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Crosswell electromagnetic 
modeling from impulsive 
source: Optimization strategy 
for dispersion suppression in 
convolutional perfectly  
matched layer
Sinan Fang1, Heping Pan1, Ting Du2, Ahmed Amara Konaté1, Chengxiang Deng1, Zhen Qin1, 
Bo Guo1, Ling Peng1, Huolin Ma1, Gang Li1 & Feng Zhou1

This study applied the finite-difference time-domain (FDTD) method to forward modeling of the  
low-frequency crosswell electromagnetic (EM) method. Specifically, we implemented impulse sources 
and convolutional perfectly matched layer (CPML). In the process to strengthen CPML, we observed 
that some dispersion was induced by the real stretch κ, together with an angular variation of the phase 
velocity of the transverse electric plane wave; the conclusion was that this dispersion was positively 
related to the real stretch and was little affected by grid interval. To suppress the dispersion in the 
CPML, we first derived the analytical solution for the radiation field of the magneto-dipole impulse 
source in the time domain. Then, a numerical simulation of CPML absorption with high-frequency pulses 
qualitatively amplified the dispersion laws through wave field snapshots. A numerical simulation using 
low-frequency pulses suggested an optimal parameter strategy for CPML from the established criteria. 
Based on its physical nature, the CPML method of simply warping space-time was predicted to be a 
promising approach to achieve ideal absorption, although it was still difficult to entirely remove the 
dispersion.

To achieve an ultimate prospecting distance of 900 m1, the operating frequency of the crosswell electromagnetic 
(EM) method is usually applied at 5–1000 Hz and the scale of a crosswell target is usually below 10 m. These con-
ditions result in a large boundary condition requirement in crosswell EM numerical simulation. We adopted the 
well-known finite-difference time-domain (FDTD) method with convolutional perfectly matched layer (CPML) 
to solve the forward modeling problem for low frequencies and small areas.

Based on the classical perfectly matched layer (PML)2,3, a complex frequency-shifted perfectly matched 
layer (CFS-PML)4 with strict causality was proposed. The CFS-PML can be set up near the target to decrease 
the number of grid cells and the memory required for efficiency in geophysical modeling. This process is easily 
performed in lossy, dispersive, or anisotropic media. The most critical advantage of the crosswell EM is that 
CFS-PML can maintain a weak late time reflection and powerfully absorb electromagnetic waves of a certain 
frequency5, which is pivotal in low-frequency modeling and has been successfully verified6. As a mature and effi-
cient scheme to implement CFS-PML, CPML resolved the convolution between the complex frequency-shifted 
stretching function and the spatial derivatives of the magnetic and electric fields, which creates heavy computa-
tional complexity7,8.

Even though CPML was derived from elegant formulations, reality does not present such ideal condi-
tions. The advantages of CPML noted above were not optimal in low-frequency modeling9, and the lack of 
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optimality was suspected to produce numerical dispersion that gave rise to grid noise10,11. Because the second-order  
FDTD method suffered from anomalous numerical effects arising from numerical dispersion, high-order 
finite-difference and pseudo-spectral Maxwell solvers were proposed to effectively reduce discretization12. 
However, unfortunately, when the method based on high-order algorithms was implemented in CFS-PML, it was 
found that high-order PML exhibited absorption performance similar to that of the 2nd-order PML13. Moreover, 
in contrast with the traditional recursive convolution (RC) method to evaluate recursion, piecewise linear recur-
sive convolution (PLRC)14 and trapezoidal recursive convolution (TRC)15 methods were proven to be more accu-
rate, as was the case for high-order PMLs. If a high-order accuracy algorithm is the best solution for numerical 
dispersion in CPML or if the key to promoting the efficiency of CPML is to suppress numerical dispersion, the 
answer most likely resides in the absorption mechanism of CPML.

Research on the dominant absorption frequency of CPML has been in depth and widely applied5,12, whereas 
the research on numerical dispersion in CPML has only just begun10; this research has theoretically deduced 
the restrictions of grid interval in the linear dimension but has neglected the stretched coordinate interspaces in 
three-dimensional (3D) CPML. In this fundamental study on the crosswell EM, we focus on the origin, presenta-
tion and restriction of dispersion in 3D CPML.

Methods
First, this section introduces the role and evaluation of pivotal CPML parameters that enable the absorption 
results to satisfy crosswell EM requirements. Then, we deduce and reveal the inevitable dispersion in outer CPML 
that prevents CPML from being ideal; as a result, the endeavor to promote CPML is given a theoretical basis.

Pivotal parameters in CPML. Theoretically, CPML is based on stretched-coordinate Maxwell equations 
and the no-reflection situation that plane waves propagate in any stratified medium according to the constraint 
law of constitutive parameters; the purpose is the absorption of electromagnetic waves by the parameters α 
(degrees of freedom of the stretching factor), σ (conductivity) and κ (real stretch). The key parameters of CPML 
are summarized in Table 1.

In the Maxwell equations considering the stretching factors in CFS-PML and eliminating sources in the fre-
quency domain, the Laplace operators in 3D Euclidean space are rewritten as general types. For example, the Sez 
(the stretching factor in the Z direction and on the electric field component) can be described as follows4:

κ
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α ε
= +

+
S

jw (1)
ez ez

ez
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where αez is the degrees of freedom of the stretching factor in the Z direction and on the electric field, σez is the 
conductivity in the Z direction and on the electric field in CFS-PML, κez is the real stretch in the electric field’s Z 
direction16, and ε is the permittivity of the background medium.

After the Maxwell equations are transformed into the time domain, the CPML algorithm arises from the con-
volution of stretching factors. Eq. (2) represents the dispersive form of electric field Ex in the X direction in the 
time domain17 and can be generally applied in both the inner modeling space and the outer absorbing boundary:

Parameter synthesis Meaning Physical/numerical effect

α  (αez, αmz, αinn, αout) degrees of freedom
determine the characteristic 
absorption frequency, 
suppress dispersion

n grid number
recast the 
size of real 
space

codetermine 
the 
absorption 
efficiency

σ (σez, σmz, σout) conductivity
transform 
the EM 
energy into 
heat energy

κ (κez, κmz, κout) real stretch
dilute the 
EM energy 
by warping 
the space

Sez stretching factor the curl factor of rectangular 
or stretched coordinates

f, fa frequency fa is the characteristic 
frequency of absorption

aez, bez, ψexy, ψexz interim parameters simplify the computational 
complexity 

δ grid interval cause the dispersion in 
conventional grids

Table 1. Summary of pivotal parameters in a CPML.
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where Δ t denotes the time interval, Δ y and Δ z are the space intervals in the Y and Z directions, and the points  
in time are expressed as the superscripts of the electric field (Ex), magnetic field (Hz, Hy) and convolution terms 
(ψexy, ψexz).

The updating principle of the CPML algorithm is as follows: the real stretch κez in the Z direction and on the 
electric field component is only renewed in CPMLs that are perpendicular to the Z coordinate, and the real 
stretch κey in the Y direction and on the electric field component is only renewed in CPMLs that are perpendicu-
lar to the Y coordinate; their values remain 1 in other cases. ψ + . i j k( , , )exy

n 0 5  and ψ + . i j k( , , )exz
n 0 5  are the discrete 

convolutional terms. ψ + . i j k( , , )exz
n 0 5  is only renewed in CPMLs that are perpendicular to the Z coordinate, and 

ψ + . i j k( , , )exy
n 0 5  is only renewed in CPMLs that are perpendicular to the Y coordinate; their values remain 0 in other 

cases. Take the renewed equation of ψ + . i j k( , , )exz
n 0 5  as an example:
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where the interim parameters aez and bez are as follows:
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The renewed equations of Ex (Eqs (2),(5)) can be extended to other components of the electromagnetic field. 
On the basis of the conventional renewed equations of FDTD17, CPML innovates two parameters5: α and κ. This 
research investigates the dispersion caused by κ, from which we acquire the optimal parameters for CPML.

Referring to Eq. (1), the characteristic frequency of a CPML in the Z direction can be described as follows5:

α
πε

=f
2 (6)a

ez

If κez =  1, then only αez and αmz (the degrees of freedom of the stretching factor in the Z direction and on the 
magnetic field) differentiate CPML and PML. When f > >  fa (f is the frequency of the incident wave), αez in Eq. (1) 
can be neglected, which means that the efficiency of the CPML-absorbing high-frequency incident wave is close 
to that of PML6. When f < <  fa, Sez in Eq. (1) should be real and it is beyond the ability of the CPML to absorb 
low-frequency incident waves at that moment5. Therefore, the characteristic frequency fa determined by αez is 
regarded to be the dominant absorption frequency of the CPML.

Restricted by the updating principle of ψ + . i j k( , , )exy
n 0 5  in Eq. (3), conventional CPMLs change their α only in a 

direction perpendicular to the perfect electric conductor (PEC) layer. For example, αez changes linearly from αinn 
(the value of αez in the innermost boundary) to αout (the value of αez in the outermost boundary) to ensure that 
the incident wave of a particular bandwidth is absorbed homogeneously17.
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where l is the grid number from the innermost boundary to the current boundary and L is the number of bound-
ary layers. The first step to set up the parameters of a CPML is to determine αinn and αout with Eq. (6) and then 
calculate all α using Equation (7).
σez (the conductivity in the Z direction) and σmz (the permeability in the Z direction) directly affect the 

absorption efficiency of electromagnetic waves in CPMLs. Small σez and σmz will lead to strong reflection by the 
PEC, whereas overlarge σez and σmz will generate apparent induction fields in CPMLs5. Considering the zero 
reflection condition on the layer interface of a PML, σez and σmz in the direction perpendicular to a PEC layer 
best promote absorption efficiency according to the exponential distribution between the background and the 
appropriate value:
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where m is the exponential power, generally from 2 to 4; σinn (conductivity of the innermost CPML) is equal to 
the background conductivity; and σout (conductivity of the outermost CPML) is ξ times that of σinn (coefficient 
ξ <  10). After we determine the assignments of σez and σmz, the choice of σout affects the pivotal role of the absorp-
tion efficiency of the CPML.

Additional κ impacts on dispersion of the CPML. Greater attention to κez and κmz (the real stretch in 
the Z direction and on the magnetic field) in the CPML is required. The present visualized understanding is that 
κez and κmz bring about stretched coordinates of grids and contribute the same as conductivity: the larger the 
values of κez and κmz, the more intense the absorption efficiency. In forward experiments, if κez and κmz are larger 
than a certain value, there will be a continuous reflected wave whose waveform is distorted and whose amplitude 
is even greater than that of the incident wave. This is the typical characteristic of dispersion10. Based on this dis-
covery, we assumed that κez and κmz will cause dispersion in CPML grids. Therefore, this section deduces a theory 
following the dispersion and then analyzes the anisotropy of phase velocity from difference approximations.
κez is described by Eq. (9) in the Z direction perpendicular to the PEC layer17:

κ κ κ κ= + −
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where κinn =  1 (the real stretch value of the innermost CPML) and κout is usually 5–11 (the real stretch value of 
the outermost CPML)18.

In accordance with αez in Eq. (7) and σez in Eq. (8), κez in Eq. (9) exponentially increases in a direction perpen-
dicular to the PEC layer. In other words, these pivotal parameters are isotropic when parallel with the PEC plane. 
The following equations on dispersion in a 3D CPML can be simplified to 2D. If the CPML is perpendicular to 
the Y coordinate and the incident TE wave from any angle is perpendicular to the Z coordinate, then the electric 
vector is a transverse field to the Z coordinate. This is the so called “TEz pattern,” whose plane wave solutions in 
free space are as follows:
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Equation (2) then leads to the 2D discrete Maxwell equation of the TEz pattern in the CPML, as shown in 
Eq. (11). The values of κez and κmz are 1, whereas convolution terms ψ + . i j( , )eyx

n 0 5  and ψ i j( , )mzx
n  are 0 because of the 

CPML being perpendicular to the Y coordinate. Consequently, Eq. (11) is shown as a simplified result:
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Then, we insert the plane wave solution of the TEz pattern (Eq. (10)) into Eq. (11) and combine it with the 
trigonometric identity:

− − + =p q p q p qcos( ) cos( ) 2 sin( )sin( ) (12)

After Ex, Ey and Hz are removed with this step, the dispersion in the 2D CPML is revealed in Eq. (13). Iteration 
of the convolution element ψ + . i j( , )exy

n 0 5  is based on the updating principles in Eq. (3) and is valued according to 
Eqs (7–9); bez in Eq. (4) and aez in Eq. (5) are always less than 0.01. aez < <  1/κezΔ z and bez ≈  0 relative to the 
renewed Eq. (2) of FDTD. Therefore, ψ + . i j( , )exy

n 0 5  and ψ i j( , )mzy
n  in Eq. (11) can mostly be ignored. Strictly speak-

ing, ψ + . i j( , )exy
n 0 5  and ψ i j( , )mzy

n  remain 0 before the incident wave arrives; however, the dispersion is an inherent 
attribution of the CPML and the iteration of the convolution is feasible based on these considerations. Eq. (13) is 
the final simplified result from dispersion in the 2D CPML when κ2 =  κezκmz:
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Because of the influence of κ, the dispersions of CPML and FDTD are different. For the sake of a visual 
description of such dispersions, the conventional uniform grids are unified as Δ x =  Δ y =  δ (δ represents the cube 
grid interval) and wave vectors satisfy Eq. (14):
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where θ is the angle between the Y coordinate and the propagation direction of the TEz pattern plane wave in the 
CPML. Substituting Eq. (14) into Eq. (13) results in the following:
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Because k =  ω/vϕ =  2π/λ (λ is the wave length of the incident wave) and Δ t meets the Courant stability condi-
tion, it is reasonable that ω∆ <t 1/6 3 Eq. (15) is approximated by the following:

πδ θ λ
πδ θ λ

θ πδ θ λ
πδ θ λ

θ
κ






 = +ϕv

c
sin ( sin / )

( sin / )
sin sin ( cos / )

( cos / )
cos

(16)

2 2

2
2

2

2

2

2

Equation (16) means that vϕ (the phase velocity of TEz pattern plane wave) is relevant to θ, λ/δ and κ in the 
CPML. This relationship can be interpreted using three two-dimensional polar plots (see Fig. 1). One interpreta-
tion of Fig. 1 is that CPMLs are perpendicular to θ =  0°, the incident angle of the plane wave is θ from the arc, and 
the 4 curves represent vϕ/c (the ratio of the plane wave’s phase velocity and the velocity of light) corresponding to 
different λ/δ. Three representative cases are listed: (a) κ =  1, (b) κ =  2, (c) κ =  5. The smaller the distance between 
the center and the curve, the smaller the phase velocity corresponding to θ, λ/δ and κ, which means that the dis-
persion in CPML is more severe.

When κ =  1, Fig. 1(a) shows the dispersion rule in conventional grids; the dispersion in uniform grids rises 
significantly until λ/δ increases to 10 and the dispersions in the directions of θ =  0° and θ =  90° are most intense. 
Although κ increases in Fig. 1(b,c), it is still the case that vϕ decreases when λ/δ decreases, and the dispersion 
is invariant compared with κ =  1 in the direction of θ =  90°. However, the grids’ dispersion increases relatively 
in Fig. 1(a), and vϕ decreases as κ increases, especially in the direction of θ =  0°, which means that the vϕ values 
differ greatly from vϕ in uniform grids, and vϕ/c <  1/κ exists no matter how much λ/δ increases. Therefore, the 
dispersion in the CPML mainly occurs in the outer layers, where κ is proximal to κout, as well as in the direction 
perpendicular to the PEC layer.

In the attempt to suppress the grids’ dispersion, our biggest concern is the simulation region where vϕ/c is 
undersized and serious dispersion is generated. To highlight the influence of the CPML parameter settings on the 
grid dispersion, Fig. 2 illustrates the relationship among κ, λ/δ and vϕ/c from Eq. (16) when θ =  0°. The dispersion 
is merely tolerable near κ =  1, and it is invalid to simply reduce the grid spacing to suppress the dispersion of 
the CPML after κ >  1. However, the values of κ and λ/δ in conventional CPMLs (inside the dashed box) lead to 
vϕ/c <  0.2 and the grids’ dispersion is too serious to ignore.

Because the increase in κ results in the increase in both absorption efficiency and dispersion, the assignment 
of κout should give consideration to both. If the dominant frequency of an electromagnetic source is relatively 
high, the skin effect will be strong. In this case, solely depending on σ is sufficient for absorbing electromagnetic 

Figure 1. The anisotropy of vϕ/c after difference approximations in a CPML. (a) For κ =  1, the relationship 
among θ, λ/δ and vϕ/c. (b) For κ =  2, the relationship among θ, λ/δ and vϕ/c. (c) For κ =  5, the relationship 
among θ, λ/δ and vϕ/c.
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waves and κout should be small so that the dispersion is negligible. If the dominant frequency of the electromag-
netic source is relatively low, the absorption efficiency from σ will decrease simultaneously. Nonetheless, κout with 
large values may offset this shortage.

Results
Because the dispersion is severe in conventional CPML, we should take actions to suppress it without sacri-
ficing too much absorption efficiency. CPML forward experiments show that it is more complex to evaluate 
wave fields under relatively low-frequency conditions than under relatively high-frequency conditions. In 
this section, a frequency with an electromagnetic wavelength less than the forward boundary is defined as  
“relatively high-frequency,” whereas electromagnetic wavelengths greater than that are referred to as “relatively 
low-frequency.” This section focuses on simulation accuracy and optimal parameter setting to overcome the dis-
persion in the CPML. From relatively high-frequency modeling and snapshots, we verify the preceding conclu-
sions and develop a qualitative understanding of dispersion suppression. Then, after the relatively low-frequency 
experiments are accomplished with an established set of criteria for absorption, we confirm optimal parameter 
settings from statistical results of abundant modeling. However, the analytical solution of a magnetic dipole pulse 
must first be solved as a foundation.

The analytical solution of a magnetic dipole pulse. To analyze the absorption mechanisms of CPMLs, 
it is necessary to exclude medium influences during forward modeling; therefore, it is more dialectical to deduce 
the analytical solution in a vacuum.

Research on the crosswell EM commonly adopts magnetic dipole sources in a time-harmonic field19–21. In this 
research, the pulsed field with a magnetic dipole source is introduced into low-frequency crosswell EM modeling 
for enhancing transmit power1. This pulsed field makes the receiving coils observe the primary field during pulse 
emission and the secondary field after pulse stop, thereby improving the exploration efficiency of the crosswell 
EM. Thus far, analytical solutions of electromagnetic fields have been primarily deduced from time-harmonic 
dipole sources and step-field dipole sources; however, research on analytical solutions of magnetic dipole pulses 
has not been well developed. We start with the analytical solution in the time domain.

In spherical coordinates of free space, there is a normal component of a radiation field in the plane where a 
magnetic dipole source is located22:

π
θ= + −θ

−H M t
r

jkr k r e( )
4

(1 ) sin
(17)

jkr
3

2 2

where M(t) is the magnetic dipole moment, r is the distance between receiving and transmitting coil, and θ is the 
angle between the normal direction of the receiving coil and the line through the receiving and transmitting coil. 
Substituting the wave number k =  ω/c into Eq. (17) gives the following:

Figure 2. The relationship among κ, λ/δ and vϕ/c. 
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Eq. (18) is then converted from the frequency domain to the time domain as follows:
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Finally, we achieve the radiation field equation of a magnetic dipole pulse in the time domain:
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The analytical solution at the receiving coil is combined with M(t) (the formula of a magnetic dipole pulse) 
and Eq. (21) and is used in the following sections.

The dispersion law from relatively high-frequency modeling experiments. In this section, a series 
of CPML absorption experiments is carried out in a vacuum with relatively high-frequency pulses. Because the 
dispersion is confirmed when using conventional CPML, it is indispensable to improve CPML parameter settings 
for qualitative understanding.

The regulation of κez from Eq. (9) indicates that dispersion occurs mainly in the outer layers of a CPML and 
barely in the inner layers where the value of vϕ/c is approximately 1. As long as the absorption boundary condition 
guarantees that the electromagnetic waves reflecting back into the inner space eventually are within γ (an accept-
able proportion), the requirements for dispersion in a CPML are not as strict as those in an inner space using 
FDTD. It is pivotal that high-frequency waves from the outer layers of the CPML are absorbed by the inner layers 
of the CPML; as a consequence, αinn with a large value in Eq. (7) has a certain level of suppression of dispersion.

To verify the existence of dispersion and the feasibility of parameter setting in a CPML, numerical simulation 
experiments in a 3D vacuum were implemented. As shown in Fig. 3(a1), a magnetic dipole source transmits a 
Gauss pulse in the position p0 inside the modeling region. The maximum frequency of the source is close to the 
frequency that satisfies numerical dispersion conditions in a uniform grid. This scheme highlights the impact 
of dispersion from stretching grids. 32 CPML layers and 1 PEC layer were implemented outside of the dashed 
boxes in Fig. 3 as the absorbing boundary (2 m grid spacing) to amplify the variation of electromagnetic wave 
phase velocity in the CPML. Based on the dominant frequency of the pulse source (2 ×  107 Hz) whose pulsating 
wave length is less than 60 m, αinn and αout were calculated from Eq. (6); therefore, we can compare the inhibition 
results from possible αinn and αout (such as pa and pb in Fig. 4).

Figure 3 displays snapshot aggregations of Hz (the Z component in the magnetic field) combining 3 groups 
of parameter settings (pa, pb, pc) and 4 moments. The XY plane of the snapshots is perpendicular to the Z coor-
dinate in a vacuum and at the same depth as the transmitting coil. The color bar indicates the values of Hz. 
The parameter settings of pa are κout =  5, αinn =  8.4 ×  10−4 and αout =  2.8 ×  10−4; the parameter settings of pb are 
κout =  5, αinn =  2.8 ×  10−4 and αout =  8.4 ×  10−4; and the parameter settings of pc are κout =  11, αinn =  8.4 ×  10−4 
and αout =  2.8 ×  10−4. Parameter settings pa and pb show the absorption effect of high-frequency dispersion waves 
with different αinn and αout. Parameter settings pb and pc show the appearance of dispersion from different κout.

Figure 3(a1–c1) displays the moment that the Gauss pulse has been transmitted and electromagnetic waves 
have just entered the inner CPML, where there is no obvious reflection from the absorption boundary. The wave 
field characteristics for these three different parameter settings are almost the same, and the wave fronts of Hz are 
circular, which indicates that the dispersion is negligible in the internal forward area with a uniform grid.

For the next moment in time (see Fig. 3(a2–c2)), the wave fronts of Hz have entered the outer CPML. The 
shape of the wave front has transformed from rounded to rectangular; this phenomenon is reasonably explained 
by the relationship between θ and vϕ in Fig. 1(c). Moreover, the waveform in the CPML of Fig. 3(c2) is signifi-
cantly different from those in Fig. 3(a2,b2). The lines p1, p2 and p3 indicate that the coordinates of the head wave 
and p1 and p2 are closer to the PEC than p3, which indicates that the propagation velocity of the electromagnetic 
wave is slower in Fig. 3(c2). This effect is demonstrated in Fig. 4(b), which includes the time-domain curves of 
Hz at a position 4 m from the PEC (such as circle b in Fig. 4). The time when the head wave arrives shows that 
the propagation velocity in conditions pa and pb are the same, although faster than in pc. In other words, the 
propagation velocity is primarily related to κ, which proves the validity of the relationship between κ and vϕ/c in 
Eq. (16).

Then, at the moment in time of Fig. 3(a3–c3), electromagnetic waves are absorbed by the CPML for the most 
part, except for the area adjacent to the PEC shown as position P4. This phenomenon is the typical dispersion that 
the electromagnetic field is continuously inducing after the wave front has gone through the grids. If the grids are 
in a vacuum, the components of the electromagnetic field will increase exponentially. In fact, parameter settings 
of pa, pb and pc share the same conductivity, which will produce equal damping effects on an electromagnetic 
wave and dynamic equilibriums on absorption and dispersion. As a result, the amplitude of Hz in the outer CPML 
can be taken as a key measure of dispersion. Relative to Fig. 3(a3,b3), the amplitude of Hz in Fig. 3(c3) is larger 
in a broader area, whereas oscillatory waves are closer to the inner CPML. Especially remarkable high-frequency 
reflection appears in position P4 caused by the outer CPML, where κ is larger and the grids are more likely to 
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Figure 3. Snapshots of absorption effects in CPMLs at the same depth as the emission source. Under 
the condition that other parameters remain constant, the parameter settings of (a1)–(a4) are κout =  5, 
αinn =  8.4 ×  10−4 and αout =  2.8 ×  10−4; the parameter settings of (b1)–(b4) are κout =  5, αinn =  2.8 ×  10−4 and 
αout =  8.4 ×  10−4; and the parameter settings of (c1)–(c4) are κout =  11, αinn =  8.4 ×  10−4 and αout =  2.8 ×  10−4. 
The time of (a1)–(c1) is 0.48 ×  10−6 s; the time of (a2)–(c2) is 0.74 ×  10−6 s; the time of (a3)–(c3) is 1.11 ×  10−6 s; 
and the time of (a4)–(c4) is 1.39 ×  10−6 s.

Figure 4. Hz variation over time with three parameter settings given as pa, pb and pc. Corresponding to 
Fig. 2 (a1), (a) is the forward solution in (100,40) and (b) is the forward solution in (100,4); both are in the 
CPML.
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initiate extensive dispersion. Regardless, the inference of Eq. (16) is proven to be coincidental with the wave field 
snapshots.

The wave field is similar to Fig. 3(a4–c4) over a long time, which means that the dispersion is simultaneously 
suppressed and aroused. When we compare the dispersions between Fig. 3(a4) and Fig. 3(b4) in the outer CPML 
and combine them with the Hz modeling results from pa and pb in Fig. 4(a), it can be seen that the absorption 
of dispersion in pb is poor, which confirms that the high-frequency electromagnetic waves are indeed produced 
by dispersion. Therefore, larger αinn enables the inner CPML to possess a higher dominant absorption spectrum, 
and the dispersion waves from the outer CPML can thereby be better suppressed. The coverage area of distinct 
dispersion is extensive in pc because of the large κout that forces the inner CPML to start dispersion early. There 
is some dispersion disturbance in the area whose incidence angle is less than 30° in Fig. 3, and the disturbance is 
positively correlated with incident angle, which conforms to the regulation of vϕ/c and θ seen in Fig. 1(c).

In sum, Figs 3 and 4 jointly prove that some dispersion is generated in CPML grids when κout >  1. The qual-
itative analysis of optimal parameters shows that small κout effectively reduces dispersion at the source, whereas 
large αinn partly enhances the inhibitory effect of dispersion. Unfortunately, αinn is fundamentally unable to elim-
inate dispersion caused by κout; otherwise, the CPML method is a promising way to achieve ideal absorption by 
infinitely increasing κout.

Next, we employ the energy of the entire wave field to estimate the dispersion standard and absorption quan-
tity in the CPML (see Fig. 5). Low energy implies the successful absorption of the CPML after the source is turned 
off (the moment of T1). Within the time that the head waves propagate from the inner CPML to the outer CPML 
(the period from T1 to T2), the decline rates of energy in pa-pf gradually accelerate and differ little from each 
other because of the gradually enhanced absorption efficiency in the CPML, whereas the dispersion is not at all 
prominent. Shortly afterwards, the head waves reflect to the inner CPML (the period from T2 to T3), the energy 
gradients reach maximum and the curves of pa-pf begin to appear significantly different when electromagnetic 
waves are mainly absorbed by the outer CPML and different dispersions appear. The energy gradients of pa-pf 
continuously decrease after the moment of T3; moreover, the curves are significantly distinguishable and compre-
hensively display the absorption effects from various parameters. Consistent with the conclusions of Figs 3 and 4, 
large αinn (such as pa, pc and pe) well restricts the dispersion when κ values are the same, small κ (such as pe and 
pf) results in small dispersion when αinn and αout are identical, and αinn contributes less and less to the suppression 
of dispersion, along with increased κ.

Generally speaking, the optimal parameter settings of the CPML should seriously consider dispersion prob-
lems caused by κout. If the dispersion is intolerable, then κout =  1. How should the value of κout be determined, 
and does κout have relevance to other parameters? To answer these questions, the next section will provide the 
interpretation employing a low-frequency pulse.

The strategy for optimal parameters from low-frequency modeling experiments. A severe chal-
lenge to low-frequency electromagnetic modeling is the large skin depth. Although CPML can obtain wonderful 
absorption characteristics for low-frequency electromagnetic waves, it is beyond their abilities to ideally absorb 
electromagnetic waves through only 8 layers.

Therefore, experiments were conducted to evaluate the absorption effects of the CPML with a low-frequency 
pulse in a vacuum. We found that, except for the key parameters (αout and κout) in the high-frequency experiment, 
the grid numbers from the source to the innermost CPML (n) and the conductivity of the outermost layer (σout) 
are significant. In the process of the absorption of low-frequency electromagnetic waves, αinn and αout still deter-
mine the dominant absorption frequency of the CPML and combined n (the grid number from the transmitting 
coil to the innermost CPML), κout and σout influence the absorption effect.

Figure 5. The energy of the wave field in the time domain from six parameters. 
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First, the requirements of αinn and αout with a low-frequency pulse are discussed. Because the basic frequency 
of a Gauss pulse fbasic∈ (0,3/τ), the energy of a Gauss pulse is maximum when the frequency f =  0 and is reduced 
to 0.048 times the maximum when f =  3/τ (τ is the base width of the Gauss pulse). In this section, τ =  0.0004s 
in Fig. 6(a) results in fbasic∈ (0,7500)Hz. Moreover, the basic degree of freedom of the stretching factor αbasic∈ 
(0,120 ×  10−8) restricts the scope of αinn and αout by Eq. (6). CPMLs are generally set as 8 layers due to the restric-
tions of computer memory. If the space between αinn and αout is too large, the intervals of each layer’s α will be too 
far apart to effectively cover the main frequency of the pulse referred to the scheme in Eq. (7). Further optimiza-
tion is studied to allocate αinn and αout for a low-frequency Gauss pulse.

Figure 6 displays the modeling results whose αinn and αout truncate (0.011 ×  10−8, 110 ×  10−8) into four equi-
distant sections in exponential coordinates. The modeling areas are similar to the high-frequency experiments. 
The Hz component in Fig. 6(a) is from a receiving coil located in the same plane (vertical to the Z coordinate) as a 
transmitting coil 144 m away. The modeling result with αout =  11 ×  10−8 differs from the analytical solution of the 
magnetic dipole Gauss pulse from Eq. (21). It is meaningful to highlight the approximation between modeling 
results and analytical solutions; accordingly, the relative error13 is introduced:

= ×






− 




Error t

Hz t Hz t
Hz t

( ) 20 log
( ) ( )

max( ( )) (22)

forward reference

reference
10

where Hzforward(t) is the time-domain Hz of the forward modeling results, Hzreference(t) is the time-domain Hz in 
Eq. (21). According to Error(t) in Fig. 6(b), the overall relative error is minimum when αout =  0.11 ×  10−8 and is 
maximum when αout =  0.011 ×  10−8. Figure 6(c) shows the curves of average energy of the inner modeling area at 
each moment; the energy attenuation is fastest when αout =  0.11 ×  10−8, which is near the characteristic attenua-
tion of electromagnetic energy in a vacuum.

Based on Fig. 6, we confirm that αinn =  1.1 ×  10−8 and αout =  0.11 ×  10−8 are the optimal parameters for the 
Gauss pulse. The characteristic frequency of the CPML should be set to fay∈ (0.003/τ, 0.03/τ). Finally, the general 
optimal parameters for the Gauss pulse are as follows:

α πε τ= .0 06 / (23)inn

α πε τ= .0 006 / (24)out

Therefore, the CPML guarantees that the main energy of a low-frequency electromagnetic pulse can be 
absorbed, taking into account the high-frequency component.

In addition to determining the evaluation of αinn and αout, Fig. 6 suggests that the dispersive phenomenon is 
relatively faint in a low-frequency situation. As a consequence, the dispersion from the high-frequency compo-
nent avoids severe eruption when αout is small. How then do CPML impacts the absorption effect of relatively 
low-frequency electromagnetic waves on earth? Although mathematical derivation may be the most rigorous 
choice, the reality is that hundreds of reflections occur during a single pulse period and in the target area of the 
crosswell EM. Moreover, a large number of parameters with complex combinations are highly variable in the 
low-frequency experiments and derivation from formulas for the evaluation of absorption effects encounters 
discrepancies when compared with realistic modeling. Therefore, this section reports the implementation of 750 
modeling experiments whose parameters were reasonably refined locally to extract optimal n, κout and σout from 
practice.

Figure 6. The absorption effects of different αinn and αout. (a) is the contrast of modeling results 
and analytical solutions, (b) is the relative error of modeling changing over time, and (c) is the average 
electromagnetic energy of the inner modeling area at each moment.
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The grid number n from the transmitting coil to the innermost CPML was preset because of the elaborate 
degree of grids and the restricted size of the modeling area. Therefore, n was treated as constant. As is shown 
in Fig. 7, the combination of κout and σout influenced the absorption efficiency of CPML for three cases of n 
(named a, b, c). Considering the large range of values of κout and σout, among which the value we are more often 
concerned with is relatively small, the logarithmic coordinates were implemented in X and Y directions in Fig. 7. 
Additionally, several significant variables were extracted from Fig. 6: the relative errors at moment 1, the average 
value of relative errors in period 2 and period 3, and the average value of dumped energy in the fixed inner mod-
eling space in period 4. These variables established corresponding standards 1–4 in Fig. 7 to evaluate the absorp-
tion effects from different sizes of modeling space and different CPMLs. Standards 1–3 are based on relative errors 
whose logarithm operation emphasizes the minimums of modeling error. If the results from a combination of κout 
and σout are drawn as cool colors in Fig. 7, this combination is the exact optimal parameter setting we need for a 
low-frequency Gauss pulse.

Figure 7(a1–c1) and Fig. 7(a2–c2) reflect the influence of relative errors that κout and σout produce on the 
primary field at the receiving coil from the perspective of maximums and averages. Logarithmic curves (C1–C6) 
connect the minimum or cool color areas in each figure. The area of cool color increases and the whole relative 
error decreases when n increases. However, because the amplitude of Hz is inversely proportional to the third 

Figure 7. Relationships between the absorption effect of CPML and n, κout and σout a. n =  5 in (a1)–(a5); 
b. n =  11 in (b1)–(b5); c. n =  17 in (c1)–(c5). 1: (a1)–(c1) are relative errors of Hz in the receiving coil at 
the moment of 0.0002 s; 2: (a2)–(c2) are average relative errors of Hz in the receiving coil during the period 
0–0.0004 s; 3: (a3)–(c3) are average relative errors of Hz in the receiving coil during the period 0.0004–0.0008 s; 
4: (a4)–(c4) are average energies of the inner electromagnetic field during the period 0.0004–0.0008 s; 5:  
(a5)–(c5) are optimal indices based on the preceding data. σ0 =  2.936 ×  10−4S/m on the X axis.
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power of distance, the increase in n causes a decrease of Hz that is reflected from the PEC; therefore, the min-
imum relative error in Fig. 7(c1,c2) displays the electromagnetic energy’s diffusion. As a result, it was effective 
to reinforce the absorption of the primary field by expanding the modeling area. Moreover, Fig. 7(a1–c1) show 
the relative errors of the maximum pulse signal, among which the logarithmic curves move evenly and slightly 
in the direction of σout increase from C1 to C3, and the minimum areas of relative error move markedly in the 
direction of κout decrease. Fig. 7(a2–c2) shows the average relative errors of the receiving signal during the pulse 
transmission; the areas of minimum relative errors obviously become larger and move in the direction of κout 
decreases. Therefore, the optimal parameters for absorbing the primary field could be found from C1–C6: the 
optimal κout and σout both decrease with n increase. Therefore, if n is small, powerful absorption can be realized 
by simultaneously enlarging κout and σout in the CPML; if n is large, the energy of electromagnetic waves at the 
CPML is sufficiently weak to satisfy the absorption requirement merely through σout, whereas κout =  1 is the best 
choice for dispersion to be entirely removed.

Figure 7(a3–c3) and Fig. 7(a4–c4) were established with a single receiving coil and the entire modeling area, 
respectively; they reveal the influence of secondary fields from different κout and σout.. A difference from the pri-
mary field is that the areas of minimum relative error are mostly distributed as isosceles triangles whose vertex 
angles in each figure can be joined as a straight line (L1–L6). From the perspective of the relative error of the 
secondary field and the surplus energy of space, the horizontal gradient is much larger than the vertical gradient; 
therefore, the appropriate choice of σout is the key to promoting the modeling precision of the secondary field. 
Too small σout will reduce the absorption performance of the CPML, although too large σout will induce a strong 
current. If σout is constant, simply decreasing κout plays a minor role in reducing the relative error of the second-
ary field and suppressing the surplus energy in space. Therefore, the dispersion remains tiny in low-frequency 
conditions referred to Eq. (16). In contrast with Fig. 7(b3,c3), the shape of relative errors in Fig. 7(a3) is more 
similar to that in (a1) and (a2). Therefore, n ≤  8 (the modeling results are still similar up to n =  8) leads to strong 
reflection from the PEC and the distribution of relative error after the source turns off remains from the primary 
field. Additionally, the overall relative error in Fig. 7(b3) is not as small as in Fig. 7(c3), and L3 moves slightly in 
the direction σout increases. The outlines of Fig. 7(a4–c4) are similar, whereas the ranges of color bars differ by 
more than a factor of 10, which indicates that n depresses the secondary field’s energy more than κout and σout. To 
reduce the relative error of the secondary field, we should first implement n >  8, then use a value of σout near L6 
and keep κout small.

Unfortunately, the conclusions of Fig. 7 are inconsistent for the optimal parameters when the sizes or the 
periods are different. As a solution, the results of standards 1–4 were weighted averaged (see Fig. 7(a5–c5)), which 
comprehensively considers the error of each moment and each grid. Ultimately, the optimal combinations of κout 
and σout are the points P1, P2 and P3 in the conditions of each n.

As shown in Table 2, another two groups of optimal parameters were extracted from the modeling areas for 
which n =  8 and n =  14, with the addition of the optimal parameters P1, P2 and P3 from Fig. 7. There is some 
logarithmic relationship between optimal κout and σout at different n. Therefore, κout and σout both promote the 
absorption effect of the CPML, although a restriction mechanism exists. The interpretation of this discovery can 
be seen in Fig. 1: the value of dispersion is linear to κout in the CPML, whereas the electromagnetic absorption 
effect is exponential to σout

16; therefore, the logarithmic distribution of optimal parameters precisely corresponds 
to the conclusion. The key to absorbing the low-frequency electromagnetic wave is suppressing dispersion, 
and the dispersion caused by κout should be absorbed by the corresponding σout, just as in the high-frequency 
cases. Then, the combinations of optimal parameters at low-frequency are fitted from Table 2 (the fitting error 
R2 =  0.986.):

κ =





≤
>

− n
n

10 , 17
1, 17 (25)

out
n(17 )/6

σ = . × κ. × − .2 936 10 (26)out
0 00418 3 702out

The predicted optimal parameters were calculated from Eqs (25) and (26), whose modeling error-sums were 
smaller than those of the selected optimal parameters when n ≥  8. This conclusion also verifies the validity of 
Eqs (25) and (26). To the authors’ knowledge, there is no research that proves that the absorption frequency 

Variable Unit n = 5 n = 8 n = 11 n = 14 n = 17

Selected 
optimal 
parameters

log10(σ out/σ 0) 1 0.699 0.544 0.330 0.301 0.301

log10(κout) 1 2.000 1.699 1.000 0.477 0.000

σ out 10−4 S/m 14.680 10.276 6.283 5.872 5.872

κout 1 100.000 50.000 10.000 3.000 1.000

Error-sum 1 0.508 0.498 0.462 0.380 0.300

Predicted 
optimal 
parameters

σ out 10−4 S/m 15.279 7.907 6.421 6.010 5.887

κout 1 100.000 31.623 10.000 3.162 1.000

Error-sum 1 0.579 0.438 0.441 0.362 0.256

Table 2.  The statistics of optimal parameters from several values of n.
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is related to κout or σout and the selection standard of optimal parameters can thus be generalized to other 
frequencies.

The discussions above organize the strategy of optimal parameters in a CPML. First, αinn and αout are calcu-
lated by Eqs (23) and (24) based on the dominant frequency of the CPML. The maximum grid interval δmax is then 
constrained by the maximum frequency of the pulse and n ≥  8 so that the CPML can efficiently absorb the diffuse 
primary field. Finally, κout and σout are calculated with Eqs (25) and (26).

Discussion
The absorption of electromagnetic waves in a PML mainly uses the gradually increased σ in the absorbing bound-
ary. Essentially, the electromagnetic energy is converted into heat energy. Additionally, the real stretch κ in the 
CPML enlarges the realistic interval of the absorbing boundary, especially the outer layers for which the absorp-
tion efficiency is highest. Therefore, the CPML warps the space compared with a uniform grid in a conventional 
FDTD and the dispersion is an inherent characteristic of the tectonically warped space-time. The existence of 
this condition is why this research adopted “dispersion” instead of the universal “numerical dispersion.” As we 
can observe in Fig. 8, the exponential growth of κ accompanies the incremental degree of warped space-time. 
Therefore, the physical relevance of κ is the warp degree caused by the artificial substance, which is perhaps anal-
ogous to a Schwarzschild black hole23, as both a CPML and a Schwarzschild black hole can delay electromagnetic 
waves24. However, CPMLs are not yet able to totally simulate Schwarzschild black holes. Electromagnetic waves 
in CPMLs propagate in two opposite directions via the reflection of PEC layers before they are able to escape; in 
fact, CPMLs are not spheres with a Schwarzschild radius. Because of the restriction on grid numbers resulting 
from the memory limits of computers, space-time in CPMLs warps stepwise with slight interfacial reflection. 
Moreover, the forward results in CPMLs show that the span of a pulse diminishes and a blue shift appears.

The authors attempted to improve CPMLs by imitating the structure of a Schwarzschild black hole. We set 
singularities with significant κ in the 8 outer corners and guided electromagnetic waves to those corners by mod-
ifying κ. We moved the maximum κ to the outboard second layers so that a groove of space-time may fascinate 
electromagnetic waves. We attempted to promote renewal equations to high order in the CPML to remedy the 
dispersion; however, the attempts failed because the grids’ numerical dispersion was small, whereas the warped 
space-time’s dispersion is large. Nonetheless, we believe that an ingenious scheme will be developed to achieve 
ideal absorption by simply warping space-time.

Conclusion
Considering the relatively low transmitting frequency and small grid interval of the crosswell EM, we used the 
CPML as an absorbing boundary condition of an FDTD and derived the optimal parameters of the CPML to 
strengthen the advantages of the absorption of low-frequency electromagnetic waves. Theoretical analysis indi-
cated that dispersion in the CPML would inevitably appear when κout >  1 and that the dispersion would be severe 
when κout is large and the angle of incidence wave is small, as shown in Fig. 1.

High-frequency experiments proved that dispersion in the CPML exists, especially in the outer layer. 
Moreover, there is a positive correlation between dispersion and κout, and it is effective to suppress the 
high-frequency dispersion waves if αinn >  αout. Further experiments involving low frequencies established the 
evaluation standard for absorbing boundary conditions. For a Gauss pulse, Eqs (23) and (24) are the optimal 
parameter settings for αinn and αout. Finally, no matter how large the n values are, there is an optimal choice 
between the dispersion from κout and the absorption effect related to σout, as shown in Eqs (25) and (26).
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