. The library products were then sequenced using the Illumina HiSeqTM 2000. Clean reads were matched 
to the transcriptome sequences of B. napus (http://www.oilcrops.info/)100 using SOAP aligner/SOAP2101. Less 
than 2 mismatches were allowed in each alignment. Unambiguous clean tags were obtained after filtering clean 
tags matched to multiple genes. Unambiguous clean tags of each gene was then counted and normalized to the 
number of transcripts per million tags (TPM)102. The data used in this study were deposited to NCBI’s Sequence 
Read Archive (SRA) and are accessible through SRA Series accession number SRP068170 (http://www.ncbi.nlm.
nih.gov/sra?term= SRP068170).

Screening and analysis of DEGs. The expression level of each gene was determined by the number of 
reads that was uniquely mapped to the specific gene and the total number of uniquely mapped reads in the sample 
by using the reads per kb per million reads (RPKM) method103. DEGs between the two samples were identified by 
a rigorous algorithm104,105. The value of |log2ratio| ≥  1 and FDR ≤  0.001 were utilized as thresholds to determine 
the significant differences in transcript abundance. DEGs were also identified by more stringent standards with 
greater fold-change and smaller FDR values. GO functional classification of DEGs was performed using software 
WEGO. KEGG analysis (http://www.genome.jp/kegg) was also carried out based on the method of Yuan et al.106. 
Enrichment analyses of GO and pathway used the hypergeometric test107,108. The GO term (P ≤  0.05) was defined 
as a significantly DEG-enriched GO term. The pathways with a Q value of ≤ 0.05 were defined as those with sig-
nificant DEGs.

http://www.oilcrops.info/
http://www.ncbi.nlm.nih.gov/sra?term=SRP068170
http://www.ncbi.nlm.nih.gov/sra?term=SRP068170
http://www.genome.jp/kegg
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Real-time PCR analysis. Real-time PCR analysis was used to verify the DEG results. The RNA samples used 
for the qRT-PCR verification assays were the same as that employed in the RNA-Seq experiments. Total RNAs 
isolated from four bud stages (< 0.5, 0.5–1, 1–1.5, and 1.5–2.0 mm) for the A1 (sterile) and B1 (fertile) lines were 
used in real-time PCR analysis to further investigate the expression levels of specific candidate genes identified 
in the RNA-seq data. qRT-PCR was conducted according to the TaKaRa manufacturer specifications on an iQ™  
5 Multicolor Real-time PCR Detection System (Bio-RAD, USA). The B. napus actin gene was used as an internal 
control to normalize the expression data, and the relative expression levels of genes were calculated by using 
2−ΔΔCT.

DNA replication analysis. DNA replication analysis was performed according to the described methods109. 
Stems of young inflorescences were cut and submerged in 10 mM EdU labeling solution from a Click-IT assay 
kit (Invitrogen, CA, USA). These inflorescences were placed at 21 °C for 8 h. Labeled inflorescence were fixed 
through 3.7% formaldehyde and then placed in EdU Click-It color reaction cocktail for one hour according to 
manufacturer’s instructions (Invitrogen). Fluorescence Images were captured using a confocal laser microscope.

FISH analysis. Methods for FISH had been described previously110. In detail, anthers with pollen mother 
cells at meiotic stages were fixed, and slides were prepared. The probes used for FISH was 45S rDNA from clone 
pTa71111, which was labeled with digoxigenin-11-dUTP by nick translation (Roche). Dioxigenin-labeled DNA 
were detected with Fluorescein isothiocyanate conjugated (FITC) anti-digoxigenin antibodies (Roche). Slides 
were counterstained with DAPI (1 mg/mL). Fluorescence images were captured using a confocal laser micro-
scope. The sites of antidigoxigenin–fluorescein-detected probes were green, and DAPI staining was blue. The final 
images were merged using the Adobe Photoshop 5.0 software.
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