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The PCP pathway regulates Baz 
planar distribution in epithelial cells
Benoit Aigouy & André Le Bivic

The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood 
while their distribution in the plane of the epithelium is poorly characterised. Here we provide a 
systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila 
ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well 
as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. In contrast, 
we report that other key adherens junction proteins, Bazooka and the myosin regulatory light 
chain (Spaghetti squash) are unilateral, i.e. present on one side of cell interfaces. Furthermore, we 
demonstrate that planar cell polarity (PCP) and not the apical determinants Crumbs and Par-6 control 
Bazooka unilaterality in cone cells. Altogether, our work unravels an unexpected organisation and 
combination of apico-basal, cytoskeletal and planar polarity proteins that is different on either side of 
cell-cell interfaces and unique for the different contacts of the same cell.

Each epithelium is polarised along the apico-basal axis. This polarity organises the vectorial functions of epithelia 
and tightly regulates the exchanges between the internal milieu and the environment. Establishment and mainte-
nance of apico-basal polarity requires the stereotyped positioning of a highly conserved set of proteins along the 
Z-axis of cells (Fig. 1A)1–3.

In Drosophila, Crumbs (Crb) associates with Stardust (Sdt), Pals1-associated Tight Junction (Patj), Par-6, 
atypical protein kinase C (aPKC) (Fig. 1A) and cytoskeletal components in the most apical region of cells1,2,4,5. 
Immediately below the Crb domain are the proteins of the adherens junctions that mediate tissue cohesion and 
interfacial tension. Among Drosophila adherens junction proteins are Shotgun (Shg, also known as DE-cadherin), 
the Catenins, α  (α -Cat) and β  (known as Armadillo in flies: Arm) and Bazooka (Baz, also known as Par-3)2,6–8 
(Fig. 1A). Further down, extending along the lateral membranes, are the baso-lateral proteins Discs large 1 (Dlg1), 
Scribbled (Scrib) and Lethal (2) giant larvae (L(2)gl) together with the Drosophila septate junctions proteins2,9,10 
(Fig. 1A).

This stereotyped distribution of apico-basal polarity proteins along the Z-axis of cells is maintained by con-
served regulatory loops between apical and baso-lateral polarity complexes that mutually restrict each other’s 
localisation while positioning and stabilising the adherens junction belt in between1,2,7–16.

In addition to apico-basal polarity, many epithelia exhibit a second polarity axis called planar polarity or tis-
sue polarity. This polarity axis is perpendicular to apico-basal polarity, lying within the plane of the epithelium 
(Fig. 1B,C). Planar cell polarity (PCP) is obvious in epithelia that produce external structures such as the distally 
oriented hairs on the drosophila wing, the fur of vertebrates or the V-shaped stereocilia bundles found in mam-
malian inner ears17–20. Importantly, the planar polarity pathway is also active in tissues without external structures 
such as the eye disc or animal tissues undergoing convergent extension (see refs 19, 21 and 22 for reviews).

Tissue polarity is controlled by a conserved set of proteins called planar polarity proteins. The core planar 
polarity pathway consists of six proteins, Frizzled (Fz), Dishevelled (Dsh), Diego (Dgo), Van Gogh (Vang, also 
known as Strabismus), Prickle (Pk) and Starry night (Stan, also known as Flamingo)18–20,23–30. PCP proteins local-
ise apically, overlap with adherens junctions and extend until the upper part of the baso-lateral membrane31. PCP 
proteins have the unique ability to self-organise in distinct domains in cells. In the fly wing, where planar polarity 
is best understood, Fz, Dsh, and Dgo localise to the distal side of cells27,32,33, where the hair will grow, while Vang 
and Pk localise to the proximal side of cells34,35 (see also Fig. 1B,C). Finally, the atypical cadherin Starry night 
localises to the Fz and Vang domains of the same cell30,36,37. Altogether, PCP proteins are unilateral, i.e. present 
only on one side of a cell interface (Fig. 1B,C) except for Starry night that is bilateral, i.e. present on both sides of 
the same interface.
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The distribution of apico-basal polarity proteins along the Z-axis of cells is thought to correlate with their 
function and was therefore extensively studied1,2. In contrast, the distribution of apico-basal polarity proteins in 
the plane is largely unknown and only a handful of studies do report planar asymmetries for apico-basal polarity 
proteins in epithelia (Par-1:38, Shotgun:39, Crumbs and aPKC:40, Baz:41–43). In order to better understand the 
planar organisation of apico-basal polarity proteins, we decided to use a mosaic analysis strategy44, as done long 
ago for planar cell polarity. Importantly, mosaic analyses allow to determine protein uni- or bilaterality on cell 
interfaces, which was never addressed previously. Using mosaics, we show that apico-basal proteins organise in 
two distinct classes in epithelial cells. The first class, that comprises baso-lateral proteins and two adherens junc-
tion proteins, i.e. Shg and Arm, are as expected present on both sides of cell interfaces, i.e. bilateral. In contrast, 
the second class of apico-basal proteins, comprising Baz and the fly non-muscle myosin regulatory light chain, 
Sqh, are unexpectedly unilateral on epithelial interfaces. Finally, we demonstrate that the unilateral distribution 
of Baz is regulated by the PCP pathway but not by the apical determinants Crumbs and Par-6.

Results
Planar distribution of apico-basal polarity proteins in the Drosophila eye. The fly eye epithelium 
is a highly structured organ composed of about 800 ommatidia. Each ommatidium contains four lens-secreting 
cone cells (Fig. 1D), focusing the light over eight rhodopsin-expressing photoreceptor cells45,46. The four cone cells 
are surrounded by two primary pigment cells, themselves in contact with several secondary and tertiary pigment 
cells shared between adjacent ommatidia (Fig. 1D). Each ommatidium finally contains three bristles that exhibit 
a chiral organisation, sufficient to determine ommatidia orientation (Fig. 1D). Altogether, these ommatidial cells 
organise in a highly stereotyped manner to form a hexagonal ommatidium.

To determine the planar distribution of apico-basal polarity proteins in fly ommatidia, we induced the forma-
tion of patches of clonally related cells expressing a GFP-tagged apico-basal polarity protein adjacent to patches 
of cells that do not express GFP (Supplementary Fig. S1). Importantly, cells lacking GFP expression are wild type; 
i.e. they express the endogenous protein that is not fluorescently labelled (Supplementary Fig. S1). Similarly, GFP 
positive cells are also functionally wild type as they express, at physiological or endogenous levels, an active pro-
tein fused to GFP (see Supplementary Fig. S1 and Methods). At the interface between GFP positive and GFP neg-
ative cells, a refined planar distribution of apico-basal polarity proteins is obtained (Supplementary Fig. S1). Such 
mosaics make it possible to determine the localisation of apico-basal polarity proteins with the resolution of one 
membrane bilayer (less than 10 nm), surpassing results that have been obtained with super resolution microscopy 

Figure 1. Planar and transversal distributions of apico-basal and planar polarity proteins. (A,B) transverse 
section showing the distribution of apico-basal (A) and planar polarity proteins (B) in fly wing epithelial cells. 
(A) The apical most region of the cell is shown in red, adherens junction are indicated in black and baso-lateral 
domains in blue. (B) Proximal (prox) PCP domains containing Vang, Pk and Stan are indicated in blue. Distal 
(dist) PCP domains containing Fz, Dsh, Dgo and Stan are indicated in yellow. Hairs (dark triangles) grow 
specifically from the distal side of cells. (C) Top view of the cells shown in (B). (D) Scheme of a 32 h APF fly 
ommatidium. pp, sp and tp indicate the primary, secondary and tertiary pigment cells, respectively. ac, pc, ec and 
plc indicate the anterior, posterior, equatorial and polar cone cells, respectively. Wild type ommatidia contain 
three bristles (b). Here and wherever applicable, the ommatidium is oriented with anterior left and polar up.
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using STED, PALM and STORM47–49. This genetic approach allows determining unilaterality or bilaterality of 
proteins on contacts (Supplementary Fig. S1).

Armadillo and Shotgun are bilateral on cell interfaces. In Drosophila, adherens junctions are com-
posed of cadherin molecules that extracellularly mediate adhesion between cells while they intracellularly con-
nect, via catenins to the actin cytoskeleton2,50. As adherens junctions mediate tissue cohesion, their constituent 
proteins are expected to localise all around the cortex. We tested this hypothesis by looking at the planar distribu-
tion of a core member of adherens junctions, the Arm protein (Fig. 2A). For simplicity, we chose to focus on the 
planar distribution of Arm in primary pigment and cone cells and ignored secondary and tertiary pigment cells 
(Fig. 1D). The Arm::GFP pattern reveals that Arm is evenly distributed around the cortex of primary pigment 
(Fig. 2B) and cone cells (Fig. 2C–F) and is therefore always bilateral on cell contacts.

We then looked at the distribution of Shotgun (Supplementary Fig. S2A). Shg is evenly distributed around the 
cortex of primary pigment cells (Supplementary Fig. S2B) similar to Arm. In cone cells, Shg is enriched on outer 
interfaces, in contact with the primary pigment cells (Supplementary Fig. S2C,D), while cone-cone interfaces are 
largely devoid of Shg (Supplementary Fig. S2A,C,D), likely due to the presence of Cadherin-N there51. The low 
amounts of Shg between cone cells prevents us from further refining the distribution of Shg on cone-cone con-
tacts. Altogether, Shg is provided bilaterally on Shg positive contacts, similar to Arm.

Baso-lateral proteins are present on both sides of epithelial interfaces. We then checked the pla-
nar distribution of several baso-lateral proteins. We started by looking at Dlg1 mosaics (Fig. 2G). Dlg1 is enriched 
on outer primary pigment cells interfaces while their inner interfaces in contact with cone cells show diffuse 
Dlg1::GFP signal (Fig. 2H). Cone cells exhibit the opposite pattern, i.e. they show diffuse Dlg1 signal on their 

Figure 2. Planar distribution of apico-basal polarity proteins. (A–F) Arm::GFP mosaics. (A) Characteristic 
distribution of Arm::GFP in a 32 h APF ommatidial epithelium. (B) GFP-labeled primary pigment cell. Note the even 
Arm::GFP distribution around the primary pigment cell cortex (+ ). (C–F) Even distribution of Arm::GFP around the 
cortices of the anterior (C), posterior (D), equatorial (E), and polar (F) cone cells. (G–M) Dlg1::GFP mosaics.  
(G) Characteristic distribution of Dlg1::GFP in the 32 hAPF ommatidial epithelium. (H) Dlg1::GFP is enriched on 
the outer interface of the primary pigment cell (+ ) while its inner interface shows a diffuse Dlg1::GFP signal (+ /− ). 
(I) Outer cone cell interfaces show diffuse Dlg1::GFP signal (+ /− ) while all cone-cone interfaces (J–M) show a strong 
and sharp Dlg1::GFP signal (+ ). (N–R) Baz::GFP mosaics. (N) Every interface of the 32 h APF ommatidial epithelium 
carries Baz::GFP. (O) Baz distribution in primary pigment cells. Baz is devoid from outer and inner primary pigment 
cells interfaces (− ). Baz is specifically enriched at the zone of contact between adjacent primary pigment cells (+ ). 
(P) In anterior cone cells (left) Baz::GFP is specifically depleted from the interface shared with the polar cone cell (− ) 
and present elsewhere (+ ). In posterior cone cells (right), Baz::GFP is specifically depleted on the interface with the 
equatorial cone cell (− ). (Q) In equatorial cone cells, Baz::GFP is excluded from the interface with the anterior cone 
cell (− ). (R) In polar cone cells, Baz::GFP is excluded from the interface with the posterior cone cell. In this figure and 
the following, insets contain a cartoon representation of the ommatidia where GFP positive cells are shown in green 
and GFP negative cells in white. To gain space, the posterior primary pigment cell is not shown. Note however that 
the protein distribution in posterior primary pigment cell is mirror symmetric to that in the anterior primary pigment 
cell (data not shown).
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outer interfaces and a strong, sharp, Dlg1 signal on their inner, cone-cone, interfaces (Fig. 2I–M). Importantly the 
level of expression and distribution of Dlg1 on either side of each contact is similar. In conclusion, Dlg1 is bilateral 
on cell interfaces; similar to Shg and Arm. All other baso-lateral and septate junctions proteins studied show a 
pattern strikingly similar to that of Dlg1 (compare Supplementary Fig. S2E–V with Fig. 2G–M).

Baz is unilateral on epithelial interfaces. We then studied the localisation of Baz (Fig. 2N), an 
apico-basal polarity protein known to localise to adherens junctions in epithelial cells6–8. Baz::GFP mosaics reveal 
a surprising planar distribution that differs largely from that of Arm and Shg. In primary pigment cells, Baz is 
specifically enriched at the zone of contact between adjacent primary pigment cells while largely absent from 
other interfaces of the same cells (Fig. 2O). In cone cells, Baz is present on outer interfaces in contact with primary 
pigment cells (Fig. 2P–R). Furthermore, each cone cell has its own unique distribution of Baz (Fig. 2P–R). In ante-
rior cone cells, Baz is enriched on the interface with the equatorial cone cell and depleted from the interface with 
the polar cone cell (Fig. 2P). The posterior cone cell shows the opposite pattern (Fig. 2P). The equatorial cone cell 
localises Baz on its interface with the posterior cone cell while its interface with the anterior cone cell is depleted 
for Baz (Fig. 2Q). The polar cone cell exhibits the opposite pattern (Fig. 2R). Finally, polar and equatorial cone 
cells localise Baz on both sides of their shared interface (Fig. 2Q,R). In conclusion, Baz is present on every contact 
of the ommatidial epithelium (Fig. 2N) but unlike Arm and Shg, it is unilateral on most interfaces.

Baz unilaterality is not regulated by Crumbs or Par-6. We were puzzled by the novel and unexpected 
unilateral distribution of Baz and searched for proteins that could explain its distribution. We wondered whether 
the two main regulators of Baz distribution along the Z-axis of cells in Drosophila, Par-6 and Crumbs7,8 would 
account for Baz unilaterality.

We started by assessing the role of Crumbs on the planar distribution of Baz and generated dual overlapping 
mosaics to monitor Baz localisation in crumbs null mutant cells (see Methods). Loss of crumbs has no obvious 
impact on Baz planar distribution. Indeed, Baz still localises on outer interfaces of primary pigment cells and 
remains absent from their inner interfaces (Fig. 3A). Similarly, crumbs mutant cone cells still exhibit a clear uni-
lateral Baz distribution (Fig. 3B–G).

We then wondered whether the asymmetry of Baz (Par-3) would correlate with the distribution of Par-6 since 
both proteins are known to localise asymmetrically to the same cell side in dividing sensory organ precursors (SOPs) 
and during the cleavage of the C. elegans egg52–54 and that Par-3 asymmetry depends on Par-6 in C. elegans52,53.  
We monitored the localisation of Par-6 using a functional Par-6 genomic rescue construct tagged with GFP 
(see Fig. 3H and Methods). Par-6 distribution differed largely from that of all other apico-basal protein studied, 
including Baz. Indeed, Par-6 is enriched on outer interfaces of primary pigment cells and lower on their inner 
interfaces (Fig. 3I,K). In cone cells, Par-6 is present all around the cortex (Fig. 3J,K) and therefore bilateral on 
cone-cone interfaces where Baz is unilateral.

Altogether, this suggests that the key regulators of Baz distribution along the Z-axis of cells, Par-6 and Crumbs, 
cannot account for the unilateral distribution of Baz in the 32 hours after puparium formation (h APF) ommati-
dial epithelium.

Figure 3. Crumbs and Par-6 do not regulate the planar distribution of Baz. (A–G) Baz::GFP mosaics in 
crb null mutant cells (wild type cone and pigment cells are indicated by a red asterisk). (A,C,G) Inner primary 
pigment cell interfaces are devoid of Baz signal. (B–G) Baz remains unilateral in crb null mutant cone cells.  
(H–K) Par-6::GFP mosaics. (H) Characteristic distribution of Par-6 in 32 h APF eyes. (I) Par-6 is enriched on 
outer (+ ) primary pigment cell interfaces. (J,K) Par-6 is evenly distributed around the cortex of cone cells (+ ).
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The non-muscle myosin II regulatory light chain is unilateral. In fly tissues, planar localisation of 
Baz has been shown to negatively correlate with Myosin II distribution41,42. We therefore decided to look at the 
distribution of Myosin II to see if it could explain the observed Baz asymmetries. We generated mosaics express-
ing GFP-tagged Spaghetti squash (Sqh) (Fig. 4A–E), the fly myosin regulatory light chain55. In primary pigment 
cells, Sqh is enriched on outer interfaces and depleted from inner interfaces (Fig. 4B,C). In contrast, in cone 
cells, Sqh is mainly enriched on outer interfaces in contact with primary pigment cells (Fig. 4C–E). Cone-cone 
interfaces exhibit low levels of Sqh, preventing us from drawing conclusions on Sqh uni- or bilaterality there 
(Fig. 4A–E). Altogether, we can conclude that Sqh, like Baz is mainly unilateral on assessable contacts. In addi-
tion, the partial overlap between Sqh and Baz patterns neither suggests recruitment nor mutual exclusion in the 
ommatidial epithelium.

We therefore wondered whether Sqh localisation would correlate with that of its kinase Rok (Fig. 4F–H)56. 
Rok57, like Sqh, is primarily found on the outer side of primary pigment cells and absent on their inner interfaces 
(Fig. 4G,H). In cone cells, Rok distribution is very variable and we could not detect any obvious preferred local-
isation (Fig. 4H–K). Altogether, this suggests that Rok may regulate Sqh distribution in primary pigment cells, 
whereas other kinases are probably at work in cone cells.

Planar distribution of core planar cell polarity proteins in the eye epithelium. As the unilateral 
distribution of Baz is not dependent on Crumbs and cannot be explained from the bilateral distribution of other 
apico-basal polarity proteins studied, including Par-6, we searched for additional unilateral proteins that could 
bias Baz distribution. Planar polarity proteins fulfil the unilaterality criterion in epithelia and are therefore strong 
candidates.

Planar polarity protein distribution is well established in numerous tissues, including the fly eye, however the 
latter studies have focused on the distribution of PCP proteins in neuronal cells during eye disc development21. 
Consequently, the distribution of PCP proteins in epithelial (i.e. non-neuronal) cells at late developmental stages 
was not known and hard to infer from planar distributions in the disc due to the high number of cell rearrange-
ments that occur during eye development. We therefore decided to investigate it by generation of mosaics using 
the classical flip-out constructs that express fluorescently tagged PCP proteins32,58,59 (see also Methods).

Unilateral distribution of Vang and Baz overlap. We first monitored the planar distribution of Vang 
(Fig. 5A), a marker of the proximal side of cells in the fly wing (Fig. 1B,C). In the 32 h APF ommatidial epithelium, 
Vang intensity in primary pigment cells peaks at the center of the zone of contact with the secondary pigment 
cells and is lower around the vertices of these contacts (Fig. 5B,C). Vang is largely depleted form inner primary 
pigment cell interfaces (Fig. 5B,C). Strikingly, in cone cells, the distribution of Vang is reminiscent of that of Baz 
(compare Fig. 5D,E to Fig. 2P–R). Note that due to weak PCP signal in photoreceptor cells at pupal stages, we 
could not address PCP asymmetries in mature photoreceptor cells.

Altogether, the distribution of Vang in cone cells overlaps with that of Baz but is poorly correlated in primary 
pigment cells, suggesting that the PCP pathway may control Baz planar distribution in cone cells but not in pri-
mary pigment cells.
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Figure 4. Planar distribution of Sqh and its kinase Rok. (A–E) Sqh::GFP mosaics. (A) Characteristic distribution 
of Sqh::GFP in the 32 h APF ommatidial epithelium. (B) Sqh::GFP is enriched on the outer primary pigment cell 
interfaces (+ ) and depleted from their inner interfaces (− ). (C–E) Outer cone cell interfaces are positive for Sqh::GFP 
(+ ). All cone-cone interfaces carry low amounts of Sqh::GFP proteins, preventing us from drawing strong conclusions 
on the uni- or bilaterality of the protein there. (F–K) Rok::GFP mosaics. (F) Characteristic distribution of Rok::GFP in 
the 32 h APF ommatidial epithelium. (G,H) Rok::GFP is enriched on the outer primary pigment cell interfaces (+ )  
and depleted from their inner interfaces (− ). (H–K) Planar distribution of Rok in cone cells is highly variable, four 
random samples are presented here.
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Fz distribution is opposite to that of Vang. We then investigated the distribution of Fz, a marker of 
the distal side of the cell in the wing epithelium (Fig. 1B,C). Similar to results in other tissues, the Fz pattern is 
complementary to that of Vang. Fz is depleted from outer interfaces of primary pigment cells and enriched on 
inner interfaces with a peak on the central region of the contacts (Fig. 5G,H). In cone cells, Fz is absent on outer 
interfaces (Fig. 5I,J). In between cone cells, Fz is present on the side of contacts that is depleted for Vang, i.e. Fz is 
present in anterior cone cell on the interface with the polar cone cell (see left cell in Fig. 5I) and in posterior cone 
cells on the interface with equatorial cone cell (see right cell in Fig. 5I). Similarly, Fz is present in equatorial cone 
cell at the interface with the anterior cone cell (see lower cell in Fig. 5J) and in polar cone cells at the interface with 
the posterior cone cell (see upper cell in Fig. 5J).

Altogether, the distribution of Fz is opposite to that of Vang and Baz in cone cells.

The PCP pathway controls the unilateral distribution of Baz in cone cells but not Dlg1 asym-
metries. The strong correlation between the distributions of Vang and Baz in cone cells suggests that PCP 
may regulate Baz unilaterality. To test this hypothesis we monitored Baz distribution in stan mutant cells (see 
Methods); Stan is a PCP protein required for the recruitment of Fz and Vang to their respective distal and proxi-
mal domains32,34. Importantly, since stan affects the orientation of ommatidia60 as well as the number and position 

Figure 5. Planar organisation and function of PCP proteins in the eye. (A–E) Vang::YFP mosaics.  
(A) Characteristic distribution of Vang::YFP in 32 h APF ommatidia. (B,C) Vang::YFP is enriched on outer 
interfaces of primary pigment cells (+ ) and depleted on their inner interfaces (− ). (D,E) Vang::YFP in cone cells. 
(D) Vang::YFP is depleted (− ) in anterior cone cells (left) at their interface with polar cone cells and in posterior 
cone cells (right) at their interface with equatorial cone cells. (E) Polar cone cells (top) are devoid of Vang::YFP signal 
(− ) at their interface with the posterior cone cells and equatorial cone cells (bottom) are devoid of Vang::YFP signal 
(− ) at their interface with anterior cone cells. (F–J) Fz::YFP mosaics. (F) Characteristic distribution of Fz::YFP in 
ommatidia. (G,H) In primary pigment cells, Fz is enriched on inner interfaces in contact with cone cells (+ ) and 
depleted elsewhere (− ). (I,J) Fz is enriched on one interface per cone cell. (I) Fz is enriched in anterior cone cells 
(left) at the interface with polar cone cells (+ ). In posterior cone cells (right) Fz is enriched on the interface with 
equatorial cone cells (+ ). (J) Fz is enriched in polar cone cells (top) at the interface with posterior cone cells (+ ).  
In equatorial cone cells (bottom) Fz is loaded at the interface with anterior cone cells (+ ). Altogether, the Fz pattern 
is the negative of the Vang pattern. (K–P) Baz::GFP mosaics in stan null mutant cells (remaining wild type cells are 
indicated by asterisks). (K–P) Improper ommatidial rotation60,89 and misplaced bristles in stan mutants prevent us 
from determining the antero-posterior and the polar-equatorial axes. Therefore, ommatidia are oriented using the 
long axis of primary pigment cells in (K–P). (K–M) Polar/equatorial cells express Baz::GFP on their contacts with 
anterior/posterior cone cells, i.e. no Baz::GFP depletion is observed (compare with Fig. 2P). Baz::GFP shows an even 
distribution around the cortex of isolated anterior/posterior (L) and polar/equatorial (N) cone cells. (O,P) Polar/ 
equatorial cells express Baz::GFP on their shared interface with anterior/posterior cone cells (compare with 
Fig. 2Q,R).
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of bristles we use as landmarks, we are unable to precisely orient ommatidia in these mutants. We therefore chose 
to align ommatidia using the long axis of primary pigment cells. Using this axis, we can differentiate polar and 
equatorial cone cells from the anterior and posterior ones, but we can neither distinguish the polar from the 
equatorial cone cell nor the anterior from the posterior cone cell. In any case, Baz appears evenly distributed 
around the cortex of stan mutant cone cells (Fig. 5K–P). This observation contrasts with the control situation 
where cone cells always have one contact depleted for Baz (Fig. 2P–R and compare to Fig. 5K–P). Altogether, 
this indicates that Baz becomes bilateral on cone-cone interfaces in PCP mutants and that PCP acts as a switch 
between unilateral and bilateral distributions of Baz. We also note that Baz distribution is maintained in primary 
pigment cells mutant for stan (Fig. 5K–M, also compare with Fig. 2O), suggesting that Baz localisation in these 
cells is PCP-independent.

Since several studies in flies and vertebrates report physical and genetic interactions between the PCP pro-
tein Vang and the baso-lateral proteins, Dlg1 and Scrib61–65, we wondered whether PCP would also regulate the 
asymmetric distribution of baso-lateral proteins in the eye. We again performed dual mosaics to follow the planar 
distribution of Dlg1::GFP in cells mutant for stan (see Supplementary Fig. S3 and Methods). However, Dlg1 dis-
tribution remained unchanged in stan mutant cells (compare Supplementary Fig. S3A–F to Fig. 2H–M).

Altogether, this suggests that the PCP pathway specifically controls the planar distribution of the adherens 
junction protein Baz but not that of baso-lateral proteins.

Discussion
The distribution of apico-basal polarity proteins along the Z-axis of epithelial cells has been the subject of intense 
research while their distribution in the plane of the epithelium is largely unknown. Here we provide the first 
systematic study of the planar distribution of apico-basal polarity proteins in the fly eye (Fig. 6). We find that Baz 
and Sqh are enriched on one side of epithelial cell interfaces, i.e. are unilateral (Fig. 6D,F) whereas Arm, Shg and 
baso-lateral proteins are present in similar quantities on either side of cell contacts, i.e. are bilateral (Fig. 6A–C). 
In addition, we demonstrate that the planar distribution of Baz is controlled by planar cell polarity in cone cells.

Interplay between apico-basal polarity and planar cell polarity. Links between PCP and apico-basal 
polarity have been previously reported in dividing sensory organ precursors in the fly notum (SOPs)61,66–69. There, 
Fz localises the Baz/Par-6/aPKC complex to the posterior side of cells while Vang recruits Dlg1 to the anterior 
side of the same cell. In contrast, in the eye, Baz localises with Vang rather than with Fz (this study). Another 
striking difference is that Baz unilaterality and asymmetry in the 32 h APF eye requires PCP signaling (this study), 
whereas Baz/Par-6/aPKC asymmetries can still form in dividing SOPs of PCP mutant animals66,67. Even if the lat-
ter result may suggest, at first glance, that PCP proteins are not required for asymmetric segregation of apico-basal 
proteins in SOPs, a recent study70 proposed that in the presence of PCP, Baz/Par-6/aPKC asymmetric localisa-
tion establish several hours before SOP division. In PCP mutants, the same authors report that Baz/Par-6/aPKC 
asymmetries are not detected prior to division70. Altogether, these results suggest that PCP may function simi-
larly in SOPs and in the eye epithelium by promoting Baz asymmetries. However, in the case of the 32h APF eye 
epithelium, Par-6 does not localise with Baz; this result is consistent with the fact that Baz and Par-6 are present 
in different Z regions of epithelial cells7,8,71,72. Interestingly, Besson et al. report that Baz is always symmetrically 

Figure 6. Schematic representation of the planar distribution of apico-basal and planar polarity proteins 
in the ommatidial epithelium. (A–I) Planar distribution of (A) Arm, (B) Shg, (C) Dlg1/Scrib/ATP-α /Nrg, 
(D) Baz, (E) Par-6, (F) Sqh, (G) Vang and (H) Fz. (I) Combined planar distribution of Fz (yellow) and Vang 
(blue). Note the complementary distributions of Fz and Vang proteins. Due to the weakness of the signal on 
the interfaces between cone cells, Shg (B) and Sqh (F) planar localisation is not represented in (B,F). Similarly 
the weak PCP signal for Fz and Vang on the interface between equatorial and polar cone cells prevents us from 
drawing strong conclusions on the planar distribution of PCP proteins on this interface.
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localised in notum epithelial cells and hence should be bilateral at adherens junctions. This result contrasts with 
our observation that Baz is unilateral in ommatidial cells and suggests notum and eye epithelia may be different. 
Importantly, some protein asymmetries may only be detected using mosaics due to the limited resolution of 
microscopes (compare Fig. 2N to Fig. 2O–R and Fig. 4A to Fig. 4B–E). It may therefore be interesting to revisit 
Baz asymmetries in the notum and other fly epithelia using mosaics.

In the eye imaginal disc, the precursor of the pupal eye, apico-basal polarity proteins have been proposed to 
regulate PCP signaling by controlling Fz phosphorylation31. From this work, apico-basal polarity proteins act 
upstream of PCP. In contrast, our study unravels a novel regulation of apico-basal polarity proteins downstream 
of PCP. In addition, we observe, a strong colocalisation between Vang and Baz that calls for an interaction, direct 
or indirect, between Baz and Vang. Direct binding between those two proteins could, however, not detected using 
yeast two hybrid assays31,65, suggesting the interaction might be indirect. In an alternative scenario, Djiane et al. 
report a direct but weak binding between Baz and Fz that could for example target Baz for degradation or endocy-
tosis and lead to a specific depletion of Baz on Fz positive contacts. Further biochemical experiments are required 
to discriminate between those different Baz sorting mechanisms.

Finally, a third link between Baz and PCP was proposed73. There, the authors describe that PCP is perturbed 
upon strong overexpression of Baz and show that Baz can bind specifically to the PDZ binding domain of the 
so-called Stan isoform of Stan. However, the physiological relevance of this binding remains unclear73. In the case 
of the 32 h APF eye ommatidium, we think this interaction is unlikely since Stan is known to be a bilateral protein 
and should therefore recruit Baz bilaterally on cone cell interfaces, which is not what we observe.

Each epithelial contact is characterised by a unique apico-basal polarity signature. In conclu-
sion, we report a surprising feature of epithelial cells, i.e. different contacts of a given cell have different amounts 
and distributions of apico-basal, planar polarity and cytoskeleton proteins, suggesting that the cortical distribu-
tion of proteins is not uniform in epithelial cells. In contrast, each cell-cell interface defines its own apico-basal, 
planar and cytoskeleton protein signature independently of the other interfaces of the same cell.

How this contact specific distribution is established remains to be determined. It is likely that mechanisms 
known to bias the distribution of planar polarity proteins, such as the oriented microtubule web38,74 could explain 
how two opposite cell contacts acquire different signatures, but additional, yet uncharacterised mechanisms must 
be at work on the remaining contacts of the same cell. In addition, it is also hard to reconcile these contact specific 
signatures and protein unilaterality with the bilateral vision of the establishment and maintenance of apico-basal 
polarity. Altogether, our observations therefore call for a re-evaluation of apico-basal proteins interactions in 
epithelial cells. In particular, a very challenging but exciting task will be to discriminate between the planar and 
the apico-basal specific functions of apico-basal polarity proteins. No doubt that Drosophila genetic screening 
capabilities will be useful to identify sets of genes that do affect the planar distribution of apico-basal polarity 
proteins and cytoskeleton components while keeping their Z distribution unchanged.

Finally, it will be important to study the function of the asymmetries described here. Since Baz and Sqh mod-
ulate cell adhesion and contractility, respectively39,43,49,75, they can together regulate tension at cell interfaces and 
hence control cell shape and morphogenesis. In addition, because myosin is mainly provided by one cell at a 
shared interface, the lengthening or shrinking of this interface is under the decision of a single cell. Thereby this 
cell has a unique role in shaping the eye that cannot be compensated by its neighbour; this may explain how cells 
with different fates can have specific functions during morphogenesis. Altogether, measuring the mechanical 
properties of eye cell interfaces, correlating them with the planar distribution of proteins and designing a physical 
model of the ommatidium will allow to address the roles of protein unilateralities during eye morphogenesis.

Methods
Fly genetics and heat shock treatments. High resolution planar distribution of apico-basal polarity 
proteins was inferred from the presence or absence of GFP signal at the boundaries of flippase induced mitotic 
clones (refs 76 and 77, see also Supplementary Fig. S1). To study the planar distribution of apico-basal polarity 
proteins we recombined GFP-tagged apico-basal proteins with FRT sites76,77. Hereafter is a list and description 
of all the flies used in this sudy. FRT19A baz::GFP (constructed upon the FlyTRAP78–80 line CC01941), FRT42D 
shg::GFP (constructed upon the shotgun knock-in line81), FRT19A arm::GFP (constructed upon the arm knock-in 
line82, a gift from the P.F. Lenne team) and FRT40A sqh::GFP (constructed upon bloomington stock #57144) were 
used to monitor the distribution of Bazooka, Shotgun, Armadillo and Spaghetti Squash (the fly myosin regulatory 
light chain) at adherens junctions, respectively. FRT19A dlg1::GFP (constructed upon FlyTRAP line YC0005) and 
FRT82B scrib::GFP (constructed upon FlyTRAP line CA07683) were used to study the planar distribution Discs 
Large and Scribbled on baso-lateral interfaces. FRT19A nrg::GFP (constructed upon FlyTRAP line G00305) and 
FRT82B ATPα ::GFP (constructed upon FlyTRAP line YC0031) were used to study the planar distribution of 
Neuroglian and the Na+ /K+  exchange pump at septate junctions, respectively. FRT9-2, par-6Δ226, par-6::GFP flies 
(refs 70 and 83, a gift from F. Schweisguth) were used to study the planar distribution of Par-6, an apical protein, 
in the eye. Note that the Par-6::GFP construct is a functional genomic rescue construct for Par-6 that saves the 
par-6Δ226 lethal allele present on the same chromosome. Eye mosaics were generated using the ey-Flp system (ini-
tially developed by B. Disckson but directly obtained from the Bloomington stock center). sqh::GFP and rok::GFP 
(from Bloomington stock center) are genomic constructs driven by the sqh promoter that mildly overexpress 
these fusion proteins in cells. Note that Sqh::GFP is known to rescue all defects of the sqh null mutant. All other 
(Fly)TRAPs and knock-ins used in this study are expressed at endogenous levels from their own promoter, in 
their endogenous locus and are viable even when they are the only source of protein in the animal, indicating 
that they are fully functional GFP-tagged proteins. FRT19A/FRT19A baz::GFP; FRT42D GMR myr-RFP/FRT42D 
stanE59; eyFlp/+  and FRT19A/FRT19A dlg1::GFP; FRT42D GMR myr-RFP/FRT42D stanE59; eyFlp/+  were used to 
generate independent mosaics where a subset of stan null mutant cells (labeled by the absence of RFP) express 
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Baz::GFP or Dlg1::GFP, respectively. FRT42D stanE59 is Bloomington stock #41776. FRT19A/FRT19A baz::GFP; 
eyFlp/+ ; FRT82B ubi-RFPnls/FRT82B crb11A22 were used to generate dual mosaics where a subset of crb null 
mutant cells express Baz::GFP. FRT82B crumbs11A22 is a gift from E. Knust84,85. actin5C> stop> Vang::YFP and act-
in5C> stop> fz::YFP constructs32,58,59 were used to follow the planar distribution of the Fz and Vang PCP proteins 
in the 32 h APF ommatidial epithelium, respectively. PCP-YFP mosaics were induced by heat shocking white 
pupa (0 h APF) for 5 to 15 minutes at 37 °C. In all cases, flies were collected at white pupa stage (0 h APF) and kept 
at 25 °C until dissection and imaging at indicated times.

Imaging. Pupae were prepared for imaging as previously described86 except that eyes instead of wings were 
imaged. Images were acquired using 63X oil immersion objective on a Zeiss LSM 510 system equipped with clas-
sical PMTs or a Leica SP8 microscope equipped with PMTs and hybrid detectors.

Figures. Adherens junction protein images used in this study are either single optical sections or Z projections 
of a few Z planes around the brightest apical focal plane. For baso-lateral and septate junction images, we used 
single sections or maximum projections of the most apical part of baso-lateral junctions. Presented ommatidia 
are representative examples collected from typically 3–10 independent eyes (each containing several hundreds 
independent ommatidia). In all cases, photoreceptors located below the cone cells were excluded from projec-
tions. Z projections were created using FIJI87. Figures were mounted using ScientiFig88 and Illustrator (Adobe).
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