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Differential expression of miR-184 
in temporal lobe epilepsy patients 
with and without hippocampal 
sclerosis – Influence on microglial 
function
Bénédicte Danis1,*, Marijke van Rikxoort2,*, Anita Kretschmann2, Jiong Zhang2, 
Patrice Godard3, Lidija Andonovic2, Franziska Siegel2, Pitt Niehusmann4, Etienne Hanon1, 
Daniel Delev5, Marec von Lehe6, Rafal M. Kaminski1, Alexander Pfeifer2 & Patrik Foerch1

Epilepsy is one of the most common neurological disorders characterized by recurrent seizures due 
to neuronal hyperexcitability. Here we compared miRNA expression patterns in mesial temporal 
lobe epilepsy with and without hippocampal sclerosis (mTLE + HS and mTLE −HS) to investigate the 
regulatory mechanisms differentiating both patient groups. Whole genome miRNA sequencing in 
surgically resected hippocampi did not reveal obvious differences in expression profiles between the 
two groups of patients. However, one microRNA (miR-184) was significantly dysregulated, which was 
confirmed by qPCR. We observed that overexpression of miR-184 inhibited cytokine release after LPS 
stimulation in primary microglial cells, while it did not affect the viability of murine primary neurons and 
primary astrocytes. Pathway analysis revealed that miR-184 is potentially involved in the regulation of 
inflammatory signal transduction and apoptosis. Dysregulation of some the potential miR-184 target 
genes was confirmed by qPCR and 3′UTR luciferase reporter assay. The reduced expression of miR-184 
observed in patients with mTLE + HS together with its anti-inflammatory effects indicate that miR-184 
might be involved in the modulation of inflammatory processes associated with hippocampal sclerosis 
which warrants further studies elucidating the role of miR-184 in the pathophysiology of mTLE.

Mesial temporal lobe epilepsy (mTLE) is the most common type of epilepsy characterized by recurrent seizures, 
which arise from the medial structures of the temporal lobe, e. g. hippocampus, parahippocampal gyrus or amyg-
dala1,2. Up to 50% of the patients suffering from mTLE are pharmacoresistant, experiencing recurrent and dam-
aging seizures3. A widely accepted treatment option for pharmacoresistant epilepsy is surgical removal of the 
epileptogenic area. In recent studies of surgical outcomes up to 65% of the patients were seizure free and up to 
28% showed a significant improvement after surgery (for review see4). However, epilepsy surgery is an invasive 
procedure with perioperative risks and potential long term consequences, therefore alternative treatment options 
are desirable.

The majority of resected hippocampi in mTLE surgery (52%) present hippocampal sclerosis (HS) also called 
Ammon’s horn sclerosis5. HS was already observed by Bouchet in 1825 describing the hippocampi of patients as 
hardened and atrophied6. The typical clinical microscopic hallmark is a characteristic pattern of neuronal loss7 
with reactive gliosis, mossy fiber sprouting and granule cell dispersion. Depending on the extent and localization 
of neuronal loss patients can be classified using the modified Wyler’s score8 with 0 defining tissue without HS 
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and Wyler Score IV as definition for severe HS. Nowadays, HS can be diagnosed using MRI, the typical feature is 
unilateral volume loss and increased signal intensity on T2-weigthed images9.

Whether HS is a cause or consequence of seizures or contributes to the progression of mTLE is still a matter of 
debate. However, clinical observations and experimental evidence in animal models highlight brain inflammation 
as a common factor in mTLE10. Uncontrolled seizures, damaged blood-brain barrier (BBB) and persistent inflam-
mation may contribute to the development of chronic inflammation that drives the progression of mTLE +​ HS 
(for review see refs 10,11). A better understanding of the molecular events leading to HS might provide insights 
into the pathological mechanisms and potentially lead to the development of new therapies.

MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs (~23nt) that regulate gene expres-
sion at the post-transcriptional level. MiRNAs bind to a partially complementary sequence of the target mRNA 
and reduce protein production by blocking translation or inducing mRNA degradation (for review see12,13). To 
date over 1800 miRNAs are described in the human genome (miRBase release 21) and are estimated to modulate 
the levels of at least one third of protein coding messenger RNAs14. MiRNAs have been shown to play important 
roles in different neurodegenerative diseases including epilepsy15,16. Dysregulation of miRNA expression was 
described in several animal models of mTLE and few reports address this topic using resected hippocampus from 
mTLE patients along with work describing the expression pattern of individual miRNAs in human epilepsy17–21.

To identify molecular differences between mTLE patients with HS and patients without HS we performed 
RNA deep sequencing analysis investigating genome-wide miRNA expression patterns in human hippocampal 
samples resected during surgery from epilepsy patients. To our knowledge, this is the first miRNA sequencing 
effort comparing mTLE +​ HS vs. mTLE -HS samples. Our aim was to understand if miRNAs contribute to the 
more pronounced neuronal death or inflammatory responses observed in mTLE +​ HS patients. Deep sequencing 
revealed only minor differences in the global miRNA expression profiles between the two patient groups. We 
identified one miRNA (miR-184) that was differentially expressed. To study the potential function of miR-184 we 
examined the effects of its over-expression in several in vitro assays modelling different aspects of epilepsy patho-
physiology. We observed that miR-184 over-expression can modulate cytokine release by activated microglial 
cells but had no effect on astrocyte or neuronal viability. Taken together, we identified a decreased expression of 
miR-184 in mTLE +​ HS patients which might contribute to the chronic inflammatory processes and consequently 
to a more pronounced neuronal death observed in mTLE +​ HS patients.

Results
miRNA profiling in epilepsy patients comparing mTLE + HS versus mTLE −HS patients.  We 
analysed 24 surgical brain samples from patients with mTLE. All patients suffered from pharmacoresistant mTLE 
and underwent selective hippocampectomy. The biopsy specimens underwent neuropathological evaluation 
with qualitative assessment of hippocampal cell loss and reactive gliosis. HS sclerosis was diagnosed in 14 cases 
(mTLE +​ HS), whereas 10 cases showed no substantial neuronal cell loss in the pyramidal cell layer (mTLE -HS). 
In the mTLE-HS group astrogliosis was observed in hippocampal tissues obtained from 8 patients (Table 1). 
Wyler grades8 were determined whenever possible for the classification in the mTLE +​ HS group (Wyler grade III: 
n =​ 4; Wyler grade IV n =​ 6). Two biopsy samples showed a CA1 predominant neuronal cell loss with only mild 
affection of the other sectors. This pattern of subfield neuronal cell loss is not represented in the Wyler classifica-
tion, but has been considered as atypical (type 2) HS in the 2013 ILAE-consensus classification of hippocampal 
sclerosis22. In two cases no definite classification (Wyler or ILAE-consensus classification) was possible due to 
fragmentation of the biopsy sample. However, NeuN-immunohistochemistry revealed a severe segmental neu-
ronal cell loss in both cases, allowing the diagnosis of HS. (Table 1). There were no statistically significant differ-
ences between mTLE +​ HS and mTLE -HS groups regarding age, disease duration (the p-value for the Wilcoxon 
rank-sum test was greater than 0.05) or gender (the p-value for the exact Fisher’s test was greater than 0.05) 
(Supplementary Figure S1).

miRNA-184 is significantly dysregulated in mTLE +HS patients.  The brain tissue samples were 
analysed for miRNA expression by deep sequencing and subsequent differential expression analysis. On average, 
7.5 million reads were sequenced by sample leading to the identification of 894 known microRNA detected in 
at least 10 samples. The global miRNA expression pattern of all samples analysed showed only slight differences 
between mTLE +​ HS versus mTLE -HS patients highlighted by the heterogeneous distribution of both groups in 
the PCA plot (Supplementary Figure S2). In addition there was no clear separation of patients with Wyler Score 
III and Wyler Score IV among the mTLE +​ HS patients based on the overall miRNA expression pattern. Although 
overall miRNA signature seems to be similar among the different epilepsy patients, we identified one microRNA 
(miR-184) that was significantly (FDR <​ 0.01) down regulated in mTLE +​ HS patients compared to samples from 
mTLE -HS patients (Fig. 1A). To verify the results from the RNA sequencing analysis, we investigated the patient 
samples for expression of miR-184 using RT-qPCR (Fig. 1B). The qPCR results confirmed the downregulation in 
the mTLE +​ HS group and revealed a more heterogeneous expression of miR-184 in mTLE -HS patient samples, 
while in mTLE +​ HS the expression of miR-184 was consistently low (Fig. 1B). Next we set out to detect miR-
184 in the resected tissue by in situ hybridization. Although we were able to generate in situ data only for two 
mTLE +​ HS patients and two mTLE -HS patients, these experiments indicate lower expression levels of miR-184 
in mTLE +​ HS compared to tissue from mTLE -HS (Fig. 2B and Supplementary Figure S3). Taken together, miR-
184 was expressed at lower levels in mTLE +​ HS patients compared to mTLE -HS patients (Figs 1 and 2).

miR-184 target genes.  Using the MetaCoreTM software suite (http:// thomsonreuters.com/site/systems- 
biology), we found 83 predicted target genes for miR-184, four of them being experimentally validated: AKT2 
(PMID: 20409325), NCOR2 (PMID: 22017809), TNFAIP2 (PMID: 21934093) and BIN3 (PMID: 20795863). 
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Supplementary Table S1 shows these genes and also the biological pathways in which they are involved accord-
ing to MetaCoreTM. Many of the miR-184 predicted targets belong to pathways related to immune response and 
apoptosis. We measured the expression of several miR-184 target genes by qPCR in patient samples. Consistent 
with down-regulation of miR-184 three of the four experimentally validated miR-184 genes, AKT2, BIN-3 and 
NCOR2 were significantly upregulated in mTLE +​ HS in comparison with mTLE –HS (Fig. 3A–C). However, 
several predicted target genes including BCL2L1, CD86, CDK1, GSK3A, NFATC2, PRKCB, PTGS2 and TNFAIP2 
were not upregulated in mTLE +​ HS compared with mTLE -HS (Supplementary Figure S4). To evaluate whether 
miR-184 might modulate expression of these genes by blocking translation a 3′​ UTR luciferase reporter gene 
assays was conducted for the same genes. Among the 11 genes tested AKT2, BIN3 and PRKCB showed reduced 
luciferase expression upon co-transfection with miR-184 compared to the control miRNA mimic (miR-src) and 
untransfected cells while other genes did not (Supplementary Figure S5). These results identified a potential 
translational regulation of PRKCB by miR-184 as no difference was observed on the mRNA level between the two 

Sample name
Disease duration 

(years)
Age 

(years) gender
Age of onset 

(years) AEDs Wyler Score histology
pharmaco-

resistant

HS01 40 43 F 3 cbz, oxc, pb/prm, ltg, tpm, 
lev, lcm, vgb atypical HS astrogliosis, neuronal loss yes

HS02 20 33 M 13 cbz, vpa, pht, ltg, lev III astrogliosis, neuronal loss yes

HS03 10 23 F 13 vpa, gbp, ltg, lev, lcm n.d. astrogliosis, neuronal loss yes

HS04 37 42 M 5 cbz, oxc, vpa, pb/prm, ltg, 
lev, benzos, clo atypical HS astrogliosis, neuronal loss, 

activated microglia yes

HS05 35 46 M 11 cbz, pht, gbp, lev, lcm, 
benzos, dzp IV

astrogliosis, neuronal 
loss, activated microglia, 
postencephalitic cicatrice

n.m.

HS06 33 48 M 15 cbz, vpa, pht, pb/prm, ltg, 
tpm, lev, vgb III astrogliosis, neuronal loss, 

activated microglia yes

HS07 23 57 M 34 cbz, oxc, lev, pgb III astrogliosis, neuronal loss, 
activated microglia, lipome yes

HS08 44 47 M 3 cbz, vpa, pht, ltg, lev, zon, 
benzos, clo IV astrogliosis, neuronal loss, 

activated microglia n.m.

HS09 18 48 F 30 cbz, oxc, vpa, gbp, ltg, lev, 
pgb, benzos IV astrogliosis, neuronal loss, 

activated microglia yes

HS10 43 46 F 3 cbz, oxc, vpa, lev III astrogliosis, neuronal loss n.m.

HS11 20 33 F 13 cbz, vpa, ltg, lev, pgb, 
zon, lcm IV astrogliosis, neuronal loss yes

HS12 22 23 F 1 oxc, vpa, pb/prm, ltg, tpm, 
lev, lcm IV astrogliosis, neuronal loss, 

activated microglia yes

HS13 9 18 M 9 cbz, oxc, ltg, lev IV astrogliosis, neuronal loss, 
activated microglia n.m.

HS14 2 3 M 1 cbz, lev n.d. astrogliosis, activated 
microglia, ganglioglioma n.m.

nonHS01 26 55 F 29 cbz, vpa, gbp, lev, benzos — astrogliosis, neuronal loss, 
infarct yes

nonHS02 8 51 M 43 oxc, ltg, lev, zon, lcm — astrogliosis, activated 
microglia n.m.

nonHS03 13 15 M 2 oxc, lev, st — astrogliosis, activated 
microglia n.m.

nonHS04 28 31 F 3 cbz, oxc, vpa, pht, pb/prm, 
gbp, ltg, tpm, lev, pgb, zon — astrogliosis, activated 

microglia yes

nonHS05 18 45 M 27 vpa, tpm, lev —
astrogliosis, activated 

microglia, dysembryoplastic, 
neuroepithelial tumour 

(DNT)
yes

nonHS06 2 45 F 43 vpa, gbp, ltg, lev — astrogliosis n.m.

nonHS07 16 24 F 8 cbz, oxc, esl, lev, pgb — activated microglia n.m.

nonHS08 7 8 F 1 vpa, ltg, lev — astrogliosis, activated 
microglia yes

nonHS09 27 44 F 17 cbz, oxc, esl, ltg, tpm, lev, 
pgb, zon, lcm, benzos — astrogliosis, neuronal loss yes

nonHS10 18 27 M 9 cbz, oxc, vpa, ltg, tpm, 
lev, zon — ganglioglioma yes

Table 1.   Clinical data of mTLE patients with (HS) and without hippocampal sclerosis (nonHS). AED 
anti-epileptic drug, HS hippocampal sclerosis, F female, M male, n.d. not determinable, n.m. not mentioned, 
cbz carbamazepine, oxc oxcarbazepine, pb/prm phenobarbital/primidon, ltg lamotrigine, tpm topiramat, 
lev levetiracetam, lcm lacosamid, vgb vigabatrin, vpa valproinic acid, pht phenytoin, gbp gabapentin, benzos 
benzodiazepine, clo clobazam, dzp diazepam, zon zonisamid, pgb pregabaline, st sultian, esl eslicarbazepine 
acetat.



www.nature.com/scientificreports/

4Scientific Reports | 6:33943 | DOI: 10.1038/srep33943

patient groups (Supplementary Figure S4). The experimentally validated NCOR2 target was not validated in our 
hands potentially due to the different experimental conditions used (e.g. full length 3′​UTR versus short 3′​UTR23).

These data suggest miR-184 is regulating AKT2, BIN3, and PRKCB expression, genes that are known to be 
involved in immune response and apoptosis related pathways (Supplementary Table S1). Overall, this implies 
a potential involvement of miR-184 in the regulation of inflammatory processes and apoptosis. To explore this 
hypothesis, we investigated the function of miR-184 in a range of cellular assays.

Influence of miR-184 on microglial activation.  Inflammatory processes play a role in epilepsy and acti-
vated microglial cells can be detected in brains of animal epilepsy models as well as in epilepsy patients24,25. 
Therefore, we determined the levels of different pro- and anti-inflammatory cytokines in the supernatant of acti-
vated microglial cells upon transfection with miR-184 or control miRNA mimic (miR-scr). Overexpression of 
miR-184 in stimulated microglial cells resulted in significant changes in cytokine levels while a control miRNA 
mimic (miR-scr) had no significant effect. Transfection with miR-184 mimic significantly decreased secretion of 
the pro-inflammatory cytokines Interleukin-6 and Interleukin-1β​ compared to control miRNA mimic (miR-scr) 
(Fig. 4B,C), while secretion of Interleukin-10, KCGRO and MCP-1 was not affected by miR-184 (Fig. 4D,F). 
Levels of TNF-α​ were lower in miR-184 transfected cells relative to miR-scr transfected cells – albeit not signifi-
cantly (Fig. 4A). Overexpression of miR-184 was confirmed by qPCR (Supplementary Figure S6A).

Influence of miR-184 overexpression on primary neurons.  Hippocampal neuronal death and neu-
ronal loss are common pathologic hallmarks of mTLE26 and particularly widespread in patients with HS7. To 
investigate a potential involvement of miR-184 in the more pronounced neuronal death observed in mTLE +​ HS 
patients, we investigated the influence of miR-184 on viability of primary neurons. We overexpressed miR-184 
in murine primary neurons using miRNA mimic and assessed the cell viability 72 h after transfection using an 
ATPlite-Assay. Transfection with miR-184 mimics did not affect neuronal viability relative to cells transfected 
with control miRNA mimic (miR-scr) (Fig. 5). Overexpression levels of miR-184 in primary neurons were con-
firmed by qPCR (Supplementary Figure S6B).

Influence of miR-184 on astrogliosis.  Reactive astrocytosis is a hallmark of epilepsy and has been 
described in brain tissue from human epilepsy patients especially in patients with HS7,26. Similarly, astrogliosis 
is known to be induced after seizures in experimental models24.To investigate the role of miR-184 in astroglio-
sis and more specifically on glial cell proliferation, we measured cell viability using primary murine astrocytes 
in presence of miR-184 or a control miRNA mimic (miR-scr). Neither overexpression of miR-184 nor control 
miRNA mimic had any effect on the cell viability of primary murine astrocytes throughout the entire time course 
of 11 days (Fig. 6). Overexpression levels of miR-184 in primary astrocytes was verified by qPCR (Supplementary 
Figure S6C).

Figure 1.  Expression of miR-184 in mTLE patients. (A) Comparison of the normalized expression values 
(CPM: counts-per-million of sequenced RNA) of mir-184 in the 2 groups of patients: mTLE -HS and 
mTLE +​ HS. The median and the interquartile range (IQR) of expression values are provided for both groups. 
(B) RT-qPCR validation of miR-184 expression in mTLE -HS and mTLE +​ HS patients. Data represent the 
relative gene expression for each patient calculated with qBase +​ software using miR-125a-5p and miR-191-5p 
as reference microRNAs. Error bars represent s.d. Statistical analysis was performed using the non-parametric 
t-test Mann-Whitney (p <​ 0.001).
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Discussion
Dysregulation of miRNA expression as well as their involvement in the pathophysiology of epilepsy has been 
described previously and thereby underpinning their potential impact on the disease15,17. Several miRNA pro-
filing studies in animal models of mTLE and more recently on material from resected hippocampus from mTLE 
patients were performed along with studies focusing on the functional role of individual miRNAs in human 
epilepsy19–21. Albeit essential to help our understanding of miRNA function in epilepsy, studies relying on human 
patient samples are more prone to heterogeneity due to several parameters such as gender, age of disease onset, 
disease duration or medication27. In addition availability of suitable control tissue is challenging especially as 
hippocampi from post mortem tissue cannot be consider as ideal control for surgically resected material from 
TLE patients.

Figure 2.  In situ hybridisation analysis of miR-184 in mTLE patients. Sections were incubated with probes 
for miR-184 (B). A scrambled miRNA sequence (miR-scr) (A) was used as control. Sections were co-stained 
with anti-GFAP (green). Representative images are shown (patients: nonHS07 and HS06).



www.nature.com/scientificreports/

6Scientific Reports | 6:33943 | DOI: 10.1038/srep33943

In our study we aimed to overcome this methodological issue by comparing samples from mTLE patients with 
HS (mTLE +​ HS) and mTLE patients without HS (mTLE -HS). With this approach we attempted to unravel the 
molecular mechanisms involved in the pathological processes of these two mTLE patient groups. We investigated 
global miRNAs expression using deep sequencing from the hippocampal surgically resected samples comparing 
mTLE +​ HS patients to mTLE -HS patients. While the overall expression pattern of all detected miRNAs was not 
significantly different, we identified one miRNA, miR-184, with significantly reduced expression levels in samples 
from mTLE +​ HS patients when compared to mTLE -HS patients. This result was further confirmed by RT-qPCR. 
Interestingly this observation is consistent with data described previously19. Kan et al. identified 165 significantly 
dysregulated miRNAs when comparing three patient groups, mTLE +​ HS, mTLE -HS and autopsy controls. MiR-
184 showed a decreased expression validated by qPCR only in the mTLE +​ HS group, which is consistent with 

Figure 3.  Expression of miR-184 target genes in hippocampal tissue. The expression of selected target genes 
of miR-184 was investigated by qPCR in samples of mTLE -HS and mTLE +​ HS patients. Results show means of 
all patients. Error bars represent s.d. **p <​ 0.05, *p <​ 0.1.

Figure 4.  Influence of miR-184 overexpression in primary murine microglial cells. Secreted levels of 
different cytokines were measured 72 hours after transfection using MSD. (A) Tumor Necrosis Factor α​ 
(TNF-α​), (B) Interleukin-1β​ (IL-1β​), (C) Interleukin-6 (IL-6), (D) Interleukin-10 (IL-10), (E) Keratinocyte 
derived chemokine/growth related oncogene (KC/GRO), (F) Monocyte Chemoattractant Protein-1 (MCP-1). 
Histogramm showing the absolute values of released cytokines with and without prior induction with LPS/
IFN-γ​. Experiments were performed in n =​ 4 replicates, measurement n =​ 2 per condition. Data represent mean 
+​/−​ s.e. (*p <​ 0.05).
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our data. In contrast a study by Kaalund et al., reported an increase in miR-184 expression in the mTLE +​ HS 
group when compared to 2 autopsy controls samples20. However, this elevation of miR-184 was only seen in the 
initial microarray data and not confirmed by qPCR or in a second independent patient cohort. Hence, the authors 
caution about the robustness of these data based on the low number of post mortem samples serving as control.

Thus, two independent studies, using two different profiling methodologies (microarray and sequencing) 
consistently detect a reduced expression of miR-184 in patients with mTLE +​ HS. However, the discrepancy in the 
total number of significantly dysregulated miRNAs identified in both studies could be related to the heterogeneity 
of the human samples. This is furthermore illustrated by the PCA plot, which showed a wide spread of human 
samples from both subgroups in our study as well as in other studies19. Another possibility for the observed 
discrepancy in the miRNA pattern could be related to potential sources for bias introduced by next generation 
sequencing (PCR amplification, reverse transcription, etc) or array based platforms (probe design, hybridization 
artifacts etc.). Additionally, other sources of discrepancies such as tissue quality, sample number, RNA extraction 
methods or data processing/analysis cannot be excluded (for review see ref. 28).

Astrogliosis and neuronal death are key pathological hallmarks of HS and a large body of evidence indicates 
activation of the innate immune system in the hippocampi of these patients10. The number of activated microglia 
cells is increased by a factor of ten in mTLE +​ HS patients’ hippocampi compared to control autopsy tissue29. 
Activated microglial cells and astrocytes contribute to the inflammatory response by secreting pro-inflammatory 
cytokines such as IL-1β​, IL-6 and TNF-α​25,30–32. Interestingly, several recent studies describe involvement of miR-
NAs in the regulation of inflammatory pathways identified in mTLE, for example miR146a33,34. Therefore, we 
evaluated the potential role of miR-184 in microglial activation. In our study we observe that overexpression of 
miR-184 is decreasing the activation of primary murine microglial cells which are known to be key players in neu-
roinflammatory processes. It is therefore tempting to speculate that the absence of miR-184 in mTLE patients with 
HS could lead to the more pronounced inflammation observed in those patients. Consistently with our study, 
a previous report indicated that miRNAs can have an profound effect on microglial activity during disease35.  
Furthermore, the release of pro-inflammatory cytokines, as described in the hippocampus of rats36, might also 
contribute to the increased neuronal loss observed in mTLE +​ HS patients. Interestingly, neuronal injury in the 
hippocampus is more pronounced when a combination of IL-6, TNF-α​ and IL-1β​ are elevated in rats post SE37. 
Although the molecular mechanism of miR-184 and the exact cellular pathways involved are currently unknown 
it is plausible that miR-184 could act as a negative regulator in microglial cells interfering with the inflammatory 

Figure 5.  Influence of miR-184 on neuronal viability. Primary murine neurons were transfected with miR-
184 mimic and mir-scr. Cytotoxicity was measured using an ATP-release assay 72 h after transfection. Bar 
graphs represent the mean of 4 independent experiments +​/−​ s.d. 5 μ​M Staurosporine (STS) served as positive 
control for the induction of cytotoxicity.

Figure 6.  Influence of miR-184 on the viability of astrocytes. Viability of astrocytes was measured by MTT 
assay from day 0 after transfection until day 11 after transfection. Experiments were performed in n =​ 3 
replicates, measurement n =​ 4 per condition. Data represent mean +​/−​ s.e.
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processes induced by seizures in the brain. Interestingly, miR-184 targets several genes involved in immune 
response and apoptosis that are differentially expressed in mTLE +​ HS patients. Although not all of these genes 
might be directly modulated by miR-184, it is plausible that miR-184 by 2inhibiting translation of some target 
genes might contribute to the regulation of these processes. However, the exact molecular mechanism and the 
entire set of target genes need to be investigated further.

In order to evaluate the potential contribution of altered miR-184 to the characteristic hippocampal neuronal 
cell loss in mTLE +​ HS patients, we overexpressed miR-184 in murine primary neurons. Previous in vivo studies 
did indicate that miR-184 could play a protective role in neuronal death as demonstrated in a mouse seizure 
preconditioning model21. In this study, miR-184 expression was increased upon preconditioning in pyramidal 
neurons of the CA1 and CA3 region of the hippocampus leading to reduced seizure induced neuronal death21. In 
our in vitro assay miR-184 overexpression itself did not positively affect cell viability of murine primary neurons. 
Moreover, our results are consistent with the clinical observations in mTLE patients; higher miR-184 expression 
is observed in mTLE -HS patients showing moderate neuronal death compared to mTLE +​ HS patients with more 
pronounced and characteristic neuronal cell loss and low miR-184 expression.

However previous findings also suggest that miR-184 inhibits cell proliferation via targeting AKT2 in vitro 
in neuroblastoma cell lines and in vivo in tumor patient samples38. Similarly, using a neuronal cell line (murine 
neuroblastoma cell line N1E-115), we observed a moderate dose dependent reduction of cell viability and an 
induction of caspase 3/7 activity after overexpression of miR-184 (Supplementary Figure S7). We speculate that 
this difference might be caused by mechanisms relevant for dividing neuroblastoma cells versus post mitotic 
neurons. However, to strengthen this hypothesis more studies are required to delineate the function of miR-184 
on neuronal viability. Overall, based on available data it cannot be ruled out that a decreased expression of miR-
184 might contribute to the more pronounced neuronal death observed in mTLE +​ HS patients. Nevertheless it 
is plausible that the decreased miR-184 expression observed in mTLE +​ HS patients is a consequence and not the 
cause of the more pronounced neuronal death observed in these patients when compared to mTLE -HS.

Astrogliosis is a common feature observed in epilepsy and contributes to the inflammatory response. Several 
miRNAs have been described to modulate inflammatory responses in astrocytes34,36 and astrogliosis39. In order 
to evaluate a potential influence of miR-184 on astrocytes, we overexpressed the miRNA in primary murine 
astrocytes and evaluated cell viability for several days. No impact on astrocyte viability was observed in vitro, 
suggesting that miR-184 expression levels do not directly modulate astrocyte proliferation. Indeed, astrogliosis 
is observed in both mTLE -HS patients and mTLE +​ HS patients suggesting that miR-184 is not likely to directly 
modulate astrogliosis.

In conclusion, this study identified miR-184 being dysregulated between mTLE +​ HS and mTLE -HS patients. 
Based on our in vitro data miR-184 could act as a potential modulator of the inflammatory processes occurring 
in mTLE patients by modulating the activation state of the microglial cells and thereby reducing cytokine release. 
Furthermore, no direct protective role of miR-184 in neurons and no direct modulation of astrocyte viability were 
detectable. Further investigation of the molecular targets of miR-184 in the hippocampal cell population could 
yield important information to delineate molecular pathways to strengthen our understanding of TLE and ulti-
mately for the development of new therapies modulating the inflammatory response and consequently neuronal 
death in the brain of mTLE patients.

Methods
miRNA expression profiling in human brain samples.  Human brain tissue was derived from phar-
macoresistant mTLE patients undergoing surgery at the University Clinic Bonn. Patient selection was based on 
clinical evaluation at the University Clinic including EEG monitoring and MRI. All procedures were approved 
by and in accordance with the clinical Ethics Committee of the University Clinic Bonn. Informed consent for 
hippocampal resection as well as the usage of the tissue and information for research purposes was obtained from 
all patients in advance of the surgery. Immediately after en bloc resection the hippocampal tissue was cut along 
its longitudinal axis dividing it into hippocampal head and hippocampal body. The hippocampal body was fixed 
in 4% paraformaldehyde and embedded in paraffin for neuropathological analysis. The hippocampal head was 
snap frozen in dry ice for miRNA expression profiling. The frozen samples were stored at −​80 °C. The hippocam-
pal tissue was neuropathologically evaluated to assess the degree of hippocampal sclerosis (HS) using the Wyler 
classification whenever possible8. The range of histopathological analysis and immunohistochemistry depended 
on neuropathological findings. The standard panel included at least hematoxylin and eosin (H&E) staining and 
immunohistochemistry with antibodies against neuronal nuclear specific protein (NeuN, Millipore, USA) and 
glial fibrillary acid protein (GFAP, DakoCytomation, Denmark). Table 1 summarizes the number and clinical 
data of all patients included in this study. For miRNA expression analysis the hippocampal samples were divided 
into a group consisting of mTLE patients without HS (mTLE -HS, n =​ 10) and mTLE patients group showing HS 
(mTLE +​ HS, n =​ 14).

For RNA isolation from all specimens 25 μ​m sections were cut on a cryostat collecting 15 mg of tissue per 
sample. The RNA was isolated using mirVana miRNA isolation Kit according to the manufacturer’s procedure 
(Life Technologies). RNA concentration and quality were determined using NanoDrop and Agilent Bioanalyzer. 
All samples included into the miRNA expression profiling study had a RIN number (RNA quality) of at least 7.0.

The miRNA profiling was performed using Illumina deep sequencing service of Vertis Biotechnologie AG. 6 μ​g  
of total RNA per sample was used for the generation of cDNA pools. The miRNA sequencing was conducted 
using the Illumina Genome Analyzer II with 35 bp read length and 7.5 million reads per sample on average.

Differential expression analysis and miR-184 target genes.  Analysis of the sequencing data was 
performed by miR-Intess small RNA analysis pipeline (InteRNA Technologies B.V., Netherlands). Reads were 
pre-processed to trim the adapter sequences and mapped against the human genome assembly GRCh37. 
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Annotations of the mapped loci were retrieved from Ensemble database (v. 65) and from miRBase (v. 18) and 
aligned reads were classified according to these annotations. Prediction of novel miRNA candidates was per-
formed by miR-Intess as described previously40. Differentially expressed microRNAs were identified using 
the Bioconductor edgeR package. Data were normalized by applying the TMM (weighted trimmed mean of 
M-values) method and differential expression was assessed an exact test for the negative binomial distribution41. 
Only known microRNAs detected in at least 10 samples were taken into account. Correction for multiple testing 
was done according to Benjamini and Hochberg42. MicroRNA with a false discovery rate (FDR) lower than 0.01 
were considered as significantly differentially expressed.

Potential target genes for miR-184 and biological pathways in which they are involved were identified using 
the MetaCoreTM software suite (http:// thomsonreuters.com/site/systems-biology). MetaCoreTM is an integrated 
software suite for functional analysis of Next Generation Sequencing, CNV, microarray, metabolic, SAGE, pro-
teomics, siRNA, microRNA. MetaCoreTM is a manually-curated database containing microRNA targets based 
on experimental validation from literature or target prediction algorithms.

Quantitative PCR (RT-qPCR).  For miRNA expression reverse transcription (RT) was carried out with the 
Universal cDNA Synthesis kit from Exiqon using 20 ng of total RNA. qPCR was performed using the ExiLENT 
SYBR®​ Green master mix and miRCURY LNA Universal RT microRNA PCR primer sets following manufactur-
er’s recommendations (Exiqon INC., USA). Briefly, qPCR reactions were performed in a 384 well plate using 5 μ​l 
MasterMix and 1 μ​l primer for each miRNA and 4 μ​l 1:80 cDNA per well. To identify suitable reference miRNAs 5 
stably expressed miRNAs were selected based on NGS data. In a pre-screen the two most stably expressed miRNA 
were identified using the geNorm +​ module in the qBase +​ software43. Each sample was then run in triplicates for 
miR-184 as well as for two reference miRNAs (miR-125a-5p and miR-191-5p).

For target gene expression analysis cDNA synthesis was performed with High Capacity cDNA RT Kit (Life 
Technologies) and inventoried TaqMan Gene expression assays were used for qPCR together with TaqMan GenEx 
Master Mix (Life Technologies) following manufacturer’s instructions. The stably expressed human GAPDH 
gene was identified using the geNorm +​ module in qbase +​ and used as reference genes for normalization43. 
Normalized relative expression levels for miRNA and mRNA were calculated using the qbase +​ software44 
(Biogazelle NV, Zwijnaarde, Belgium).

In situ hybridisation.  Sections were incubated in Xylol for 2 hours and then 5 min in 99.9%, 96% and 70% 
ethanol respectively. Sections were rinsed with TBST (TBS +​ 0.1% Tween 20) and then incubated with Proteinase 
K (10 μ​g/mL) for 7 min at 37 °C. After washing the sections with TBS they were treated with 4% PFA for 10 min. 
Sections were washed and treated with 0.2% Glycin in TBS, rinsed again with TBS and acetylated for 30 min 
with triethanolamin/acetic anhydrid. Slides were then rinsed in hybridization buffer (5×​ SSC, 50% formamide 
and 5×​ Denhardt’s, 250 μ​g/ml yeast t-RNA (Sigma) 2% blocking reagent (Roche), 0.1% Tween 20) for 2 h at RT. 
Probes (4 pmol) were incubated in hybridization buffer overnight at Tm −20 °C (Tm provided by Exiqon) in a 
humidified chamber. miR-124 served as positive control for hybridization and miR-scr served as negative control. 
All probes were 5′​-3′-digoxigenin-labeled. The following day sections were washed in 5×​ SSC to remove cover 
slides and then washed with washing buffer 1 (50% formamide, 1xSSC, 0.1% Tween 20), for 30 min at Tm −20 °C. 
Then sections were rinsed in washing buffer 2 (0.2 × SSC) for 15 min at room temperature and TBST for 5 min. 
Sections were incubated with blocking solution (for 1 h at RT and then incubated with Anti-DIG-Fab POD anti-
body (1:200, Roche) for 1 h at RT. After rinsing sections with TBST they were treated with TSAPlus Cy3 working 
solution (PerkinElmer) for 10 min. Afterwards sections were washed again with TBS. As control sections were 
co-stained with anti-GFAP antibody (Millipore) as follows: after blocking (2% BSA, 0.1% Tween 20) sections were 
incubated with anti-GFAP (Millipore) overnight. The following day sections were washed in PBS and incubated 
in blocking solution for 20 min at RT. Sections were incubated with Alexa Fluor 488 labelled antibody (Life tech-
nologies) for 2 h and washed with PBS.

Experimental Animals.  Pregnant female C57BL/6 mice were purchased from Charles River Laboratories 
(Sulzfeld, Germany). Mice were kept individually under standard housing conditions (12 h dark-light cycle; food 
and water available ad libitum). All experiments were carried out in accordance and approved by the LANUV 
(Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) and state regulation for research 
with animals.

Primary Microglia Isolation and Culture Conditions.  Brains of P0-3 pups from C57BL/6 mice were 
used to isolate microglial cells. A single cell suspension was prepared using papain based neural tissue disso-
ciation protocol (Miltenyi Biotec, 130-092-628). Primary microglia were isolated using CD11b Microbeads 
(Miltenyi Biotec GmbH, 130-093-634) according to the manufacturer’s instruction. The purity of the isolated cells 
was determined by staining with fluorescently labelled antibodies APC-CD45 and FITC-CD11b (Miltenyi Biotec, 
130-091-811 and 130-081-201) and analyzed by Flow Cytometry (purity was approximately 90%). Microglia 
cells were re-suspended in DMEM/F12 (Gibco, 11320-074) supplemented with 10% FBS (Gibco, 10082139), 
0.1% nonessential amino acids (Gibco, 11140-050), 0.1% GlutaMAX (Gibco, 35050-038) and 1% Penicillin/
Streptomycin and plated into 96 well plates (2×​104 cells/well) for cytokine release using Meso Scale Discovery 
(MSD) or into 12-well plates for RNA isolation.

Microglia Activation Assay.  Transfection with miRNA-mimic was performed at DIV7. 30 nM of 
miRNA-mimic (Life Technologies, mirVanaTM miRNA Mimics) were complexed with 0.5 μ​l Lipofectamine 
RNAiMAX Transfection Reagent (Life Technologies, 13778) according to manufacturer’s instructions. MiRNA 
sequences used for transfection were: mir-184: 5′​-UGGACGGAGAACUGAUAAGGGU-3′​ (Life Technologies, 



www.nature.com/scientificreports/

1 0Scientific Reports | 6:33943 | DOI: 10.1038/srep33943

MC10207) and the negative control miRNA-mimic (Life Technologies, 4464058). Two days later cells were incu-
bated with 4 μ​g/mL LPS (Enzo Life Science, 581-007-LOOZ) and 10 ng/mL IFN-γ​ (Miltenyi Biotec, 130-096-872) 
for 24 h. Cytokine release was measured following manufacturer’s instructions in the cell culture supernatant 
from 24 h stimulated cultures using a mouse pro-inflammatory 7-plex ultra-sensitive kit (K15012C) from Meso 
Scale Discovery (MSD; Gaithersburg, USA).

Primary Neuron Isolation and ATP-Assay.  Primary murine neurons were isolated using neuronal 
isolation kit (Miltenyi Biotec, 130-098-754) according to the manufacturer’s instructions. Briefly, the brains 
of P0-1 pups from pregnant C57BL/6 mice were isolated. Papain based neural tissue dissociation protocol was 
used to obtain a single cell suspension (Miltenyi Biotec, 130-092-628). Neurons were cultured in Neurobasal 
A medium (Invitrogen, 10888-022) supplemented with 0,1% GlutaMAX (Gibco, 35050-038), 1% B27 (Gibco 
17504-044), 1% N2 supplement (Gibco) and 1% Penicillin/Streptomycin. Cells were plated into 96 well plates  
(4×​104 cells/well) for ATP-Assay or into 12 well plates (5×​105 cells/well) for RNA isolation. On DIV 4 cells were 
transfected with 30 nM of miRNA-184-mimic (Life Technologies, mirVanaTM miRNA Mimics, MC10207, 
sequence: 5′​-UGGACGGAGAACUGAUAAGGGU-3′​) and the corresponding scr-control (Life Technologies, 
4464058) using 0.5 μ​l Lipofectamine RNAiMAX Transfection Reagent (Life Technologies, 13778) according  
to manufacturer’s instructions. To determine cell proliferation/cytotoxicity ATPlite Assay (ATPlite 1step, 
PerkinElmer, 6016731) was performed 72 h after transfection.

Primary Astrocyte Cell Culture, Transfection and Viability assay.  Primary astrocytes were pre-
pared from postnatal mouse brains (P0-P3) using mechanical dissociation method modified from previous 
studies45,46. Briefly, the pup was decapitated and the brain was separated. Cerebellum and olfactory bulb were 
removed and leptomeninges and peripheral blood vessels were gently removed from the forebrain. Subsequently, 
the forebrain was dissociated by pipetting with a 1-ml Pasteur pipette. The yielded cell suspension was gently 
passed through a 40 μ​m cell strainer (BD, 352340), followed by centrifugation. The supernatant was removed 
and the pellet re-suspended in 5 ml DMEM GlutaMax (Gibco, 31966-021) supplemented with 10% FBS (Gibco, 
10082139); 1% Penicillin/Streptomycin (Life Technologies, 15140-122), and transferred onto a 25-cm2 flask 
(Greiner bio-one, 690940). Cell cultures were maintained at 37 °C with 5% CO2. One day after preparation, cell 
debris was removed by washing twice with PBS and addition of 5 ml fresh culture medium. The medium was 
renewed every three days. After 10–14 days, a confluent layer of cells were generated which contain glial progen-
itor cells and microglia growing on the monolayer. The latter were separated mechanically by agitation and were 
removed with the PBS wash solution. At least 90–95% of these cells in culture were type I astrocytes47. For miR-
184 overexpression 30 nM of miRNA-184-mimic (Life Technologies, mirVanaTM miRNA Mimics, MC10207, 
sequence: 5′​-UGGACGGAGAACUGAUAAGGGU-3′​) were complexed with 0.5 μ​l Lipofectamine RNAiMAX 
Transfection Reagent (Life Technologies, 13778) according to manufacturer’s instructions. As negative control 
for miRNA-mimic transfection the control miRNA-mimic (Life Technologies, 4464058) was used. To determine 
cell viability the colorimetric MTT metabolic activity assay was used. Astrocytes (5000 cells/well) were cultured 
in a 96 well plate at 37 °C with 5% CO2. Astrocytes cultured with medium and lipofectamine were considered as 
control group. 5 mg/ml MTT was added to the medium. After 2 h incubation at 37 °C the formazan crystals were 
dissolved in 50 μ​l dimethyl sulfoxide (DMSO, Sigma, 472301). The absorbance intensity measured by a microplate 
reader (PerkinElmer, EnSpire Mulimode Plate Readers; USA) at 540 nm with a reference wavelength of 600 nm. 
All experiments were performed in quadruplicate and the cell viability was measured at 2-days intervals from day 
0 to day 11 after mimic miRNA transfection.

RNA Extraction and Quality Determination.  Total RNA was extracted from primary microglia, neu-
rons and astrocytes using mirVana miRNA isolation kit (Life Technologies, AM1560) according to the man-
ufacturer’s protocol. The RNA concentration and purity were determined using a NanoDropTM ND-2000 
spectrophotometer (Thermo Scientific, Waltham, USA) in all samples. Moreover, RNA integrity was analysed 
using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA).

Luciferase Reporter Gene Assay.  HELA cells were co-transfected in a 96 well plate using GenMute™​ 
siRNA Transfection Reagent with modified reporter vector (Genecopoeia pEZX-FR02) and 40pmol of miR-184 
mimic (Life Technologies, mirVanaTM miRNA Mimics, MC10207) or miRNA mimic control (miR-scr, Life 
Technologies, 4464058). Forty-eight hours after transfection luciferase activities were measured using Luc-Pair 
Duo-Luciferase Assay from Genecopoeia, according to manufacturer’s instructions. All experiments were per-
formed twice in triplicate. For each sample the Firefly luciferase activity was normalize to the Renilla luciferase 
activity used as a control to standardize for transfection efficiency.

Statistical Analysis.  All data were normally distributed and presented as mean values ±​ s.e. or s.d. as spec-
ified. Statistical differences between two groups were evaluated by two tailed unpaired Student’s t-test or with a 
two-sided Mann Whitney test with t approximation. In the case of multiple mean comparisons one-way analysis 
of variance (ANOVA) was used (Gnumeric 1.12.12; SPSS Statistics 19, IBM, USA). P-values <​ 0.05 were regarded 
as significant.
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