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Study on Synergistic Mechanism of 
Inhibitor Mixture Based on Electron 
Transfer Behavior
Peng Han1,*, Yang He1,*, Changfeng Chen1, Haobo Yu1, Feng Liu2, Hong Yang3, Yue Ma4 & 
Yanjun Zheng1

Mixing is an important method to improve the performance of surfactants due to their synergistic 
effect. The changes in bonding interaction and adsorption structure of IM and OP molecules before and 
after co-adsorbed on Fe(001) surface is calculated by DFTB+ method. It is found that mixture enable 
the inhibitor molecules with higher EHOMO donate more electrons while the inhibitor molecules with 
lower ELUMO accept more electrons, which strengthens the bonding interaction of both inhibitor agent 
and inhibitor additive with metal surface. Meanwhile, water molecules in the compact layer of double 
electric layer are repulsed and the charge transfer resistance during the corrosion process increases. 
Accordingly, the correlation between the frontier orbital (EHOMO and ELUMO of inhibitor molecules 
and the Fermi level of metal) and inhibition efficiency is determined. Finally, we propose a frontier 
orbital matching principle for the synergistic effect of inhibitors, which is verified by electrochemical 
experiments. This frontier orbital matching principle provides an effective quantum chemistry 
calculation method for the optimal selection of inhibitor mixture.

Surfactants play an important role in industrial production and daily life due to their unique interfacial activi-
ties1–4. A proper mixture of surfactants will produce synergistic effect, and thus exhibit better performance5–7. 
Until now, researchers have summarized some mixing principles for the mixture of surfactants according to var-
ious apparent parameters such as critical micelle concentration (CMC)8, hydrophobic lipophilic balance (HLB) 
value9, intermolecular interaction coefficientβ 10,11, surface tension12, etc. From the microscopic perspective, these 
apparent parameters can influence or reflect the adsorption configuration and adsorption intensity of surfactant 
molecules at the interface13,14. Essentially, the changes of both molecular configuration and adsorption intensity 
are caused by the electron redistribution. As we all know that the frontier orbital theory (the highest occupied 
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)) of surfactants can be used to 
predict the electron transfer tendency when surfactant molecules adsorb on metal surface15,16. For the adsorption 
of inhibitor on metal surface, it has been shown that inhibitor molecules with higher EHOMO are easier to donate 
electrons to metal. Similarly, the inhibitor molecules with lower ELUMO are more inclined to accept electrons from 
metal17–20. However, the mixture of inhibitors involves the co-adsorption of various molecules on metal surface, 
and so far the problem how the adsorption interaction and the electrons transfer behavior during co-adsorption 
process has not been discussed, which limits the deep understanding of the synergistic mechanism of surfactant. 
From our viewpoint, the frontier orbital theory can also be used to analyze the change law for the electrons trans-
fer of surfactants mixture, and then we can establish the correlation between the frontier orbital energy level and 
the synergistic effect of surfactants, which is helpful for understanding the synergistic mechanism of surfactants 
from the quantum mechanics perspective.

Currently, density functional based tight binding method (DFTB+ ) can realize quantitative calculation of 
electrons structure for a mixed system by semi-empirically calculating the wave function of extra-nuclear electron 
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orbital and the interaction potential among atomic nucleus, which combines the accuracy of density functional 
theory (DFT) and the high efficiency of tight-binding method (TB)21–24. In this paper, imidazoline quantum salt 
(IM) and octyl phenol ethoxylates (OP) mixture system was selected as the studying object25. The changes of 
electron transfer and adsorption intensity of inhibitors before and after mixture were calculated using DFTB+  
method. The correlation between the frontier orbital energy level and the inhibition efficiencies was analyzed. 
Finally, we propose a frontier orbital matching principle to explain the synergistic effect of inhibitor mixture 
and verify its validity via electrochemical experiment of 15 kinds of inhibitor mixtures. Therefore, the work of 
screening the mixed surfactant system according to large number of experiments can be simplified as screening 
and optimizing the mixed system according to the calculated molecular frontier orbital energy level distribution 
characteristics; meanwhile, this principle can be the guide for optimization and designation of the molecular 
structure of the surfactant.

Results and Discussion
The frontier orbitals of inhibitor molecules. Frontier orbitals of surfactant molecules usually locate at 
their active groups26. Figure 1 shows the distribution of HOMO and LUMO orbitals of OP and IM molecules, 
which is obtained by DMOL3 calculation. It is seen that the HOMO orbital of OP molecule locates at its ben-
zene ring and the oxygen atom of polyoxyethylene chain attached to the benzene ring, while the LUMO orbital 
mainly locates at the benzene ring. This suggests that when OP molecule adsorbs on metal surface, the benzene 
ring of OP molecule can obtain and donate electrons while oxygen atom is mainly inclined to donate electrons. 
The HOMO orbital of IM molecule mainly locates at its benzene ring, while the LUMO orbital mainly locates at 
imidazoline ring. That means that the benzene ring of IM molecule can donate electrons whereas its imidazoline 
ring can obtain electrons. These active groups can adsorb on Fe surface through electron transfer.

Electron transfer behavior of inhibitor molecules when adsorbs on Fe(001). Figure 2 shows the 
configurations and properties of OP molecules, IM molecules and OP-IM mixture after adsorbed on Fe(001) sur-
face in aqueous environment through DFTB+  calculation. It is seen that when OP molecules adsorbs on Fe(001) 
surface, its benzene ring and polyoxyethylene chain adsorb on Fe surface in a parallel way, while the hydrophobic 
alkyl chain is away from Fe surface and stretches to aqueous solution. For IM molecules, the imidazoline ring and 
benzene ring adsorb on Fe surface and its hydrophobic alkyl chain is away from Fe surface and stretches to aque-
ous solution with a certain angle. When OP and IM molecules co-adsorb on Fe(001) surface as mixture, there is 
no change in the active adsorption sites of the two inhibitor molecules, but the number of adsorption sites in the 
polyoxyethylene chain of OP molecule decreases. Furthermore, the end of polyoxyethylene chain desorbs and 
stretches to aqueous solution, as shown in Fig. 2(c). The inclined angle of hydrophobic alkyl chain of IM molecule 
also increases. These results indicate that the adsorbed groups are the same as the active groups in the frontier 
orbital distribution calculation.

Figure 3 shows the electron density difference and Milliken charges of the active groups in OP and IM mol-
ecules before and after mixture. It is seen that when OP molecule adsorbs on Fe(001) surface, oxygen atoms in 
polyoxyethylene chain donate electrons obviously (Fig. 3(a)) whereas the benzene ring obtains a small amount of 
electrons (Fig. 3(b)). After mixture, oxygen atoms in polyoxyethylene chain of OP molecule lose more electrons, 
while there is no significant change in the amount of electrons of benzene ring. In other words, OP molecule 
donates more electrons after mixing with IM.

Similarly, when IM molecule adsorbs on Fe(001) surface, imidazole ring and aminoethyl group obtain elec-
trons obviously (Fig. 3(c)) whereas the benzene ring donates electrons (Fig. 3(d)). After mixture, imidazole ring 
obtains more electrons and benzene ring also obtains electrons, as shown in Fig. 3(c,d). This indicates that IM 
molecule obtains more electrons after mixing with OP. The feature of active groups in OP and IM molecules to 
donate or accept electrons is in good agreement with their trend to donate or accept electrons presented in the 
frontier orbitals distribution.

Figure 1. Distribution of HOMO orbital (a), LUMO orbital (b) of OP molecule, and HOMO orbital (c), LUMO 
orbital (d) of IM molecule.
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The electron transfer behavior will affect the adsorption intensity of inhibitor molecules on metal surface. 
Figure 4 shows the partial density of states (PDOS) of the active groups in OP and IM molecules before and after 
mixture. The corresponding adsorption intensities of the active groups in inhibitor molecules were analyzed. It is 
seen that after mixture, DOS peaks of s and p orbitals of the benzene ring and oxygen atom in OP molecule, and 
the imidazoline ring in IM molecule shift to lower energy, the peak position of the benzene ring in IM are hardly 
changed. This indicates that both the adsorption of OP and IM molecules on Fe surface enhance after mixture.

As we all know, some groups will be defined as gauche if they have a synclinal alignment of groups attached to 
adjacent atoms27. After the mixing of OP molecule and IM molecule, the angle between the imidazoline ring of 
IM molecule and metal surface increased (as shown in the Supplementary information, Fig. 1(a)), and the C-C 
adjacent to the imidazoline ring maintain the staggered conformation. This may lead to an increase of inclined 
angle between hydrophobic alkyl chain of IM molecule and metal surface. Since the adsorption interaction of O 
atoms in the middle part of polyoxyethylene chain of OP molecule on metal surface is stronger, the number of 
adsorption sites in the polyoxyethylene chain of OP molecule decreases, and the end-piece of polyoxyethylene 
chain desorbed from metal surface (as shown in the Supplementary information, Fig. 1(b)). According to pre-
vious literatures28–30, the C-C bond in O-C-C-O bond sequence has a gauche preference due to its first-order σ  
interaction. Therefore, the end-piece of polyoxyethylene chain stretches to aqueous solution. So the reason for the 
configuration change of inhibitor molecules before and after mixing has been explained.

Inhibition efficiency of IM-OP mixture. The corrosion rates of L245 steel were measured by linear polari-
zation method in 3% NaCl solution without inhibitor and with 100 ppm OP, 100 ppm IM or 20 ppm OP +  80 ppm 
IM mixture (see in Table 1). The corrosion rates of L245 steel in these four conditions were 5.098 mm/a, 
0.831 mm/a, 0.500 mm/a and 0.377 mm/a, respectively. Compared to IM inhibitor, the inhibition efficiency of 
OP-IM mixture increases by 24.6%, indicating obvious synergistic effect between IM and OP.

For the inhibition of inhibitors to the corrosion of metals, on one hand, inhibitors will form an adsorbed film 
on metal surface to hinder corrosive species to metal surface, and thus the corrosion of metals will be inhib-
ited31–33. On the other hand, the adsorption of inhibitor molecules will increase the distance of the compact layer 
of double electric layer from metal surface. Then the charge transfer resistance will increase and thus the electro-
chemical corrosion process is inhibited34,35.

Figure 5 shows the distribution of water molecules along the distance from metal surface. It is seen that in 
blank solution (only water molecules is present), the peak of water molecule amount appears at the position 
about 3.33 Å from Fe surface. When OP or IM molecules are added into solution, the peak of water molecule 
amount appears at 3.36 Å and 3.42 Å, respectively. Furthermore, the amount of water molecules in the compact 
layer decreases obviously. When IM and OP molecules are present simultaneously, water molecules move further 
away from metal surface and the distance increases to 3.44 Å. The amount of water molecules in compact layer 
also further decreases. This situation indicates that the amount of water molecules in compact layer will decrease 

Figure 2. Adsorption configurations and electron density differences of OP (a), IM (b) and OP - IM mixtures 
(c) adsorption on Fe(001) surface. The planes between Fe(001) surface and inhibitor molecules are the cross-
sections of electron density differences using Slide function in Material studio software. The red region shows an 
increase of electrons, while the blue area exhibits a lack of electrons. The deeper the color is, the larger degree it 
accepts or donates electrons.
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Figure 3. Electron density differences and Mulliken charges of the two O atoms in polyoxyethylene chain of  
OP molecule which is near benzene ring (a), benzene ring (b) of OP molecule, imidazoline ring and aminoethyl 
(c) and benzene (d) in IM molecule.

Figure 4. PDOS of benzene ring (a) and O atoms (b) of OP molecule before and after mixing with IM 
molecule, and the PDOS of the imidazoline ring (c) and the benzene ring (d) of IM molecule before and after 
mixing with OP molecule.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:33252 | DOI: 10.1038/srep33252

and compact layer will move away from metal surface as the adsorption interaction of OP and IM molecules on 
Fe surface becomes stronger.

Relationship between the frontier orbital energy level, the electrons transfer and the synergistic  
effect of inhibitors. The bonding interaction between adsorbed molecules and metal surface depends on the 
frontier orbital energetic position of adsorbed molecules and the Fermi level of metal36. Figure 6 shows the fron-
tier orbital energies of IM and OP molecules before and after mixture. For OP molecule, the EHOMO (− 5.887 eV) 
of OP molecule is close to the Fermi level of Fe(− 5.177 eV) while the ELUMO (− 0.305 eV) of OP molecule is far 
away from the Fermi level of Fe. Thus, electrons likely excited from the HOMO orbital of OP molecule to Fe sur-
face. Moreover, the amount of the transferred electrons is large. However, the energy gap between ELUMO of OP 
molecule and the Fermi level of Fe is large. Therefore, it is difficult for the electrons to be excited from Fe surface 
to the LUMO orbital of OP molecule. Generally speaking, OP molecule donates electrons and thus electrons 
accumulate on Fe surface until the electron transfer reaches equilibrium. During this process, the frontier orbital 
energetic positions of OP molecule shift to the lower level, while the Fermi level of Fe is considered to be no sig-
nificant change37.

For IM molecule, the ELUMO (− 4.717 eV) of IM molecule is close to the Fermi level of Fe while its EHOMO 
(− 8.781 eV) is far away the Fermi level of Fe. Under this situation, it is hard for electrons to be excited from the 
HOMO orbital of IM molecule to Fe surface. However, the electrons are likely excited from Fe surface to the 
LUMO orbital of IM molecule. Therefore, IM molecule accepts electrons and positive charges accumulate on Fe 
surface until the electron transfer reaches equilibrium. During this process, the frontier orbital energetic positions 
of IM molecule shift to higher level, while there is insignificant change in the Fermi level of Fe.

For IM-OP mixture, the ELUMO (− 4.717 eV) of IM molecule and the EHOMO (− 5.887 eV) of OP molecule are 
close to the Fermi level of Fe(− 5.177 eV). Therefore, the electrons are likely to transfer from the HOMO orbital 
of OP molecule to Fe surface, and then transfer from Fe surface to the LUMO orbital of IM molecule. Under 
this situation, as the electrons transfer from Fe surface to IM molecule, the accumulated electrons on Fe surface 
decreases, which is beneficial to the further electron transfer from the HOMO orbital of OP molecule to Fe 
surface. Similarly, as electrons transfer from OP molecule to Fe surface, the amount of electrons on Fe surface 
increases, which is helpful for the further electron transfer from Fe surface to IM molecule. Accordingly, OP mol-
ecule can donate more electrons while IM molecule can accept more electrons when they co-adsorb on Fe surface, 
which results in stronger bonding interaction of IM and OP molecules and Fe surface.

Generally speaking, according to the aforementioned results, compared with IM or OP adsorbed on Fe(001) 
surface, when OP and IM molecules co-adsorb on Fe(001) surface, as the Fermi level of Fe is close to the ELUMO of 
IM molecule and the EHOMO of OP molecule, more electrons are likely to transfer from the HOMO orbital of OP 
molecule to Fe surface, and more electrons are likely to transfer from Fe surface to the LUMO orbital of IM mol-
ecule. Then the bonding intensity of both OP and IM molecules with Fe surface increases. Therefore, it will not 
only beneficial for the exclusion of water molecules in the compact layer away from Fe surface, but also helpful 
for the decrease of the number of water molecules in the compact layer. Therefore, the charge-transfer resistance 

Inhibitor Corrosion rate (mm/a)

no inhibitor 5.098

OP 0.831

IM 0.500

IM +  OP 0.377

Table 1.  Corrosion rates of L245 steel in 3 wt.% NaCl solution, 3 wt.% NaCl solution with 100 ppm OP, 
3 wt.% NaCl solution with 100 ppm IM and 3 wt.% NaCl solution with 20 ppm OP + 80 ppm IM.

Figure 5. The quantity distribution of water molecules and the distance of water concentration peaks to the 
metal surface. 
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in the electrochemical corrosion will increase, and the corrosion rate of metal will decrease significantly. Thus the 
inhibitors mixture shows a synergistic effect.

Based on the aforementioned insights, we further consider that when inhibitor molecules with higher EHOMO 
(higher or closed to the Fermi level of Fe) mix with inhibitor molecules with lower ELUMO (lower or closed to the 
Fermi level of Fe), the inhibitor molecules with higher EHOMO is likely to donate more electrons to metal surface 
while the inhibitor molecules with lower ELUMO is likely to accept more electrons to metal surface. Therefore, the 
adsorption intensity of inhibitor molecules will be further strengthened. That is to say, we can judge the synergis-
tic effect of inhibitors mixture through the frontier orbital energies of inhibitor molecules and the corresponding 
Fermi level of metal. Accordingly, we can optimize the component of inhibitors mixture, which is called “the 
frontier orbitals matching principle” for synergistic effect.

Experimental verification for the frontier orbitals matching principle. In order to verify the frontier  
orbitals matching principle for synergistic effect, three kinds of cationic surfactants (IM, KL and BD) were chosen 
as inhibitors, and two kinds of anionic surfactants (SLS and SDS) and three kinds of nonionic surfactants (OP, FE 
and BTAH) were used as additives. The electron transfer tendencies of these molecules were determined accord-
ing to the frontier orbital energetic positions, and then the inhibition efficiency tendency of inhibitors mixture 
was predicted. The inhibition efficiency of inhibitors mixture was determined by using electrochemical linear 
polarization method to verify the frontier orbitals matching principle for synergistic effect.

The frontier orbital energy positions of the selected 8 kinds of surfactants are shown in Fig. 7(a). It is seen 
that the ELUMO of both KL and BD is lower than those of others. This means that these two kinds of molecules 
present the best ability in accepting electrons, while SLS and SDS show the best tendency in donating electrons. 
Therefore, we predict that the mixed systems of these surfactants would form strong adsorption interactions with 
metal surface, and then present high inhibition efficiencies. However, the electron donating ability of BTAH and 
the electron accepting ability of IM is the weakest, so the inhibition efficiency of IM-BTAH mixture will be low.

Figure 7(b) shows the inhibition efficiencies of various mixed systems according to the electrochemical linear 
polarization. It’s obvious that the inhibition efficiencies of the 5 inhibitor additives are low (for example, 15.6% for 
SLS and 15.8% for SDS, respectively). The inhibition efficiencies of the three selected inhibitor agent (IM, KL and 
BD) are higher. However, the inhibition efficiencies of the mixture of them obviously increase. Among them, the 
inhibition efficiency of KL +  OP shows the highest inhibition efficiency while IM +  BTAH complex presents the 
lowest inhibition efficiency. The electrochemical measurements are in accordance with the prediction according 
to the frontier orbitals matching principle.

It is noteworthy that although the ELUMO of BD molecule is a little lower than that of KL molecule, after mixed 
with inhibitor additives, BD mixture systems show lower inhibition efficiency than those of KL mixture systems. 
This situation is probably attributed to the small difference between the EHOMO and ELUMO of BD molecule. Then, 

Figure 6. Frontier orbital energetic positions of OP molecule (a), IM molecule (b) and IM +  OP molecules  
(c) adsorption on Fe(001) surface.
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electrons are easy to be excited from the HOMO orbital to the LUMO orbital of BD molecule. Therefore, the 
electron accepting process of the LUMO orbital of BD molecule from Fe surface is affected, and the bonding 
interaction of BD molecule and Fe surface is weakened.

In summary, the electron transfer behavior of the co-adsorbed IM and OP molecules on Fe(001) surface under 
water environment was calculated using DFTB+  method. The electron transfer tendency was the same as the ten-
dency predicted through frontier orbital energy. Thus the enhanced inhibition efficiency of inhibitors mixture is 
explained with the quantum mechanics. Furthermore, the optimal selection for the component of inhibitors mix-
ture system is proposed based on the frontier orbitals matching principle. The mixture of inhibitor molecules with 
higher EHOMO and the other with lower ELUMO will show higher inhibition efficiency. The inhibition efficiencies of 
15 kinds of mixed inhibitor systems, which are obtained using electrochemical method, show the same tendency 
as that predicted by the frontier orbitals matching principle. Thus a simple method is provided for the optimal 
selection of the component in the mixed inhibitors system. Using this principle we can optimize some potential 
mixed inhibitors systems according to the calculated molecular frontier orbital energy level distribution instead 
of so large number of screening experiments when the number of surfactants molecules available for selection is 
very large. So this principle also has the same important guiding significance in the mixture of surfactants.

Conclusions
The changes of the bonding interactions and the adsorption structures of mixed IM and OP molecules on Fe(001) 
surface was calculated using DFTB+  method. It shows that the inhibitor molecule with higher EHOMO donates 
more electrons while the inhibitor molecule with lower ELUMO accepts more electrons after mixture. Therefore, 
both the bonding interactions of inhibitors and inhibitor additives with metal surface are strengthened, and water 
molecules in the compact layer are further excluded. Moreover, the charge transfer resistance during the corro-
sion process increases. Accordingly, the frontier orbitals matching principle for the synergistic effect is proposed. 
The relationship between the EHOMO and ELUMO of the molecules in the mixed system, the Fermi level of metal and 
the inhibition efficiency of inhibitors mixture is established. The proposed principle is also verified using electro-
chemical method. Thus a simple quantum mechanics method for the optimal selection of the component in the 
mixed inhibitor system and the design of the surfactants is provided.

Materials and Methods
Modeling and theoretical methods. Firstly, interface structures of the inhibitors adsorbed on Fe(001) 
surface in aqueous environment were built. Then molecular dynamics simulation was carried out to obtain the 
most stable configuration as the initial interface structure for DFTB+  calculation. Subsequently, DFTB+  method 
was used to calculate the electronic structures and properties of interface structure, such as charge difference 
density, Milliken charge and partial density of states, to study the adsorption and electrons transfer behavior 
of inhibitor molecules on Fe(001) surface. Theoretical computations mentioned above were performed using 
Materials Studio (Accelarys Inc.) package38. Finally, the frontier orbital of inhibitor molecules were determined 
by means of Gaussian 09 software package39.

Figure 7. Frontier orbital energetic positions of surfactants (a) and the inhibition efficiency of inhibitors (b).



www.nature.com/scientificreports/

8Scientific RepoRts | 6:33252 | DOI: 10.1038/srep33252

Modeling. The interface structures with periodic boundary conditions were composed of Fe surface and solution  
containing water molecules and inhibitor molecules. Firstly, a metal surface, consisting of four layers, was built. 
Its size was 43.0 Å ×  43.0 Å ×  1.4 Å, containing 450 Fe atoms. All the atoms on metal surface were fixed during 
simulation process. Secondly, the solution layers were built, containing 1500 water molecules and 2 inhibitor mol-
ecules (referring to 2 OP molecules, 2 IM, or 1 OP molecule and 1 IM molecule for complex inhibitor). Finally, 
the interface structures were built by combining Fe surface with solution layers, and a vacuum region of 15.0 Å 
was set to avoid any arbitrary boundary effects40.

Molecular dynamic (MD) calculation. Firstly, water/inhibitors/Fe(001) system were optimized to mini-
mum energy using smart minimize tools using COMPASS force field41–43. Then MD simulation was performed 
using the Andersen thermostat44 at 298 K, NVT emsemble, with a time step of 1fs and the total simulation time 
of 100 ps. Finally, the lowest energy structure of inhibitor molecules adsorbed on Fe(001) in water environment 
were extracted from the balanced structures, which can be used as the initial interface structure for DFTB+  
calculation.

Density functional based tight binding (DFTB+) calculation. The interface structures obtained 
through molecular dynamic calculation were further optimized to minimum energy using DFTB+  method, 
and then the electronic structures and properties were calculated, including charge difference density, Milliken 
charge and partial density of states. In order to reduce the calculation cost, only 308 water molecules near metal 
surface were considered. During all the DFTB+  calculation, the Trans3d was used to describe the interaction of 
atoms45,46 and dispersion interactions47–49 were considered. The convergence criteria are listed as follows: energy 
is 0.02 Kcal/mol; force is 0.1 Kcal/mol/Å; displacement is 0.001 Å; SCC tolerance is 10−8 and K-point mesh is 
1 ×  1 ×  1.

Density functional theory calculation of frontier orbitals. The frontier orbital distributions of inhib-
itors were calculated using the Gaussian 09 software programs39 by means of the functional HSEh1PBE density 
functional theory formalism (DFT) and the 6–31G orbital basis set for all atoms. Two main quantum related 
parameters were considered: the energy of the highest occupied molecular orbital (EHOMO) and the energy of the 
lowest unoccupied molecular orbital (ELUMO).

Materials. Material used as working electrode was L245 mild steel, containing 0.13 wt.% C, 0.76 wt.% Mn, 
0.014 wt.% S, 0.022 wt.% P, 0.24 wt.% Si, and iron balance. Test solution was 3 wt.% NaCl solution, and the pH 
was adjusted to 3.0 using analytical grade sulfuric acid. Three kinds of inhibitors (imidazoline quantum salt (IM), 
quinoline quaternary ammonium salt (KL) and hexadecylpyridinium chloride pyridine (BD)) and five kinds 
of additives (Sodium dodecylbenzenesulfonate (SLS), Sodium dodecyl sulfate (SDS), octyl phenol ethoxylates 
(OP), fluorinated ether compound (FE) and benzotriazol (BTAH)) were used (chemical structure are shown 
in Supplementary Scheme 1). Among them, IM and KL were synthesized according to references50,51, and the 
productivities of IM and KL were 91.2% and 90.5%, respectively. Meanwhile, the structure of IM and KL were 
verified by infrared spectrum (IR). The other reagents were analytical grade. All the inhibitor mixtures involved 
were composed of 80 wt. % inhibitor and 20 wt. % additive.

Electrochemical measurements. Electrochemical measurements were carried out in a conventional 
three-electrode cell, using a Solartron-SI 1280B electrochemical workstation. L245 steel was used as working 
electrode. Graphite rod was used as counter electrode. Saturated calomel electrode (SCE) with Luggin capillary 
salt bridge was used as reference electrode. Specimens with size of ø12 ×  5 mm were cut from L245 steel as work-
ing electrode. Prior to each experiment, the working electrode was mechanically abraded with emery paper from 
400 # to 2000 #, then polished with diamond abrasive (0.5 μ m) to a mirror face. The electrode was rinsed with 
double-distilled water and dried in air.

Before each test, the test solution was purged with N2 (99.999%) for 2 h, and the open circuit potential (OCP) 
was recorded at the same time. Then 100 ppm IM or 100 ppm IM +  OP was added in the test solution, respectively. 
CO2 (99.999%) was introduced into the test solution for 30 min. Finally, linear polarization measurements were 
performed by polarization from − 10 mV ~ 10 mV vs. OCP with a scan rate of 0.1 mV·s−1. All potentials reported 
here are referred to SCE.
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