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Nano spin-diodes using FePt-NDs 
with huge on/off current ratio at 
room temperature
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Daiki Oshima1, Satoshi Iwata1, Yudi Darma2,3, Mitsuhisa Ikeda1 & Seiichi Miyazaki1

Spin transistors have attracted tremendous interest as new functional devices. However, few studies 
have investigated enhancements of the ON/OFF current ratio as a function of the electron spin behavior. 
Here, we found a significantly high spin-dependent current ratio—more than 102 at 1.5 V—when 
changing the relative direction of the magnetizations between FePt nanodots (NDs) and the CoPtCr-
coated atomic force microscope (AFM) probe at room temperature. This means that ON and OFF states 
were achieved by switching the magnetization of the FePt NDs, which can be regarded as spin-diodes. 
The FePt magnetic NDs were fabricated by exposing a bi-layer metal stack to a remote H2 plasma (H2-
RP) on ~1.7 nm SiO2/Si(100) substrates. The ultrathin bi-layers with a uniform surface coverage are 
changed drastically to NDs with an areal density as high as ~5 × 1011 cm−2. The FePt NDs exhibit a large 
perpendicular anisotropy with an out-of-plane coercivity of ~4.8 kOe, reflecting the magneto-crystalline 
anisotropy of (001) oriented L10 phase FePt. We also designed and fabricated double-stacked FePt-NDs 
with low and high coercivities sandwiched between an ultra-thin Si-oxide interlayer, and confirmed a 
high ON/OFF current ratio when switching the relative magnetization directions of the low and high 
coercivity FePt NDs.

The spin transistor, whose ON current is controlled both by the gate/base signal and the relative magnetization 
direction of two ferromagnets, is considered to be one of the future devices for beyond-CMOS computing1–11. The 
spin transistor utilizes the magnetization of one of the ferromagnets as nonvolatile memory data, and thus it has 
the potential to work as a reconfigurable logic, which is beneficial in reducing the power consumption and device 
count on chips. However, from the application point of view, the spin transistor requires a high magneto-current 
ratio when switching the magnetization of the ferromagnet as well as a large ON/OFF ratio when the gate/base 
signal is applied. Most importantly, a ferromagnet that will store data is required to have a strong magnetic aniso-
tropy for long-time data retention12–18. In this paper, we report on spin diodes comprising FePt nanodots (NDs) 
with a giant magneto current ratio. The FePt is known to have a huge magneto-crystalline anisotropy, and exhibits 
sufficient thermal stability even in ~3 nm sized NDs19–23.

Metallic NDs have received much attention because of their potential application to charge storage devices24–34. 
The charging and discharging characteristics of metallic NDs through an ultrathin oxide layer depend on 
their electrostatic potential. So far, we reported that Ni-, Co-, Pt-, and Fe-NDs with an areal density as high as 
~1011 cm−2 were formed on ultrathin SiO2 by exposing an ultrathin metal layer to a remote H2 plasma (H2-RP) 
without external heating, and demonstrated their charge storage properties35–40. More recently, we reported on 
the formation of magnetic NDs made of CoPt alloy formed by exposing a bi-layer metal stack to a remote H2 
plasma (H2-RP) and characterized their magnetization properties41. In this work, we fabricated high density 
L10-ordered FePt-NDs on ultrathin SiO2/Si(100) and measured the local current-voltage (I-V) characteristics by 
using a CoPtCr-coated atomic force microscope (AFM) probe under the application of an external magnetic field. 
We found that the threshold voltage for a current to flow was controlled by the relative direction of the magnetiza-
tions of the FePt and CoPtCr, which indicates that the FePt NDs is a promising candidate for the gate material of 
a spin diode/transistor that exhibits quite a large magneto-current ratio as well as a large ON/OFF ratio.
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Results
Formation of FePt-nanodots.  Figure 1(a,b) show atomic force microscope (AFM) images for an as-evap-
orated Pt (1.7 nm)/Fe (1.4 nm) bilayer on SiO2 and after H2-RP exposure, respectively, where AFM topographic 
images were measured with a scanning area as narrow as 500 ×​ 500 nm2 to determine each dot size. The images 
for the as-evaporated bi-layer stack structure showed a fairly smooth surface morphology with a small root-
mean-square (RMS) roughness of ~0.24 nm, being almost identical to that for the as-grown SiO2 surface. The 
result confirms uniform surface coverage with the ultrathin Pt/Fe bi-layer. By exposing the Pt/Fe bi-layer on the 
SiO2 to H2-RP for 10 min, the RMS roughness was increased by a factor of ~6.5, and NDs with an areal density 
as high as ~4.8 ×​ 1011 cm−2 were formed. An average height of ~8.7 nm was observed (see Fig. 1(b)), which was 
determined by the dot height distribution (details are presented in Supplementary Fig. S1). The in-plane and out-
of-plane hysteresis loops for the FePt-NDs were characterized by an alternating gradient field magnetometer at 
room temperature as shown in Fig. 1(c). Note that the hysteresis loops for the Pt/Fe bi-layer (not shown in this 
paper) showed an easy plane of magnetization along the film plane and exhibited almost zero coercivity in both 
the perpendicular and in-plane loops. In contrast, the in-plane and out-of-plane loops for the FePt-NDs became 
closer to each other, and coercivities of 0.31 and 0.52 kOe were confirmed for the in-plane and out-of-plane loops, 
respectively. This indicates that a perpendicular magnetic anisotropy is induced in the FePt-NDs after exposure 
to H2-RP. The crystalline structure of the FePt-NDs was examined from the X-ray diffraction (XRD) pattern, in 
which strong (001) superlattice and (002) fundamental peaks were seen in the L10-FePt, while no characteristic 
diffraction peaks except for the Si (001) substrate were observable in the XRD pattern of the Pt/Fe bilayer (see 
Supplementary Fig. S2). Electrical isolation between the FePt-alloy NDs was confirmed by changes in surface 
potential due to electron charging of the dots as discussed later.

Local current-voltage characteristics of the FePt-nanodot.  To evaluate the local electron transport 
properties of the FePt-alloy NDs, a CoPtCr- or Rh-coated Si cantilever was positioned in contact with the sample 
surface and kept at a certain position, and the local I-V characteristics were measured at room temperature. A 
typical I-V characteristic for a ND using a CoPtCr-coated tip is shown in Fig. 2(a), where electrons are injected 
from the tip. The magnetization of the tip was initially set along the upward direction, and upward (positive) 
and downward (negative) external magnetic fields were applied to the NDs by placing an NdFeB magnet under 
the sample, where the magnetic field strength was calibrated by a gauss meter (see inset in Fig. 2(a)). Before the 
application of the external field to the sample, the current level increased slightly for a tip bias over ~−​3.0 V. 
When a positive field of 0.5 kOe was applied to the sample in the same direction as the initial tip magnetization, 
there was no significant change in the I-V curve from the case before application of the field. However, a distinct 
increase in the current level was detected when a positive field of 0.6 kOe was applied, that is, the threshold volt-
age needed for a current of 1 nA to flow decreased from −​4.3 to −​1.2 V. A further increase in the positive field 
resulted in no obvious changes in the I-V curve. When the CoPtCr-coated tip was replaced by an Rh-coated tip, 
almost no change was detected in the I-V curve with the application of a magnetic field of 4.5 kOe, irrespective of 
the field direction (see Supplementary Fig. S3). In addition, no significant changes in the I-V curve were obtained 
when the same experiments were performed for Pt-NDs (see Supplementary Fig. S4). From these experiments, 
in discussing I-V properties between the FePt NDs and the CoPtCr-coated tip, we can rule out the influence of 
the magnetic force acting on the tip under the external field and any magneto-static interaction between the tip 

Figure 1.  L10-ordering FePt-NDs. (a,b) AFM topographic images before and after exposing the Pt/Fe bi-layer 
stack structures on SiO2 to H2-RP. (c) M-H curves of FePt-NDs measured applying a magnetic field along the 
in-plane and out-of-plane directions at room temperature. In-plane and out-of-plane coercivities were 0.31 and 
0.52 kOe, respectively.
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and the dot. Actually, from the force curve measurements with and without application of a magnetic force, no 
changes in the force curve were detected (see Supplementary Fig. S5). It is interesting to note that no significant 
change in the I-V curve was confirmed even after the external magnetic field was removed after application of the 
initial field of 4.5 kOe (Fig. 2(b)). We also confirmed a remarkable increase in the threshold voltage from −​1.2 V 
to −​4.3 V when an external field of −​0.6 kOe was applied in the opposite direction. Further increases in the exter-
nal field to more than 1.0 kOe in the opposite direction reduced the threshold voltage again, as shown in Fig. 2(c). 
We confirmed a reversal of the tip magnetization with a magnetic field of 1.0 kOe by measuring the reversed 
contrast in the MFM image of a floppy disk with the tip exposed to a field of 1.0 kOe. Based on these results, 
we summarized the direction of magnetization of the dots and the tip under the application of a magnetic field, 
namely the impact of the application of a magnetic field on the local electron transport characteristics between 
the FePt-NDs and CoPtCr-coated tip, as illustrated schematically in Fig. 2(d).

Charge storage characteristics of FePt-nanodots.  In order to understand the significant variation in 
the threshold voltage with the relative direction of magnetization between the CoPtCr-tip and FePt-NDs, changes 
in the surface potential of the FePt-NDs after electron charging the dots with and without application of a mag-
netic field were measured by Kelvin-probe force microscopy (KFM), as shown in Fig. 3. For the surface potential 
measurements shown in Fig. 3, electrons were injected into many dots over an area of 500 ×​ 500 nm2 and sur-
face potential images were taken with a large scanning area of 2000 ×​ 2000 nm2 to evaluate carrier migration 
between neighboring dots. Without any bias applied to the sample surfaces, a uniform surface potential image 
was observed (Fig. 3(a)). When the surface was scanned with an Rh-coated AFM tip biased at −​2.0 V with respect 
to the substrate in the tapping mode, a distinct decrease in the surface potential of ~10 mV, which is associated 
with a negative charge on the sample surface, was observed in the corresponding area (Fig. 3(b)). However, in the 
unbiased area, no change in the surface potential was detectable. This result suggests that each dot was electrically 
isolated and the dots in the corresponding area store electrons injected from the Rh-coated tip. In addition, after 
charging in the 500 ×​ 500 nm2 region, no lateral spreading of stored charges was observable. The fact that no 
electrons spread laterally outside the charged region can be explained by the fact that charged electrons are stored 
stably in the dots with no tunneling, either through the bottom oxide to the substrate or to neighboring dots. It 
was also confirmed that there were no changes in the topographic images with electron injection. On the other 
hand, prior to the H2 plasma treatment for the bi-layer stack structures, no change in the surface potential was 

Figure 2.  Local I-V characteristics of FePt-NDs. (a) I-V characteristics measured using a CoPtCr-coated 
AFM-tip with and without application of a magnetic field in the same direction as the initial tip magnetization. 
Measurement setup is shown in inset. (b) I-V characteristics measured after 30 to 50 min passed after removing 
the external field. c, I-V characteristics measured under the application of a magnetic field opposite to the first 
magnetization direction at 4.5 kOe. (d) Schematics of the variation in the directions of magnetization of the 
FePt-NDs and CoPtCr-cantilever with the application of an external field.
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observable when applying tip biases, because of the highly electrically conductive surface. These results indicate 
that electrons are injected into the electrically isolated FePt NDs formed by the H2-RP exposure. It is interesting 
to note that a distinct increase in the surface potential by a factor of ~1.5 was observed when a positive magnetic 
field of 0.6 kOe was applied to the sample in the same direction as the initial tip magnetization, although when 
applying a magnetic field of below 0.6 kOe, there was no significant change in the surface potential from the case 
without application of the magnetic field.

Local current-voltage characteristics of doubly-stacked FePt-nanodots.  We then studied 
doubly-stacked FePt-NDs with lower and upper dots of different sizes as shown in Fig. 4(a). To investigate the 
local electron transport properties of the doubly-stacked FePt-NDs structures, a non-magnetic Rh-coated Si 
cantilever was positioned in contact with the sample surface and kept in the same position, and the I-V char-
acteristics were measured at room temperature. The local I-V characteristics in Fig. 4(b) show that the current 
level increased slightly at a tip bias of over ~−​6.0 V without the application of any external magnetic field. When 
applying a field of 0.5 kOe, the current level decreased slightly, namely, the threshold voltage at 0.05 nA increased 
from −​8.0 to −​9.7 V. When the magnetic field was increased from 0.5 kOe to 1.0 kOe, there was no obvious 
change in the I-V curve. However, a distinct reduction in the threshold voltage was observed when the magnetic 
field was increased to 2.5 kOe, even though a non-magnetic Rh-coated tip was used. It is interesting to note that 
no significant change in the I-V curve was confirmed after a lapse of 24 hours without a magnetic field as shown 
in Fig. 4(b). When the magnetic field was increased to 0.5 kOe in the opposite direction, a marked increase in the 
threshold voltage was observed again, as shown in Fig. 4(c). Then, a decrease in the threshold voltage was con-
firmed after increasing the magnetic field to more than 2.5 kOe. When the upper and lower FePt-NDs had parallel 
magnetizations, both upper and lower FePt-NDs were confirmed to be electrically charged, while predominantly 
only the upper FePt-NDs were charged when they were antiparallel (not shown in the figure).

Discussion
The formation of the NDs from the Pt/Fe bilayer stack shown in Fig. 1(b) suggests that the H2-RP exposure pro-
motes Pt-Fe alloying with agglomeration by the cohesive action of Pt and Fe atoms on the SiO2 surface. In fact, the 
NDs exhibit a perpendicular magnetic anisotropy as shown in Fig. 1(c), while the Pt/Fe bilayer stack has an easy 
plane of magnetization along the film plane. The perpendicular anisotropy results from the magneto-crystalline 
anisotropy of the L10 phase FePt alloy. The L10-FePt shows a strong magneto-crystalline anisotropy with an easy 
axis along the c-axis. Formation of the (001) oriented L10-FePt was confirmed by the X-ray diffraction (XRD) 
pattern (see Supplementary Fig. S2). Considering the fact that the temperature of the Pt and Fe foils was raised 
during H2-RP exposure up to ~400 °C39 and ~460 °C40 respectively, formation of the L10-FePt-NDs can be attrib-
uted to local heating of the sample surface, which is caused by the recombination of atomic hydrogen on the Pt 
and FePt alloy surfaces.

In the measurement of the local I-V characteristics shown in Fig. 2, the contact between the FePt-ND and 
the CoPtCr-coated tip can be considered as a perpendicular magnetic tunnel junction. Therefore, the significant 
change in the threshold voltage of the I-V curve when applying an external field is due to the change in the elec-
tron transport property depending on the relative direction of magnetization of the FePt NDs and CoPtCr-coated 
tip. The change in the threshold voltage occurred at a magnetic field of 0.6 kOe, which is consistent with the 
out-of-plane coercivity of the FePt-NDs shown Fig. 1(c). This means that ON and OFF states were achieved by 
switching the magnetization of the FePt NDs which can be regarded as the gate of a spin diode. The ON and OFF 

Figure 3.  Surface potential of FePt-NDs. (a) Surface potential images before (I) and after (II) the application 
of a bias of −​2.0 V in the central part of the 500 ×​ 500 nm2 area. (b) Cross-sectional potential profiles along the 
line A-A′​ shown in the image in Fig. (a) with application of a magnetic field.
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states can be retained without an external magnetic field as shown in Fig. 2, because the conductivity between the 
FePt NDs and CoPtCr-coated tip is determined by the relative directions of the magnetization along the easy axis. 
However, the observed changes in the threshold voltage cannot be explained only by spin dependent tunneling 
due to spin-split density of states of CoPtCr-tip and FePt-NDs. To explain the significantly large on/off current 
ratio in Fig. 2 only by the spin dependent tunneling, the spin polarizations of the FePt-NDs and CoPtCr-tip must 
be over 0.99, which is not to be expected in FePt and CoPtCr.

The charged state of the FePt-NDs, which was evaluated by measuring the surface potential using a KFM, 
also changed corresponding to the shift in the threshold voltage in the I-V characteristics by applying an external 
magnetic field as shown in Fig. 3. The observed increase in the surface potential indicates that the number of 
electrons charged from the tip to the dot increased when the tip and FePt magnetizations were parallel compared 
to the case when they were antiparallel. The difference in the electron charging characteristics may originate from 
the different electrical conductance from the tip to the NDs just as a tunneling magneto-resistance effect, and 
this difference in the electron charging characteristics is considered to be the origin of the significant variation 
in the threshold voltage with the relative direction of magnetization between the tip and FePt-NDs as discussed 
and shown in Fig. 2. However, the difference in the number of electrons stored in the NDs between parallel and 
antiparallel magnetization alignment of the FePt-NDs and CoPtCr-tip does not explain simply the observed 
threshold voltage shift. When the threshold voltage shift is approximated by QND/Cox, the difference in the num-
ber of electrons in an ND for the threshold voltage shift of 3.1 V observed in Fig. 2 is calculated to be 52, even for 
the smallest ND in a size distribution with a dot height of 6.5 nm (see supplementary Fig. S1). Here, QND is the 
amount of charge in an ND, and Cox is the capacitance of the 1.7 nm-thick SiO2 layer between the ND and Si sub-
strate, which is treated as a cylindrical parallel plate capacitor with a diameter of the hemisphere containing the 
ND, ignoring the edge effect. Since the thickness of the SiO2 between the ND and Si substrate is as thin as 1.7 nm, 
such a large number of electrons cannot be retained stably in an ND. Therefore, the electron storage in the NDs 
can only partially explain the observed threshold shift. Although the reason why the number of stored electrons 
in the FePt-ND is dependent on the relative magnetization direction between the FePt-NDs and CoPtCr-tip is 
still unclear, one of possible mechanisms to explain such a huge on/off current ratio is a synergistic effect of the 
tunnel magnetoresistance and the Coulomb blockade. The tunnel magnetoresistance will cause the difference of 
the contact resistance between tip and FePt-NDs and partly contribute to the difference of the threshold voltage 
between parallel and antiparallel configurations. The Coulomb blockade will cause the difference of the difference 
of the number of charged electrons in the ND. The energy in the Coulomb blockade regime is dependent on the 
magnetization directions of the electrode and ferromagnetic NDs as discussed in ref. 42. Further detailed study is 
needed to identify the origin of the changes in the threshold voltage.

The magnetic tunnel junction was also formed by simply stacking FePt-NDs of different sizes, namely differ-
ent coercivity, with an ultrathin oxide interlayer as illustrated schematically in Fig. 4(a). The difference between 
the coercivities of the upper and lower FePt-NDs was reflected in the change in the threshold voltage of the I-V 
characteristics induced on applying a magnetic field. The observed significant changes in the threshold voltage are 
attributable to the relative directions of magnetization between the upper and lower FePt-NDs, and a significantly 
high ON/OFF current ratio was also observed in the doubly-stacked FePt-NDs when switching the magnetiza-
tion. This result is also related to the charging effect of the FePt-NDs.

The results obtained in this work show that the FePt-NDs are electrically charged and discharged as the direc-
tion of magnetization of the FePt-NDs changes, and the threshold voltage at which a current will flow is modified 
significantly by the direction of magnetization. This means that the FePt-NDs can be regarded as the gate of a 

Figure 4.  Local I-V characteristics of doubly-stacked FePt-NDs structures. (a) Schematic of the doubly-
stacked FePt-NDs structures. (b) Local I-V characteristics of doubly-stacked FePt-NDs structures measured 
using a Rh-coated AFM tip with and without application of a magnetic field. (c) Local I-V characteristics of 
doubly-stacked FePt-NDs structures obtained with an Rh-coated AFM-tip with application of a magnetic field 
opposite in direction to the first field at 4.5 kOe.
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spin diode with a sufficiently high ON/OFF current ratio, and the ON and OFF states can be switched by magnet-
ization of the FePt, which is one of the most technologically important materials, since it has an extremely large 
magnetic anisotropy resulting in long term data retention even in an NDs structure. Furthermore, our samples 
are very compatible with Si-ULSI processing technology. We believe that our findings will open the way to con-
structing a spin diode/transistor that exhibits a high ON/OFF ratio, a large thermal stability sufficient for data 
retention, low power consumption, and room temperature operation.

In summary, we fabricated FePt-NDs with an areal density as high as ~1011 cm−2 on an ultrathin SiO2 layer and 
evaluated the local I-V characteristics through individual dots by using a magnetic cantilever under an external 
magnetic field. We confirmed at room temperatures that there is a clear change in the threshold voltage at which 
a current will flow through the FePt-NDs that depends on the relative directions of magnetization between the 
NDs and the magnetic cantilever. The origin of this significant change in the threshold voltage is considered to be 
the electrical charging of the FePt-NDs which varies with the direction of magnetization of the FePt-NDs. We also 
designed and fabricated doubly-stacked FePt-NDs with different coercivities between the lower and upper NDs, 
and confirmed a clear change in the threshold voltage at which a current will flow through the NDs that depends 
on the relative direction of magnetizations between the upper and lower dots. From the local I-V characteristics, 
which depend on the magnetization direction of the NDs, the FePt-NDs fabricated by a remote H2 plasma can be 
regarded as the gate of a spin diode with a significantly high ON/OFF current ratio. From a technological point 
of view, it is quite important that such a high ON/OFF current ratio could be achieved using FePt-NDs, which 
have a large magnetic anisotropy at room temperature, i.e., sufficient thermal stability for data retention, and are 
compatible with Si-ULSI processing.

Methods
Formation of FePt-nanodots.  After the conventional wet-chemical cleaning steps for p-type Si(100) 
wafers, a ~1.7-nm-thick SiO2 layer was grown at 1000 °C. An Fe layer was first deposited uniformly on the 
SiO2 layer by electron beam evaporation and then covered uniformly with a Pt layer without exposure to air. 
Subsequently, the as-prepared ~1.7 nm-Pt/~1.4 nm-Fe bi-layer stack was exposed simply to a remote H2 plasma 
with no external heating37. The plasma was generated by inductive coupling with an external single-turn antenna 
connected to a 60-MHz generator through a matching circuit. The substrate was placed on the susceptor at a 
distance of 19 cm from the antenna to minimize ion damage. During the remote H2 plasma exposure, the gas 
pressure and VHF power were maintained at 13.3 Pa and 500 W, respectively.

Formation of doubly-stacked FePt-nanodots.  Doubly-stacked FePt-NDs were formed with lower and 
upper dots of different sizes. The dot size was controlled by changing the thickness of the Fe and Pt bi-layer stacks, 
e.g., FePt-NDs with an areal density of ~2.5 ×​ 1011 cm2 and an average size of ~8.0 nm were formed by exposing a 
~2.8 nm-Pt/~2.3 nm-Fe bi-layer stack to remote H2, which exhibited 2.5 kOe perpendicular coercivity and were 
used as upper dots. The lower dots were fabricated as described in the “Formation of FePt-nanodots” paragraph 
in this section, and had an areal density of ~4.5 ×​ 1011 cm−2, an average size of ~5.0 nm, and a perpendicular 
coercivity of 0.5 kOe.
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