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Nucleation and strain-stabilization 
during organic semiconductor thin 
film deposition
Yang Li1, Jing Wan1, Detlef-M. Smilgies2, Nicole Bouffard3, Richard Sun4 & 
Randall L. Headrick1

The nucleation mechanisms during solution deposition of organic semiconductor thin films determine 
the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical 
spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability 
of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a 
supersaturated state before transforming to a solid film. Molecular aggregates corresponding to 
subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of 
the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical 
absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline 
films are cooled to ambient temperature they become strained although cracking of thicker films is 
observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed 
and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained 
to the lattice constants corresponding to the temperature at which they were deposited. Optical 
spectroscopy results show that the transition temperature between Form I (room temperature phase) 
and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-
stabilized up to 135 °C.

Methods for solution deposition of organic semiconductor thin films have proven to be far superior to vapor dep-
osition methods in many respects, such as the ability to create oriented films with extremely large crystalline grain 
size and exceptional carrier mobility1–5. However, the specific crystallization processes remain largely unknown, 
and no clear consensus has emerged on the mechanisms behind the stabilization of metastable polymorphs3,6,7. 
Classical nucleation theory posits that critical nuclei grow via attachment of monomers from supersaturated solu-
tion, while subcritical nuclei tend to thermally dissociate8. However, there is abundant evidence that a two-step 
process, where crystals grow via attachment of pre-nucleation clusters, takes place in a diverse range of materials 
systems9–11. In addition, delayed crystallization from a supersaturated solution12–15, and evidence for aggregation 
that is not correlated to crystal diffraction16–18 have been observed in the context of drying of polymer thin films 
and polymer blends. Deposition on heated substrates poses an additional challenge since the stable state at the 
deposition temperature can become metastable once the temperature is changed, typically to ambient condi-
tions. Here, we seek to understand both of these critical steps in the solution deposition process–nucleation 
and metastable state stabilization–by performing a combination of in-situ and post-deposition characterization 
experiments.

It is widely appreciated that molecular packing strongly affects the electronic couplings between neighboring 
molecules in solid materials, resulting in substantial peak shifts in absorption spectra relative to isolated mol-
ecules19,20. However, there have been relatively few reports of in-situ optical spectroscopy to monitor dynamic 
processes during solidification of organic semiconductor thin films12,17,21–23. Since the performance of electronic 
devices is heavily dependent on thin film morphology and structure, understanding and control of molecular 
self-assembly has significant practical implications. Moreover, understanding the effect of strain on the properties 
of small-molecule based organic semiconductors has recently emerged as an area of fundamental and practical 
importance24,25.
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In this paper, we demonstrate the application of real-time optical spectroscopy to study the crystallization 
process and polymorphic transformation of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) thin 
films. TIPS-pentacene is one of the most heavily studied prototypical organic semiconductors because of its solu-
tion processability and excellent device performance. It has previously been reported that that the π π− ⁎ absorp-
tion features of static TIPS-pentacene thin films are broadened and red shifted compared to solution spectra by as 
much as 40 nm26,27. We utilize in-situ optical spectroscopy to show that TIPS-pentacene crystallizes in a two-step 
process, where in the first step the film exists in a supersaturated form with no long range order, as reported pre-
viously based on in-situ synchrotron X-ray scattering and Polarized Optical Video Microscopy (POVM) results3. 
We report evidence that TIPS-pentacene molecules aggregate into small clusters in the supersaturated form. Thus, 
molecular ordering begins in the first stage of the film self-assembly process as a precursor to the development of 
long-range ordering.

Cour et al.3 have shown that strained small molecule organic semiconductor thin films can be obtained by 
solution deposition at elevated temperatures (60 °C and 90 °C for TIPS-pentacene). The strain is introduced after 
the deposition when the sample temperature is changed, as a result of the very large thermal expansion coefficient 
of the solid film relative to typical substrate materials such as silicon and glass3. Highly strained films are obtained 
after cooling unless the strain is relieved by cracking or buckling. In addition, TIPS-pentacene undergoes a bulk 
phase transition at 124 °C28. It has also been reported that it is possible to stabilize thin films in the high tem-
perature phase, known as Form II, to ambient conditions4. Here, we report that in-situ optical spectroscopy is 
highly sensitive to changes in molecular packing and to thermal expansion effects. We utilize this effect during 
thermal cycling in combination with X-ray diffraction measurements to verify that Form II TIPS-pentacene films 
deposited at 135 °C can be stabilized to room temperature if the film thickness is below the critical thickness for 
cracking. We have also performed similar experiments on room temperature phase (Form I) TIPS-pentacene 
thin films written at 25 °C. No phase transition occurs even when the sample is heated to 135 °C, which provides 
confirmation of the strain-stabilization model since no reduction of the transition temperature is observed.

Results and Discussion
In situ optical monitoring of the crystallization process. Wo et al.29,30 have shown that the film mor-
phology prepared by the hollow pen writing method is highly dependent on the writing speed. A schematic of the 
process is shown in Fig. 1(a). At low writing speed (<0.4 mm/s for room temperature deposition), the crystalli-
zation of TIPS-pentacene is an evaporation-induced process occurring at the contact line. Oriented and nearly 
single crystalline films can be produced because the crystallization is seeded by the solid film emerging from the 
meniscus. When the writing speed is increased above a critical value (≈2 mm/s), the dynamic meniscus becomes 
much larger as the solution is dragged out of the capillary by viscous forces, leaving a wet film. Then, the crystal-
lization no longer occurs at a well-defined contact line. Instead, nucleation occurs randomly to form a spherulitic 
grain structure3,29,30. We note that the grain morphologies obtained in the different speed regimes can also be 
observed for films deposited by closely related deposition methods such as zone casting, blade coating, and solu-
tion shearing, indicating that the processes involved are general and not specific to hollow capillary pen writing31.

Figure 2 shows results in the intermediate speed regime where the dynamic meniscus is beginning to stretch 
into a continuous wet film. Three regions of the film are observed during the deposition process: (i) the meniscus 
showing color fringes due to the rapidly varying thickness of the solution is at the left side of each image, (ii) a 
narrow featureless region is visible near the middle, and (iii) the solid film with crystalline grain structure. The 
middle region, which we will refer to below as the supersaturated region is completely dark in 90° cross-polarized 
microscopy and does not exhibit any color fringes, indicating that it is a very thin isotropic layer. The concentra-
tion of TIPS-Pentacene in this layer is much larger than the solubility limit (≈50 mg/ml in toluene at 25 °C) since 
the layer thickness is indistinguishable from the thickness of the final solid film. The width of this region increases 
from 22 μm at a writing speed of 0.2 mm/s to 59 μm at 0.4 mm/s, to 198 μm at 1 mm/s as shown in Fig. 2(a–c). 
We can place the entire reflectometer data collection spot in the supersaturated region using a 20× objective lens 
when the writing speed is 0.4 mm/s, as shown in Fig. 2(d). Thus, we are able to obtain reflection spectra for the 
supersaturated region and compare them to the reflection spectra of both the meniscus and the solid thin film. 
Note that we move the substrate rather than the pen for these measurements so that the meniscus and super-
saturated regions are always stationary relative to the microscope objective, as shown in Fig. 1. It is necessary to 
perform the experiment in this mode because the time to collect a complete optical spectrum is rather long (1 s.). 
We also observe that the grain size becomes smaller and less oriented as we approach the critical writing speed, 
in agreement with previous results30.

Typical reflection spectra for each region are shown in Fig. 2(e). Since we plot these spectra as reflection per-
centage, absorption features appear as downward peaks. Three peaks at 549 nm, 593 nm and 644 nm are observed 
for the meniscus spectrum, which is characteristic of the single molecule π-π* exciton. The three peaks form a 
Frank-Condon series due to vibronic coupling in the molecule, which gives rise to a progression of absorption 
features labeled in Fig. 2(e) as 0 → v (v = 0, 1, 2, …) where v is a vibrational quantum number in the E1 excited 
electronic state32. Fringes from thin film interference effects are sometimes observed in these spectra, but are gen-
erally too weak to significantly shift the peak positions of the vibronic absorption features. The E0 → E1 transition 
absorption peaks broaden and red shift as the solution drys and crystallizes. The red shifts for 0 → 2, 0 → 1 and 
0 → 0 absorption peaks in the supersaturated region are 5 nm, 11 nm and 15 nm respectively; additional details 
are shown in Supplementary Table S1. There is further broadening and a large red shift when the supersaturated 
region transforms to solid. The red shifts for the solid film are 33 nm, 51 nm and 56 nm for 0 → 2, 0 → 1 and 0 → 0 
absorption peaks respectively. A peak at ≈440 nm is observed in all three spectra, which has been assigned to an 
intramolecular excitation26. Since these measurements are in reflection mode, the peak positions may be shifted 
from the absorption positions by dispersion of the real part of the refractive index. However, in Fig. 2(e) and 
Supplementary Table 1, the solid film reflection peak positions are within 5 nm of the corresponding absorption 
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Figure 1. (a) Schematic of the real-time optical reflectance and microscope system integrated with the 
hollow capillary pen writer. A camera is used to monitor the growth process and a spectrometer is used to 
simultaneously collect reflection spectra. A mirror with an aperture is inserted into the light path to select a 
small area of interest, as indicated by the dark spot in (b). The sample shown in the optical image is made from 
an 8.7 mg/ml TIPS-pentacene solution. The writing speed is 0.4 mm/s and the deposition temperature is 25 °C. 
This film is made on a Si/SiO2 substrate and the rotatable polarizer placed at 45° in order to provide improved 
contrast on the grain structure. (c) A typical real time reflection spectrum. For real-time reflectance, silicon is 
used as the substrate and the experiment is done without any polarizers.

Figure 2. Optical microscopy images at different writing speeds: (a) 0.2 mm/s, (b) 0.4 mm/s, (c) 1 mm/s,  
(d) 0.4 mm/s at higher magnification. The solution concentration was 8.7 mg/ml. From left to right, three 
regions can be seen during thin film deposition: meniscus, supersaturated region marked by vertical white lines, 
and solid film. In (a–c) films were prepared at 25 °C on silicon wafers with 300 nm silicon dioxide layer, and the 
images was taken using a 45° polarizer. In (d) a microspectrophotometer is used to collect real-time reflection 
spectra from the darkened region indicated by a white circle. The conditions are similar to (b) except that a Si 
wafer was used as substrate and no polarizers were used. The scale bars are 200 μm for (a–c), and 50 μm for (d). 
(e) Real-time reflectance spectra for three regions during solution deposition at 0.4 mm/s and 25 °C on Si (with 
no oxide layer). The final film thickness for this sample was ≈30 nm.
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peak positions for reference films on glass measured in transmission (see Supplementary Fig. S1), indicating that 
dispersion effects are relatively small for the measurements on silicon substrates.

Excitonic coupling is very sensitive to the molecular packing and modifies the optical and photo-physical 
properties of the material. When two transition dipoles are side by side, their relative orientation causes absorp-
tion peaks to shift, and this effect can be classified into either J-type or H-type depending on whether the dipoles 
are head-to-tail [θ < 54° in Fig. 3(e)] or face-to-face, respectively. In the case of molecular aggregates (e.g. 
dimers or trimers), the excitonic interaction between the molecules results in splitting of the excited states. For 
J-aggregates, an optical transition to the lower excited state is allowed as shown in Fig. 3(b). Thus, a red shift of 
absorption peaks is expected for J-aggregates. TIPS-pentacene in crystalline form assume a 2D brickwork pack-
ing33. Each TIPS-pentacene molecule interacts with its nearest neighbor molecules [Fig. 3(f)]. Since the molecules 
are packed in a head-to-tail configuration with both θ1 and θ2 < 54°, the crystal is itself expected to have the char-
acteristics of J-type excitonic coupling. However, the larger number of molecules in the crystal causes the excited 
states to form bands [Fig. 3(c)].

The aggregates in the supersaturated region are smaller than the critical nucleus size so that - in both classical 
and two-step theories–they continually form and dissolve34. Since we observe minimal broadening of the absorp-
tion features, we deduce that the majority of the TIPS-pentacene molecules are actually incorporated into aggre-
gates at this stage. We also find that in-situ X-ray scattering results are consistent with the solvent having almost 
completely evaporated as the the long-range ordering begins to develop, as shown in Supplementary Fig. S2.  
Therefore, it is likely that the crystallization process proceeds by incorporation of aggregates instead of from 
individual molecules. We infer that as the crystal is built up from these larger units, they may require some time 
to become fully integrated with the crystal. This may at least partially account for the slow increase observed in 
X-ray diffraction peak intensities after the initial formation of a solid film.

Strain-free optical spectra vs. deposition temperature. It is well known that strain in TIPS-pentacene 
thin films can lead to thermal cracking3,35. As we have discussed above, the strain is introduced upon changing 
the temperature of solid films due to thermal expansion or by a phase transformation. We anticipate that strain 
can cause noticeable peak shifts in absorption spectra. Therefore, we have carried out a study of the optical spec-
tra of freshly made crystalline films recorded at their deposition temperatures in order determine the intrinsic 
unstrained optical absorption peak position at each temperature. We also utilize relatively thick films (>100 nm) 
in order to minimize the potential influence of surface or interface confinement effects on the molecular packing 
(film thickness versus temperature is shown in Supplementary Fig. S3). These results provide a reference for addi-
tional measurements on strained layers as a function of film thickness, which we report below. Figure 4(a) shows 
examples of spectra covering the entire range of the low temperature phase (Form I) from room temperature up 

Figure 3. Energy level diagrams for (a) a molecule, (b) a J-aggregate and (c) a J-crystal. The corresponding 
structural diagrams are: (d) a TIPS-pentacene molecule, (e) the molecular arrangement of a TIPS-pentacene 
aggregate, and (f) the TIPS-pentacene crystalline unit cell. Excited states (E1) split when molecules form 
aggregates (b) and become bands in the crystalline form (c). When the TIPS-pentacene forms a crystal, each 
molecule interacts with its near neighbors; the angles θ1 and θ2 shown in (f) both affect the absorption peak 
position. Note that in (e,f) only the packing of the molecular cores are represented for simplicity; the side groups 
above and below the layer are not shown.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:32620 | DOI: 10.1038/srep32620

to and beyond the bulk transition to Form II at 124 °C. We plot the spectra as a function of photon energy instead 
of wavelength in order to more easily compare to the energy diagram shown in Fig. 3(c).

Since the reflection feature associated with the 0 → 1 absorption peak (A1) is the strongest among the three 
lowest energy features, this peak height was chosen to study the structural evolution, as shown in Fig. 4(b) (addi-
tional results for peaks A0 and A2 are shown in Supplementary Fig. S4). The most pronounced features of this 
plot are the blue shift of the reflection features as the temperature is increased and the excellent sensitivity of the 
method to deposition temperature changes as small as 10 °C. A blue shift–that is, a shift towards higher energy–
in the solid state absorption features generally corresponds to a narrowing of the bandwidth, denoted as W in 
Fig. 3(c). The results are in good agreement with X-ray diffraction results for bulk powder samples if we interpret 
the temperature dependence as being related to thermal expansion effects. For example, the thermal expansion 
coefficient is known to increase for TIPS-pentacene as the temperature is increased in the Form I28, which is in 
agreement with the increasing slope of the data in Fig. 4(b) as the temperature increases. It is interesting that 
there is a sudden change of slope at the bulk transition temperature, which may signal the phase change. Chen 
et al.28 have speculated that the phase transition involves the rearrangement of the two bulky side groups of the 
TIPS-pentacene molecule. Therefore, since the optical absorption features are mainly sensitive to the packing of 
the molecular cores as we have discussed above, it is not surprising that there is no sudden jump at the transition 
temperature, which one would normally expect for a first order phase transition. The lack of first-order transi-
tion behavior in the packing of the core molecules is a key result, since it helps to explain why we can sweep the 
temperature of samples through the phase transition without re-nucleating the grain structure, which we do not 
observe (See the following two subsections).

Cracking of films during cooling vs. film thickness. In previous work, strained lattices were obtained 
by depositing TIPS-pentacene thin films at elevated temperatures (60 °C and 90 °C)3. When thin films are con-
strained to a substrate with a much smaller coefficient of thermal expansion, elastic energy builds up during cool-
ing of the sample, and it relaxes as free edges are created through cracking. Since the elastic energy is proportional 
to the film thickness, thinner films can accommodate a higher strain before failing. In principle, films that are not 
entirely continuous can release strain without cracking. However, we find that in practice cracks generally appear 
with a final spacing of a few microns, so that pinholes and even stripe-like morphologies have a minimal effect 
on the cracking behavior.

We have prepared films with different thicknesses at 125 °C and then cooled them to 25 °C while acquiring 
in-situ optical spectra during the cooling process. In-situ optical spectroscopy results for the cooling process are 
shown in Fig. 5, and Table 1 summarizes the writing conditions, film thicknesses, and the cracking temperatures. 
We can see in Fig. 5(a) that the 740 nm thick film cracks almost immediately during cooling. Our strain model 
predicts that when the thickness is large, the strain energy quickly exceeds the cracking threshold, thus causing 
the reflectance peaks to shift towards their strain-relaxed positions. Consequently, the optical data for this sample 
nearly tracks the behavior of the unstrained films, as we observed in Fig. 4(b).

We can distinguish between a nucleation driven phase transformation and strain relaxation by the sequence 
of cracking. In the first case, the cracks propagate outward from a nucleation point, as we have recently observed 

Figure 4. In-situ reflection spectroscopy monitoring of TIPS-pentacene thin films prepared as a function 
of temperature from 25 °C to 135 °C. The reflection spectra were measured at the deposition temperature of 
each film. (a) reflection spectra collected at 25 °C, 125 °C and 135 °C. (b) the peak shift of the reflectance feature 
corresponding to the 0 → 1 absorption peak (A1) versus deposition temperature. The writing speed was kept at 
0.05 mm/s. Glass slides were used as substrates and the concentration of solution was 1.5 mg/ml. By convention, 
the films made above 125 °C are called Form II and films deposited below 125 °C are called Form I.
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during crystallization of C8-BTBT (2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene) from solution36. In the 
second case, cracks appear with widely distributed positions and then increase in density, i.e. there is no obvi-
ous center of nucleation. As we can see in Fig. 5, the cracking appears progressively and the grain structure is 
unchanged, suggesting that the cracking is due to strain. Figure 5 also shows results for a thick film prepared at 
25 °C and then subsequently heated to 125 °C. During heating the films buckle due to compression rather than 
cracking from tension. Buckling also leads to cracking and also relaxes strain so that we do not observe a large 
hysteresis between the heating and cooling curves in Fig. 5(b).

The absorption peak positions versus temperature during cooling for several additional samples listed in 
Table 1 are shown in Fig. 5(c). The peak positions are all nearly the same at the starting temperature in spite the 
large range of thicknesses because they are initially unstrained. A strong correlation between cracking of the 
film and the observed shifting of the absorption peaks can be seen. This behavior is consistent with the strain 
model, which predicts that thinner films can accommodate a higher strain, and thus the cracking temperature is 
depressed further and further as the film thickness is reduced. Moreover, the optical peak positions relax towards 
the unstrained positions as the temperature is lowered once the temperature is decreased below the cracking 
temperature. However, they shift gradually rather than abruptly and the peak width does not broaden apprecia-
bly. This suggest that the film distributes strain relaxation over a region roughly comparable to the crack spacing.

The final film morphologies of a series of samples deposted at 125 °C and then cooled to room temperature 
are shown in Fig. 6. We note that the results closely reproduce the film thicknesses and grain morphologies of 
the films deposited on glass described above, but the thermally oxidized Si substrates used for this set of samples 
produce higher quality optical images owing to the reflection from the substrate itself, as opposed to glass which 

Figure 5. (a) Comparison of heating and cooling for thicker films. The left sequence shows the deformation 
and cracking of a thick film made at 125 °C during cooling (740 nm, see Table 1), and the sequence on the right 
shows buckling and cracking of a thick film made at 25 °C during heating (10 mg/ml; 0.02 mm/s; thickness was 
230 nm; glass substrate). The scale bars are 50 μm. (b) In-situ optical reflectance spectroscopy A1 peak positions 
for each sample as a function of temperature. Blue circles: film made at 125 °C and then cooled to 25 °C. Red 
circles: film made at 25 °C and then heated up to 135°. Black squares: absorption peak positions of unstrained 
films reproduced from Fig. 4. (c) Thickness dependence of real-time optical reflection peak shifts in the cooling 
process. Samples with different thickness were made at 125 °C on glass slides and then cooled down to 25 °C. 
The film thicknesses, writing speeds, and cracking temperatures are shown in Table 1. The black square symbols 
with error bars show the peak position for strain-free films prepared at different temperatures reproduced from 
Fig. 4. The colored square markers and arrows indicate the temperatures that cracks start to appear.

Writing speed (mm/s) d (nm) Tcr (°C) ΔTcr (°C)

0.02 740 123 2

0.05 320 110 15

0.08 177 89 36

0.1 148 69 56

0.2 105 57 68

0.3 70 44 81

0.4 44 − >100a

Table 1. Cracking temperatures versus film thickness for films written at 125 °C on glass slides. The 
concentration of the solution was 2.1 mg/ml in mesitylene. aThis film did not crack.
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reflects very little light. The images reveal that the density and size of the cracks changes as the film thickness is 
reduced. The crack directions are mostly perpendicular to the writing direction (the stripe direction, close to 
the a-axis of TIPS-pentacene), consistent with the fact that the films tend to contract along the a-axis by a large 
amount during the cooling due to the large thermal expansion coefficient along that direction. For the thicker 
films (266 and 164 nm), numerous straight features are observed that do not appear to be cracks. Rather, we spec-
ulate that they are deformation-induced twins since they exhibit polarization contrast that is rotated with respect 
to the orientation of the surrounding grains. As the film thickness is reduced (134 and 95 nm) the straight features 
are gradually replaced by more jagged, open cracks. This pattern persists at 64 nm, except in a few thinner spots. 
Finally, when the film thickness is 38 nm, cracks are entirely absent.

These results strongly support the strain model since the data shows that the films are strained, and that 
deformation and cracking are a result of strain exceeding a critical limit. One could also invoke possible interface 
energetic effects or confinement effects to qualitatively explain some of the phenomena. However, strain is a vol-
ume effect, and as such it is expected to strongly dominate over interface effects for layers more than 1 to 2 unit 
cells in thickness.

Metastable polymorph fabrication and stabilization. In this section we report thermal stability 
results for Form I and Form II films during thermal cycling between 25 °C and 135 °C. The goal of this study is to 
observe whether the optical peaks can shift when lateral relaxation of the film is constrained by the substrate and 
no cracking or buckling occurs. This situation can be modeled by adding a strain term to the free-energy equa-
tions that govern the phase transition, which favor the unstrained phase under a give set of conditions37. In the 
present case, since we predetermine the strain by controlling the deposition temperature, we are able to engineer 
one or the other phase to be the unstrained phase.

The films are deposited under the conditions shown in Table 2. Very thin ≈30 nm films are obtained that 
have an isotropic in-plane structure composed of spherulitic grains. This type of grain structure is effectively 
a two-dimensional powder structure, which greatly simplifies grazing incidence wide-angle X-ray scattering 
(GIWAXS) measurements since reflections from grains with many different in-plane orientations can be obtained 
in a single exposure. The films also have the advantage of being highly continuous (see Supplementary Figs S5–S7).

In-situ optical reflection results are shown in Fig. 7 for samples A and B. No cracks appear in either film after 
thermal cycling (see Supplementary Figs S5 and S6). For the Form II sample, there is only a very small shift in the 
peak position during the cooling and heating cycle, indicating that Form II can be stabilized to 25 °C if no cracks 
occur to relieve the strain. The Form I films are stable at room temperature indefinitely, and during annealing up 
to 135 °C. A small reversible peak shift is observed when the sample is heated from 25 °C to 135 °C. Temperature 
cycles with longer annealing times at 135 °C (not shown) have not revealed any additional peak shift–that is, the 
peak position does not progressively shift with time. It is conceivable that a small amount of reversible buckling 
occurs during heating. Alternately, there could be a reversible rotation of the molecules within the unit cell, even 
though the overall lattice constants are constrained by the substrate.

The stability of Form I up to and beyond the bulk transition temperature at 124 °C is a key results since it is 
inconsistent with certain models for polymorph stabilization that postulate interface energetics or confinement 
effects as a mechanism for the stabilization6. These models predict that the transition temperature between Form 

Figure 6. Polarized optical microscopy images of films prepared at 125 °C and then cooled to room 
temperature. The writing speeds in (a–f) are 0.05, 0.08, 0.1, 0.2, 0.3 and 0.4 mm/s respectively and the 
corresponding film thicknesses are 266, 164, 134, 95, 64 and 38 nm. The writing direction is along the long axis 
of the grains in each case. The film deposition conditions are identical to those given in Table 1, except that they 
were deposited onto Si/SiO2 substrates instead of glass slides in order to improve the optical contrast to grain 
structure and defects.
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II and Form I should be suppressed further and further as the film thickness is reduced and interface energetics 
become dominant, and that Form II can be stabilized at room temperature for a thin enough film. As a conse-
quence, Form I thin films should spontaneously transform to Form II well below the bulk transformation tem-
perature, potentially even (eventually) at room temperature for very thin films. In contrast, as we have already 
mentioned above, we do not observe such an effect in Fig. 7. In addition, we have shown that there is no large 
nucleation barrier for the Form I to Form II transition, since it would cause a large hysteresis in the heating part 
of the temperature cycle, which we do not observe in Fig. 5. Thus, our results clearly confirm that strain is the only 
plausible mechanism behind polymorph stabilization of TIPS-pentacene thin films, in agreement with previous 
work3.

In order to verify that the optical spectroscopy results correlate to structure, we have also performed X-ray dif-
fraction experiments on TIPS-pentacene thin films. Figure 7(b,c) show in-situ grazing incidence X-ray scattering 
results for a Form II thin film (sample D in Tables 2 and 3). The film was deposited at 135 °C and then cooled to 
25 °C. Microscopy images in Supplementary Fig. S7 show that the film is composed of comet-shaped spherulitic 
grains, and that no cracks appeared as the film was cooled to 25 °C. Comparing Fig. 7(b,c), we see that the (10L), 
(01L), (11L), and (20L) reflections do not shift significantly in the in-plane (Q||) direction. This indicates that the 
crystalline lattice is constrained to the substrate. However, some of the reflections shift along the Qz direction, 
which indicates that there is a vertical contraction or reorganization within the crystalline unit cell as the sample 
is cooled. These results are completely consistent with the optical spectroscopy results shown in Fig. 7 for sample 
B, which suggest that there is almost no change in the molecular packing within each crystalline layer as the Form 
II sample is cooled to 25 °C.

Sample Form T (°C) Speed (mm/s) Conc. (mg/ml) Solvent Thickness (nm)

Aa I 25 4 8 Toluene 32

Ba II 135 8 20 Mesitylene 26

Cb I 25 0.8 8.7 Toluene 25

Db II 135 4 22 Mesitylene 30

Table 2. Deposition conditions for isotropic thin films. aFilms A and B were deposited on glass substrates. 
bFilms C and D were deposited on Si/SiO2 substrates.

Figure 7. (a) In-situ reflection spectroscopy data for constrained TIPS-pentacene thin films during cooling and 
heating cycles. The upper data set is for a Form II film with a thickness of about 26 nm, and the lower data set is 
for a 32 nm Form I film. These two films are listed as B and A respectively in Table 2. Microscopy images of the 
Form I and Form II sample after heating and cooling are given in Supplementary Figs S5 and S6 respectively. 
(b,c) In-situ μGIWAXS of a Form II TIPS-pentacene thin film made at 135 °C, on a Si/SiO2 substrate. This 
sample is referred to as D in Tables 2 and 3. (b) X-ray scattering pattern at the deposition temperature of 135 °C. 
(c) X-ray scattering pattern of the same film after cooling to 25 °C.
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A Form I sample was fabricated at 25 °C (Sample C in Tables 2 and 3) for comparison. Grazing incidence 
X-ray scattering results for this sample are shown in Supplementary Fig. S8. The in-plane lattice constants listed 
in Table 3 are calculated from the Q|| positions of the (10L), (01L) and (11L) reflections, which are themselves 
given in the Supplementary Table S2. In Table 3, we see that Form II is expanded along the a-axis and it is con-
tracted perpendicular to the a-axis relative to Form I. This latter dimension is most accurately given by b sin γ. 
Most interestingly, we see that the in-plane lattice constants for the Form II sample (sample D) hardly change 
on cooling to 25 °C, indicating that the film is constrained to the substrate. This confirms the conclusion of our 
optical study that the crystalline lattice is constrained to the substrate under conditions where no cracking occurs. 
We also note that it has previously been found that the a-axis of aligned TIPS-pentacene thin films prepared by 
the pen writer method is parallel to the deposition direction30. The large positive thermal expansion along the 
a-axis in an aligned film means that cracks tend to occur perpendicular to the writing direction when samples 
are cooled from high temperature to room temperature. As we have already noted, this observation explains the 
predominant direction of the cracks in aligned thin films, such as those shown in Fig. 6.

Methods
TIPS-pentacene (≥99%, Sigma Aldrich) solutions were prepared with either toluene (semiconductor grade, 
99%, Alfa Aesar) for room temperature deposition, or with mesitylene (98%, Sigma-Aldrich) for all elevated 
temperature (>25 °C) depositions. Either silicon wafers [Figs 1(c) and 2(d,e)] or glass slides [Figs 4,5 and 7(a)] 
were used as substrates for thin films fabricated for spectroscopy measurements and for unpolarized microscopy. 
Silicon with a 300 nm thermally grown silicon oxide layer was also used as substrates for polarized microscopy 
experiments since the grain structure contrast is enhanced due to an optical interference effect produced by the 
oxide layer. The substrates were sonicated in toluene, acetone, and isopropanol for 7 min. and then treated with 
phenyltrichlorosilane (PTS, ≥97%, Sigma Aldrich) to ensure proper wetting for the TIPS-pentacene solution. 
PTS treatment was accomplished by immersing the cleaned wafer or glass slide into a toluene solution of 3 wt% 
PTS and heated to 110 °C for 15 h under a Nitrogen overpressure to prevent evaporation of the solvent. After PTS 
treatment, the substrates were sonicated in toluene, acetone and isopropanol for 1 min. each.

A polarizing optical microscope (Olympus BXFM) with ultra-long working distance objective lenses is used 
to observe the thin film growth in real-time. The system includes an integrated UV-Vis spectrometer (Angstrom 
Sun Technologies Inc.) to acquire reflectance spectra over a selected small area, as shown in Fig. 1. Spectra were 
converted to absolute reflection percentage by comparion with a silicon mirror with a well-known reflectivity. A 
silicon mirror was placed behind the glass substrates [Figs 4,5 and 7(a)], which serves to improve the signal and 
absorption contrast, as well as reducing peak shifts due to index of refraction dispersion. In the hollow capillary 
writing process, deposition is carried out by allowing the solution held in a rectangular capillary to make con-
tact with the substrate, followed by lateral translation of the substrate at a constant writing speed1. The sample 
is mounted on a thermoelectric module for temperature control. Heating at cooling rates are about 30 °C/min 
unless otherwise noted.

In-situ micro beam grazing incidence wide angle X-ray diffraction (μGIWAXS) was performed at the Cornell 
High Energy Synchrotron Source (CHESS) on the D1 beamline. X-rays with an energy of 10.74 keV (λ = 1.15 Å) 
were focused to a beam size of 20 μm × 20 μm using a single-bounce X-ray capillary38. The incidence angle was 
0.14° and the scattering patterns were recorded using a Pilatus 200K area detector with a pixel size of 172 μm.  
Si/SiO2 wafers were used as substrates for all of the X-ray experiments Fig. 7(b,c) and Table 3. Film morphology 
and film thickness were characterized by atomic force microscopy (AFM).
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