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Fast generations of tree-type three-
dimensional entanglement via 
Lewis-Riesenfeld invariants and 
transitionless quantum driving
Jin-Lei Wu, Xin Ji & Shou Zhang

Recently, a novel three-dimensional entangled state called tree-type entanglement, which is likely 
to have applications for improving quantum communication security, was prepared via adiabatic 
passage by Song et al. Here we propose two schemes for fast generating tree-type three-dimensional 
entanglement among three spatially separated atoms via shortcuts to adiabatic passage. With the help 
of quantum Zeno dynamics, two kinds of different but equivalent methods, Lewis-Riesenfeld invariants 
and transitionless quantum driving, are applied to construct shortcuts to adiabatic passage. The 
comparisons between the two methods are discussed. The strict numerical simulations show that the 
tree-type three-dimensional entangled states can be fast prepared with quite high fidelities and the two 
schemes are both robust against the variations in the parameters, atomic spontaneous emissions and 
the cavity-fiber photon leakages.

Entanglement plays a crucial role in quantum information processing1–4. Some of typical entangled states, such 
as Bell state5, Greenberger-Horne-Zeilinger (GHZ) state6 and W state7, have attracted great attention in the last 
decades. However, all of these states are entangled states that are defined in Hilbert spaces with two dimensions. 
Recently, high-dimensional entanglement has attracted more and more attention due to their superior security 
than qubit systems, especially in the aspect of quantum key distribution. Besides, it has been demonstrated that 
violations of local realism by two entangled high-dimensional systems are stronger than that by two-dimensional 
systems8. Thus, much interest has been focused on the generation of high-dimensional entanglement in the-
ory via various techniques including quantum Zeno dynamics (QZD)9–11, stimulated Raman adiabatic passage 
(STIRAP)12,13, and dissipative dynamics14,15. Also, experimental generations of high-dimensional entanglement 
have been already achieved16,17.

With no doubt, a lot of remarkable achievements have been made with regard to high-dimensional entangled 
states. However, most of these high-dimensional entangled states are two-body but few multi-body. For a dozen 
years, some attention has been paid to multi-body high-dimensional entangled states such as singlet state18, and 
lots of schemes have been proposed for generations of singlet state19–22. A short time before, a novel three-body 
three-dimensional entangled state called tree-type entanglement was prepared via adiabatic passage by Song et al.23.  
In the ref. 23, the tree-type three-dimensional entanglement was prepared among one single atom and two BECs 
and the authors predicted that the tree-type three-dimensional entanglement is likely to have great applications 
in improving quantum communication security.

Among the techniques mentioned above for generations of high-dimensional entanglement, there are two 
techniques widely used for their robustness against decoherence in certain conditions. One is STIRAP12,13,21,23, 
and the other is QZD9–11,19,20,22. STIRAP is widely used in time-dependent interacting fields and robust against 
the atomic spontaneous emission and variations in the experimental parameters, but a relatively long interaction 
time is usually required. QZD is usually robust against photon leakages and does not need a long interaction time. 
However QZD is sensitive to the atomic spontaneous emissions and variations in the experimental parameters. 
Thus some of researchers introduce detuning between the atomic transitions to restrain the influence of atomic 
spontaneous emissions10, but the interaction time significantly increases unavoidably. Therefore, in order to solve 
the problem of long interaction time, researchers have paid more attention to “shortcut to adiabatic passage” 
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which employs a set of techniques to speed up a slow quantum adiabatic process24–35. Further more, the multi-
ple Schrödinger pictures and dynamics are introduced to implement physically feasible transitionless quantum 
driving (TQD) for two-36,37 and three-level38 quantum systems, and it offers an effective way for experimental 
realizations of robust quantum information processing. Recently, the transitionless superadiabatic protocols were 
experimentally implemented, which make the system follow the instantaneous adiabatic ground state nearly per-
fectly39. The nonadiabatic holonomic quantum computation, which possesses the advantage of robustness against 
decoherence and enjoys a short operation time at the same time, was realized in experiment40. Assisted quan-
tum adiabatic passage was experimentally implemented in a single spin41. Up to the present, Lewis-Riesenfeld 
invariants (LRI) and TQD for shortcuts to adiabatic passage, were used widely to speed up the operations of 
multi-particle systems, such as fast multi-particle quantum state transfer42,43, fast generations of entanglement44–46 
and fast constructions of quantum gates47–51.

In this paper, we propose two schemes for fast generating of tree-type three-dimensional entanglement among 
three spatially separated atoms via LRI and TQD, respectively. Based on LRI and TQD we construct effective 
shortcuts to adiabatic passage for fast generating tree-type three-dimensional entanglement among three atoms 
trapped respectively in three spatially separated cavities connected by two fibers. We will give the interesting com-
parisons between the LRI method and the TQD method. The generations of tree-type three-dimensional entan-
glement in our schemes are implemented within a short time, and the strict numerical simulations demonstrate 
that our schemes are both robust against the decoherence caused by the atomic spontaneous emissions, photon 
leakages and the variations in the parameters.

Preliminary Theory
Lewis-Riesenfeld invariants. Here we give a brief description about Lewis-Riesenfeld invariants theory52. 
A quantum system is governed by a time-dependent Hamiltonian H(t), and the corresponding time-dependent 
Hermitian invariant I(t) satisfies

∂
∂

= .i I t
t

H t I t( ) [ ( ), ( )] (1)

The solution of the time-dependent Schrödinger equation ∂ Ψ = Ψi t H t t( ) ( ) ( )t  can be expressed by a 
superposition of invariant I(t) dynamical modes |Φ n(t)〉 

∑Ψ = Φαt C e t( ) ( ) ,
(2)n

n
i

n
n

where Cn is the time-independent amplitude, αn is the time-dependent Lewis-Riesenfeld phase, and |Φ n(t)〉  is one 
of the orthogonal eigenvectors of the invariant I(t) satisfying λΦ = ΦI t t t( ) ( ) ( )n n n  with a real eigenvalue λn. 
The Lewis-Riesenfeld phases are defined as
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Transitionless quantum driving. Suppose a system is dominated by a time-dependent Hamiltonian H0(t) 
with instantaneous eigenstates |φn(t)〉  and eigenvalues En(t),

φ φ= .H t t E t t( ) ( ) ( ) ( ) (4)n n n0

When a slow change satisfying the adiabatic condition happens, the state of the system governed by H0(t) can be 
expressed as26,53
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Because the instantaneous eigenstate |φn(t)〉  do not meet the Schrödinger equation, there may be transitions 
between the eigenstates of H0(t) with a finite probability during the whole evolution process even under the 
adiabatic condition. In order to construct the Hamiltonian H(t) that exactly drives the instantaneous eigenstates 
|φn(t)〉 s, i.e., there are no transitions between different eigenstates during the whole evolution process, the sim-
plest choice of the Hamiltonian H(t) can be written as

∑ φ φ= ∂ .H t i( )
(6)n

t n n

Therefore, as long as H(t) is constructed, the system will evolves with no transitions between different 
eigenstates.

Quantum Zeno dynamics. Assume that a quantum system’s dynamics evolution is governed by the 
Hamiltonian

= +H H KH , (7)K obs meas
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where Hobs can be viewed as the Hamiltonian of the quantum system investigated and Hmeas as an additional 
interaction Hamiltonian performing the measurement. K is a coupling constant, and in the strong coupling limit 
K →  ∞ , the whole system is governed by the Hamiltonian54

∑ λ= +
→∞

H t K P P H P( ) lim ( ),
(8)K n

n n n nobs

where Pn is one of the eigenprojections of Hmeas with eigenvalues λn( λ= ∑H Pn n nmeas ). Interestingly, it is easy to 
deduce that the system state will remain in the same Zeno subspace as that of its initial state. In particular, if the 
system is initially in the dark state |Ψ d〉  of Hmeas, i.e., Hmeas|Ψ d〉  =  0, the the Hamiltonian (8) reduces to

∑= .H t P H P( )
(9)n

n nobs

Description of the physical model
The schematic setup for generating the tree-type three-dimensional entanglement is shown in Fig. 1(a). Three 
atoms are trapped respectively in three spatially separated optical cavities which are connected by two fibers. 
Under the short fiber limit (lv)/(2πc) ≤  1, only the resonant modes of the fibers interact with the cavity modes55, 
where l is the length of the fiber and v is the decay rate of the cavity field into a continuum of fiber modes. The 
atomic level configurations and relevant transitions are shown in Fig. 1(b). As shown in Fig. 1(b), the five-level 

Figure 1. (a) The schematic setup for generating tree-type three-dimensional entanglement; (b) the level 
configurations and relevant transitions. (c) The APF design of the schematic setup for TQD to fast generate tree-
type three-dimensional entanglement.
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atom1 and atom3 are both M-type with two excited states |eL〉  and |eR〉  and three ground states |gL〉 , |g0〉  and |gR〉 . 
The four-level atom2 is tripod-type with one excited state |e0〉  and three ground states |gL〉 , |g0〉  and |gR〉 . The 
atomic transition ↔e gL R j j( ) 0

 (j =  1, 3) is resonantly coupled to the left-circularly (right-circularly) polarized 
mode of jth cavity with corresponding coupling constant gj,L(R), and | 〉 ↔ | 〉e g L R0 2 ( ) 2

 is resonantly coupled to the 
left-circularly (right-circularly) polarized mode of cavity2 with corresponding coupling constant g2,L(R)). The tran-
sitions | 〉 ↔ | 〉e gL R j L R j( ) ( )

 and ↔e g0 2 0 2
 are resonantly driven by classical laser fields with the time-dependent 

Rabi frequencies Ωj(t) and Ω2(t), respectively. Then the whole system can be dominated by the interaction 
Hamiltonian (ħ =  1):
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where Htotal is the total Hamiltonian of the whole system, Hal (Hacf) is the interaction between the atoms and the 
classical laser fields (the cavity-fiber system), v1(2),L(R) is the coupling strength between the modes of the cavity1,2 
(cavity2,3) and the modes of the fiber1(2), ak,L(R) (k =  1, 2, 3) is the annihilation operator of left-circularly 
(right-circularly) polarized mode of kth cavity, and †b L R1(2), ( )  is the creation operator of fiber1(2) left-circularly 
(right-circularly) polarized mode. For simplicity, we assume gk,L(R) and v1(2),L(R) are real, gk,L(R) =  g, and v1(2),L(R) =  v.

Suppose that the total system is initially in the state φ = g g g 00000 c f c f c1 0 1 0 2 0 3 1 1 2 2 3
 denoting kth atom 

in the state |g0〉 k and all of three cavities and two fibers in the vacuum state. Thus dominated by the total 
Hamiltonian in Eq. (10), the whole system evolves in the Hilbert space spanned by
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Obviously, the system is initially in the dark state of Hacf, i.e., Hacf|φ1〉  =  0. Therefore, under the Zeno limit 
condition Ω t g( )k , v(k =  1, 2, 3), the whole system can approximatively evolve in an invariant Zeno subspace 
consisting of dark states corresponding to the zero eigenvalue of Hacf:

φ φ φ φ φ= ΨH { , , , , , }, (12)P D1 17 18 19 20

corresponding to the projections

α α α= ∈ .αP H, ( ) (13)P

Here,
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Therefore, the system Hamiltonian can be rewritten as the following form based on Eq. (9):
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Here setting v =  g and Ω3(t) =  Ω1(t), we can obtain an effective Hamiltonian of the system
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= Ω Ψ + Ω Ψ Ψ + . .H t t t( ) ( ( ) ( ) ) H c , (16)D0
1
3 2 1 1 2

in which |Ψ 1〉  =  |φ1〉 , and φ φ φ φΨ = + + +( )2
1
2 17 18 19 20 . The instantaneous eigenstates of H0(t) corre-

sponding respectively to the eigenvalues λ0 =  0 and λ = ±Ω± t( )/ 3  are
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where Ω = Ω + Ωt t t( ) ( ) ( )1
2

2
2  and θ = Ω Ωt t ttan ( ) ( )/ ( )2 1 .

Two methods used to generate tree-type three-dimensional entanglement
The method of Lewis-Riesenfeld invariants. In order to construct a shortcut by the LRI method for fast 
generating of tree-type three-dimensional entanglement, we are supposed to chase down the Hermitian invariant 
operator I(t) satisfying ∂ =i I t H t I t( ) [ ( ), ( )]t 0 . Because of SU(2) dynamical symmetry of H0(t) in Eq. (16), I(t) 
can be easily given by27,56
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where χ is an arbitrary constant in the unit of frequency keeping I(t) in the unit of energy, and ν and β are 
time-dependent auxiliary parameters satisfying the equations
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So Ω1(t) and Ω2(t) can be easily deduced as follows:
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The solution of Shrödinger equation ∂ Ψ = Ψi t H t t( ) ( ) ( )t 0  with respect to the instantaneous eigenstates 
of I(t) can be written as φΨ = ∑ α

= ±t C e t( ) ( )n n
i

n0, n , where αn(t) is the Lewis-Riesenfeld phase in Eq. (3), 
φ= ΨC (0)n n 1 , and |φn(t)〉  is the eigenstate of the invariant I(t) as
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Then we consider a series of boundary conditions satisfying =H I[ (0), (0)] 00  and 

 =H t I t( ), ( ) 0f f0  to give
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where tf is the operation time. The Eq. (22) is the guarantee for the system to evolve along |n0(t)〉  in Eq. (17) so that 
we obtain the target state Ψ = Ψ − ΨLRI

1
5 1

2
5 2 . Therefore, to avoid infinite Rabi frequencies, we can choose 

the boundary conditions for ν and β as follows:

ν ε ν ν ε ν

β β

= = = =

= =

 
t t

t
(0) , (0) 0, ( ) , ( ) 0,
(0) 0, ( ) arctan 2, (23)

f f

f

where ε is a time-independent small value. Then the parameters can be easily set as
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Based on the parameters above, we can determine the value of ε by calculating the fidelity
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ε ε
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1
5 1 17 18 19 20  is the tree-type three-dimensional entanglement gener-

ated by the LRI method. Therefore, for the appropriate Rabi frequencies and the fidelity F =  1, we can choose
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Thus, the transformation Ψ → ΨLRI1  is achieved and we have constructed a shortcut by the LRI method to 
speed up the generation of the tree-type three-dimensional entanglement.

The method of transitionless quantum driving. Because the instantaneous eigenstates of H0(t) do not 
meet the Schrödinger equation, there may be transitions between the eigenstates in Eq. (17). Therefore, we need 
to construct the TQD Hamiltonian H(t) that exactly drives the instantaneous eigenstates with no transitions 
between different eigenstates. Based on Eq. (6), we learn the simplest Hamiltonian H(t) is derived in the form

∑= ∂ .
= ±

H t i n t n t( ) ( ) ( )
(29)k

t k k
0,

Substituting Eq. (17) into Eq. (29), we obtain

θ= Ψ Ψ + . .H t i( ) H c , (30)1 2

in which θ = Ω Ω − Ω Ω Ω  t t t t t t( ) ( ( ) ( ) ( ) ( ))/ ( )2 1 2 1
2. The Hamiltonian (30) is constructed by a direct coupling of 

|Ψ 1〉  and |Ψ 2〉 , and it is too hard to be implemented in experiment for such a complex system we use24,35. However, 
fortunately inspired by the references44,46, we find an alternative physically feasible (APF) Hamiltonian whose 
effect is equivalent to H(t). The APF design is shown in Fig. 1(c). Comparing Fig. 1(b,c), we change all of the res-
onant atomic transitions into non-resonant atomic transitions with detuning Δ .

The interaction Hamiltonian of the non-resonant system reads
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Then similar to the approximation for the Hamiltonian from Eqs (10–16), an effective Hamiltonian for the 
present non-resonant system can be obtained

′ = Ψ Ω′ Ψ + Ω′ Ψ + . . + ∆ Ψ Ψ .H t t t( ) 1
3

[ ( ( ) ( ) ) H c ]
(32)D0 2 1 1 2 D D

Under the limit condition ∆ Ω′ t( )/ 31 , Ω′ t( )/ 32 , by adiabatically eliminating the state |Ψ D〉 , the effective 
Hamiltonian ′H t( )0  becomes

=
∆
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3
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2
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The first two terms can be removed by setting Ω′ = Ω′t i t( ) ( )1 2  and the final effective Hamiltonian becomes

′ =
Ω′

∆
Ψ Ψ + . .H t i t( ) ( )

3
H c (34)eff

2
2

1 2

This effective Hamiltonian is equivalent to the Hamiltonian H(t) in Eq. (30) if we set θ = Ω′ ∆ t t( ) ( ) /32
2 , i.e.,

Ω′ =
∆ Ω Ω − Ω Ω

Ω

 

t t t t t
t
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,
(35)

2
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which is the correlation between the Rabi frequencies of the TQD method and the Rabi frequencies of STIRAP. 
By setting the Rabi frequencies of STIRAP to satisfy the same boundary conditions as Eq. (22), we can achieve the 
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transformation Ψ → ΨTQD1  to implement the fast generation of tree-type three-dimensional entanglement, 
where φ φ φ φ φΨ = + + + +( )TQD

1
5 1 17 18 19 20  is the tree-type three-dimensional entanglement 

generated by the TQD method.

Numerical simulations and comparisons between LRI and TQD
In the following, we will give the numerical simulations in three subsections to discuss respectively the selections 
of parameters of the two methods, the feasibility of generating tree-type three-dimensional entanglement and the 
robustness of our schemes. Also the comparisons between the LRI method and the TQD method will be included 
in every subsection.

Selections of parameters. Firstly, to determine the parameters of the LRI method, we plot the fidelity 
= |〈Ψ |Φ 〉|F t( )LRI f

2 versus the operation time tf and ε in Fig. 2, where |Φ (tf)〉  is the state at the time t =  tf of the 
whole system governed by the total Hamiltonian Htotal in Eq. (10). In Fig. 2(a), we plot the relation between the 
fidelity and the operation time tf with ε =  0.177 which is determined in Eq. (28). And we can see that in a very 
short operation time tf =  80/g the fidelity is already almost unity: F(tf =  80/g) =  0.996. From Fig. 2(b), we can find 
that under tf =  80/g when ε =  0.177 the fidelity is highest. Thus we can choose tf =  80/g and ε =  0.177 as the 
parameters of the LRI method in the following discussion. Furthermore, in order to consider the joint effects of tf 
and ε on the fidelity we plot the three dimensional image of the fidelity versus tf/g−1 and ε in Fig. 2(c). From the 
three dimensional image, it is clear that the effects of tf and ε on the fidelity are not dependent on each other.

Next we determine the parameters of the TQD method. In order to satisfy the boundary conditions in 
Eq. (22), the Rabi frequencies Ω1(t) and Ω2(t) in the original Hamiltonian Htotal are chosen as46
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where Ω0 is the pulses’ amplitude, tf is the operation time, and τ and T are related parameters. The time-dependent 
Ω1(t) and Ω2(t) are shown in Fig. 3.

Based on the correlation in Eq. (35), the Rabi frequencies of the TQD method can be figured out. As an illus-
tration, we plot the fidelity = |〈Ψ |Φ 〉|F t( )TQD f

2 versus the detuning Δ  and tf in Fig. 4, where |Φ (tf)〉  is the state at 
the time t =  tf of the whole system governed by the total Hamiltonian ′Htotal in Eq. (31). To compare with each 
other effectively, we choose the same operation time tf =  80/g in the TQD method as that in the LRI method. From 
Fig. 4(a), we can find that under tf =  80/g when Δ  =  6 g the fidelity is highest. Besides, we can see that the fidelity 
is almost unity: F(tf =  80/g) =  0.996 at the point tf =  80/g from Fig. 4(b). Thus we choose tf =  80/g and Δ  =  6 g as 
the parameters of the TQD method in the following discussion. Similar to the LRI method, in order to consider 
the joint effects of tf and Δ  on the fidelity we plot the three dimensional image of the fidelity versus tf/g−1 and Δ /g 
in Fig. 4(c). However, from Fig. 4(c), we are not able to judge whether the effects of tf and Δ  on the fidelity are 
dependent or not dependent on each other. We will make a detailed discussion about the joint effects of tf and Δ  
on the fidelity later in the last subsection.

Next, a brief discussion is very necessary to show our schemes are fast. Firstly, it is quite apparent that the 
operation time tf =  80/g is far shorter than t =  3000/g which is the generation time of the tree-type 
three-dimensional entanglement generated in the ref. 23. Further more, for a more effective discussion, we con-
sider the adiabatic condition θ ∆� �t E( ) 57, where ∆ = ΩE t( )/ 3  is the minimum separation between the 
eigenvalues of the Hamiltonian (16). For convenience, we just consider the LRI method for the shortcut to adia-
batic passage. With a simple calculation, for the shortcut to adiabatic passage, we can obtain the constants 
θ = . 0 014LRI  and Δ ELRI =  0.077 by using Eq. (25). However, for ref. 23, we obtain time-dependent but 
single-peak θ t( )  and Δ E, and the amplitudes are θ = . 0 003max

 and Δ Emax =  0.067, respectively. Obviously, 

Figure 2. The fidelity for the LRI method versus (a) tf/g−1 with ε =  0.177 and (b) ε with tf =  80/g, respectively; 
(c) the three dimensional image of the fidelity for the LRI method versus tf/g−1 and ε.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:33669 | DOI: 10.1038/srep33669

according to the information above, the adiabatic condition θ ∆� �t E( )  is met in the ref. 23 but needs not to be 
met in our schemes, which means that the slow process of the generation of the tree-type three-dimensional 
entanglement is sped up.

Discussion of feasibility. In this subsection, we will give the numerical simulations for discussing the fea-
sibility of our two schemes. For the LRI method, we plot the time-dependent Rabi frequencies Ω1(t) and Ω2(t) 
which are described by Eq. (25) in Fig. 5(a). The evolutions of populations ∼PLRI

1(17 20)  of states |φ1(17~20)〉  governed 
by Htotal are shown in Fig. 5(b). For the TQD method, we plot the time-dependent Rabi frequency Ω′ t( )2  Ω′ t( ( ) )1  
which is described by Eq. (35) in Fig. 5(c). The evolutions of populations ∼PTQD

1(17 20)  of states |φ1(17~20)〉  governed by 
′Htotal  are shown in Fig.  5(d). In addition, in Fig.  6(a) we plot the atomic excited populations 
= ∑ = ∼P Pa

LRI
m m

LRI
2,13 16  (red solid line) and = ∑ = ∼P Pa

TQD
m m

TQD
2,13 16  (blue solid line) corresponding to the LRI 

method and the TQD method respectively, and the cavity-fiber excited populations = ∑ = ∼P Pcf
LRI

n n
LRI

3 12  (red 
dashed line) and = ∑ = ∼P Pcf

TQD
n n

TQD
3 12  (blue dashed line) corresponding to the cases of the LRI method and the 

TQD method respectively. In Fig. 6(b), we plot the fidelities of the tree-type three-dimensional entanglement 
generated by the LRI method (red dashed line) and the TQD method (blue solid line), respectively.

Here we first consider Fig. 6(b). From Fig. 6(b), we know that both of the two lines of fidelity illustrated based 
on the two methods reach a very high point close to unity at the time t =  80/g, and thus both of our schemes are 
feasible. Figure 6(b) also shows that the fidelity of the TQD method can reach a very high value within a shorter 
time than that of the LRI method. Next we consider the populations of the target states in Fig. 5(b,d). We can see 
that a near perfect result we expect is obtained in Fig. 5(b), but a little bit imperfect result appears in Fig. 5(d) in 
which there exists a small gap between two lines of the populations of |φ1〉  and |φ17~20〉 . Therefore, for the transfor-
mation of populations, the LRI method is a bit better than the TQD method. However, when compare the pulse 
types in Fig. 5(a,c), we find that the TQD method is more feasible than the LRI method. Because the pulses in 
LRI method are short-time truncations of two harmonic pulses and the truncations of the two harmonic pulses 
in a short time are too hard to be achieved. But the pulses in TQD method are almost complete Gaussian pulses 
which are relatively easy to be achieved. Moreover, the populations of atomic and cavity-fiber excited states for 
two methods are shown in Fig. 6(a), and all of the populations of excited states are near zero at the time t =  80/g. 

Figure 3. Time dependence on t/tf of Ω1(t) and Ω2(t) with the parameters τ = 0.14tf, T = 0.19tf. 

Figure 4. The fidelity for the TQD method versus (a) Δ /g with tf =  80/g and (b) tf/g−1 with Δ  =  6 g, respectively; 
(c) the three dimensional image of the fidelity for the TQD method versus Δ /g and tf/g−1.
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So we can deduce that whichever method is employed, the state of the whole system almost populates in tree-type 
three-dimensional entanglement.

It is worth explaining the gap between the two lines of the populations of |φ1〉  and |φ17~20〉  in Fig. 5(d). For the 
TQD method, there are two limit conditions Ω′ t g( )k , v(k =  1, 2, 3) and ∆  g , v applied to prepare tree-type 
three-dimensional entanglement. However, as shown in Fig. 5(c), the amplitude of Ω′ t( )2  Ω′ t( ( ) )1  is 0.8 g which 
does not strictly meet the limit condition Ω′ t g( )k , v. And also the detuning Δ  =  6 g does not strictly meet the 
limit condition ∆  g , v. In fact, these two limit conditions are difficult to be coordinated. With no assignments 
of tf and Δ , we calculate the amplitude of Ω′ t( )2  with the parameters τ =  0.14tf and T =  0.19tf to obtain

Ω′ ≈ Ω′ = .
∆

=
t

t
( ) 2 9 ,

(37)
t t

f
0 2

f
1
2

which is not dependent on the amplitude Ω0 of Ω1,2(t) in Eq. (36) but only proportional to ∆ t/ f . Thus, Ω′0 
roughly equals to ∆ /3 if the operation time is chosen as tf =  80/g. Nevertheless, the ratio 1/3 is not small enough 
to satisfy both two limit conditions Ω′ t g( )k , v and ∆  g , v, i.e., the condition Ω′ t g( )k , v will not be satis-
fied if the limit condition ∆  g , v is satisfied and vice versa. Therefore, there exists a gap between the two lines 
of the populations of |φ1〉  and |φ17~20〉  in Fig. 5(d). In addition, Eq. (37) reveals that Ω′ t( )2 ’s amplitude Ω′ ∝ ∆ t/ f0 . 
It is known that the fidelity of the TQD method is strongly dependent on Ω′0, so we can deduce that the fidelity of 
the TQD method is strongly dependent on the value of Δ /tf. As a result, in Fig. 4(c), the effects of tf and Δ  on the 
fidelity are dependent on each other.

Based on the discussion above, for fast generating tree-type three-dimensional entanglement, both the LRI 
method and the TQD method are feasible. Besides, the two methods have their own advantages and disadvan-
tages and we can choose a certain method depending on the conditions in experiment.

Figure 5. For the LRI method, (a) the time dependence of the Rabi frequencies Ω1(t) (blue solid line) and Ω2(t) 
(red dashed line); (b) the populations of states |φ1〉  and |φ17~20〉  governed by Htotal. For the TQD method, (c) the 
time dependence of the Rabi frequency Ω′ t( )2  Ω′ t( ( ) )1 ; (d) the populations of states |φ1〉  and |φ17~20〉  governed 
by ′Htotal. The parameters used here are tf =  80/g, ε =  0.177, Δ  =  6 g, τ =  0.14tf and T =  0.19tf.

Figure 6. (a) The time dependence of atomic excited populations (red solid line) and cavity-fiber excited 
populations (red dashed line) in the LRI method, and the time dependence of atomic excited populations (blue 
solid line) and cavity-fiber excited populations (blue dashed line) in the TQD method; (b) the fidelities of tree-
type three-dimensional entanglement for the LRI method (red dashed line) and the TQD method (blue solid 
line). The parameters used here are same as in Fig. 5.
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Discussion of robustness. In the above discussion, the whole system are perfect and considered as abso-
lutely isolated from the environment. Therefore, it is necessary to give the discussions of robustness of our 
schemes against the variations in the parameters and decoherence induced by the atomic spontaneous emissions 
and photon leakages of the cavity-fiber system. For discussing the effects of the variations in the parameters, we 
plot the fidelity of the LRI method versus the variations in tf and ε in Fig. 7(a) and the fidelity of the TQD method 
versus the variations in tf and Δ  in Fig. 7(b). Here we define δx =  x′  −  x as the deviation of x, in which x denotes 
the ideal value and x′  denotes the actual value. In Fig. 7(a), the fidelity decreases with the increase of |δε| as 
described in Fig. 2(b). From Eq. (25), we know that the Rabi frequencies decrease with the increase of the opera-
tion time tf. According to the limit condition Ω t g( )k , v we use, the values of the Rabi frequencies are the 
smaller the better, so the operation time tf is the longer the better as described in Fig. 2(a). Therefore, the fidelity 
of the LRI method increases with the increase of δtf in Fig. 7(a). In Fig. 7(b), we can clearly see that the effects of tf 
and Δ  on the fidelity of the TQD method are dependent on each other and even the fidelity of the TQD method 
is apparently dependent on the value of Δ /tf as mentioned in the last subsection. Significantly, we notice that the 
fidelities of the two methods are both over 0.98 even when δ = .x x/ 0 1 ε= ∆x t( , , )f . Therefore, both of our 
schemes are robust against the variations in the parameters.

We can also see that the smallest fidelity of the TQD method in Fig. 7(b) is slightly higher than the smallest 
fidelity of the LRI method in Fig. 7(a). This fact can easily be found by comparing Figs 2(c) and 4(c), in which 
there is a greater advisable range of the parameters in the TQD method than in the LRI method for preparing 
tree-type three-dimensional entanglement with a high fidelity.

Next taking the decoherence induced by the atomic spontaneous emissions and photon leakages of the 
cavity-fiber system into account, the whole system is dominated by the master equation
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where H is the total Hamiltonian Htotal of the LRI method in Eq. (10) or ′Htotal of the TQD method in Eq. (31). 
γ = =i L R j( , 0, , 1, 2, 3)i

j  is the spontaneous emission rate of jth atom from the excited state |ei〉 j to the ground 
state |gi〉 j; κj i

f
,  and κj i

c
,  denote the photon leakage rates from the fiber modes and the cavity modes, respectively; 

σ = m nmn
j

j
 (m, n =  ei, gi) is Pauli operators. For simplicity, we assume γ γ=i

j  and κ κ κ= =j i
f

j i
c

, , .
Based on the master equation, we plot the fidelities of the LRI method and the TQD method versus κ g/  and 

γ/g in Fig. 8. As we can see from the decrease of the fidelity of the LRI method with the increases of κ g/  and γ/g in 
Fig. 8(a), we learn that the influence of atomic spontaneous emissions on the fidelity is greater than that of photon 
leakages of the cavity-fiber system. However, in Fig. 8(a) the influence of cavity-fiber photon leakages on the 
fidelity of the TQD method plays a full role, but that of atomic spontaneous emissions is little. As a cross reference, 
we can get some inspiration from Fig. 6(a). In Fig. 6(a), the highest value of the cavity-fiber excited populations 
(blue dashed line) of the TQD method is over 0.2 during the evolution process but that of the atomic excited 
populations (blue solid line) of the TQD method is near zero which caused by the detuning Δ . The highest values 

Figure 7. (a) The fidelity of the LRI method versus δtf/tf and δε/ε; (b) the fidelity of the TQD method versus 
δtf/tf and δΔ /Δ . The parameters used here are same as in Fig. 5.
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of the atomic excited populations (red solid line) and the cavity-fiber excited populations (red dashed line) of the 
LRI method are slightly higher and slightly lower than 0.05, respectively. Therefore, it is no doubt that the results 
of Figs 6 and 8 are corresponding to each other. Finally, it is necessary to emphasize that the fidelities of the LRI 
method and the TQD method are near 0.94 and over 0.955 respectively, even when κ γ= = . g0 02 . Therefore, 
our two schemes of the LRI method and the TQD method both are robust against the decoherence induced by the 
atomic spontaneous emissions and photon leakages of the cavity-fiber system.

Experimental feasibility and conclusion
Now we show the experimental feasibility of our schemes. As mentioned in the ref. 23, 87Rb can be used in our 
schemes to construct the required atomic level configurations. For 87Rb, = = −F m1, 1F , = =F m1, 0F  and 
= =F m1, 1F  of 5S1/2 can be used as the ground states |gL〉 , |g0〉  and |gR〉  respectively, and = = −F m1, 1F , 
= =F m1, 0F  and = =F m1, 1F  of 5P3/2 can be used as the excited states |eL〉 , |e0〉  and |eR〉  respectively. 

Based on a set of cavity QED parameters g =  2π ×  750 MHz, γ =  2π ×  3.5 MHz and κ =  2π ×  2.62 MHz, which are 
achieved in recent experiments58–60, we can obtain the very high fidelities FLRI =  0.984 and FTQD =  0.990 corre-
sponding to the LRI method and the TQD method respectively, which show our schemes for generating tree-type 
three-dimensional entangled states both are feasible in the experiment.

In conclusion, we have proposed two schemes to speed up the generations of the tree-type three-dimensional 
entanglement via Lewis-Riesenfeld invariants and transitionless quantum driving. The two different tree-type 
three-dimensional entangled states are prepared among three atoms trapped respectively in three spatially sep-
arated optical cavities connected by two fibers. The strict numerical simulations show that the LRI method and 
the TQD method both are feasible and robust against the variations in the parameters, atomic spontaneous emis-
sions and photon leakages of the cavity-fiber system. Besides, comparing the two methods, we know they both 
have their own advantages and disadvantages. So we can choose different methods depending on different con-
ditions in experiment. In short, both of our schemes are fast, robust and feasible. We hope that the tree-type 
three-dimensional entanglement would contribute to the improvement of quantum communication security and 
our work would be useful for the experimental realization of quantum information processing in the near future.
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