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The Effect of Next-Nearest 
Neighbour Hopping in the One, 
Two, and Three Dimensional 
Holstein Model
Carl J. Chandler, Christian Prosko & F. Marsiglio

Allowing a single electron to hop to next-nearest neighbours (NNN) in addition to the closest atomic 
sites in the Holstein model, a modified Trugman method is applied to exactly calculate the effect on 
the polaronic effective mass in one, two, and three dimensions, building on the previous study of the 
one-dimensional NNN Holstein model. We also present perturbative calculations and a heuristic scaling 
factor for the coupling strength and ion frequency to nearly map the NNN Holstein model back onto the 
original Holstein model. When account is taken of the modified electronic bandwidth near the electron 
energy, we find that including NNN hopping effectively increases the polaron effective mass.

In the realm of BCS theory, it is well known that electron-phonon interactions in solid materials are integral to 
the emergence of superconductivity, as they are responsible for the effective attraction that leads to the forma-
tion of Cooper pairs1. On the other hand, the importance of electron-phonon interactions in high temperature 
superconductivity is not yet clear2. Since polarons are simply quasiparticles consisting of electrons dressed with 
the net effect of these electron-phonon interactions, it is important to understand this basic building block to fully 
understand conventional superconductivity, and possible extensions to nonconventional superconductors3. To 
this end, the problem of a single electron in the conduction band of a crystal lattice has been extensively studied4. 
Specifically, a numerically exact algorithm for solving the Holstein model with tight-binding electron bands in 
the thermodynamic limit was formulated in ref. 5, and now that problem is effectively solved. Several extensions 
were subsequently reported, including ones to better manage disparate electron (t) and phonon (ωE) energy scales 
(in particular, ωE ≪  t)6,7, higher dimensionality8–10, extended interaction range11,12 and inclusion of next-nearest 
neighbour (NNN) single-particle hopping amplitude13. In this last study it was found that including NNN hop-
ping in the one dimensional Holstein model altered significantly the electron’s effective mass in strong coupling.

The purpose of this paper is to follow up on this study. Thus far studies of polaron properties within the 
Holstein model have revealed that the effective mass becomes very large with rather modest electron-phonon 
coupling strength. This is incompatible with experiment, specifically with the evidence that some conventional 
superconductors have a large electron-phonon coupling strength, and yet show almost no sign of single-electron 
polaronic behaviour in the normal state14. Chakraborty et al.13 found that including NNN hopping in the 
one-dimensional Holstein model could decrease the polaron effective mass significantly, particularly at strong 
coupling. This is potentially very important since this is a means for lowering the polaron effective mass to a real-
istic level, such that an Eliashberg treatment15–19 makes sense.

To more fully understand the effects due to NNN electron hopping we will first present our perturbation 
theory calculations for the energy and effective mass of the NNN Holstein model in one, two, and three dimen-
sions. We use square and simple cubic lattices for two and three dimensions, respectively. These results agree for 
sufficiently low coupling strength with our exact numerical calculations using our previously refined algorithm 
for the Holstein model12 extended to include NNN interactions. We note that quantitative agreement with per-
turbation theory extends over a surprisingly limited range of electron-phonon interaction strength, even in three 
dimensions, which is the most applicable to bulk superconductors. A low phonon frequency approximation to the 
perturbation theory results suggests a scaling of the phonon frequency with the low energy effective bandwidth, 
which explains the results obtained as a function of NNN electron hopping. We also note an additional scaling 
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factor that accounts for the results with non-zero NNN hopping with respect to those with nearest-neighbour 
hopping only, over a more extended coupling strength range.

Since including NNN electron hopping also modifies the ‘effective’ electronic bandwidth (to be defined more 
precisely below), we should account for this in using the appropriate phonon frequency. That is, since altering the 
adiabatic ratio ωE/t, even in the case with NN hopping only, is known to lead to changes in the polaronic effective 
mass for the same coupling strength, then we should be careful to use an appropriately scaled phonon frequency.

After a brief introduction we use perturbation theory to determine the polaron effective mass in weak cou-
pling. Since these expressions are analytical, they are well-suited to examine the various scaling factors. We then 
present exact solutions, in one, two, and three dimensions, to examine the effect on polaron mass over the entire 
coupling range. We also note a heuristic scaling, found numerically, that very accurately maps the parameters 
with NNN hopping back to those without, before closing with a summary.

Model and Methods
Holstein model. The Holstein model20 is perhaps the simplest model for describing electron-phonon inter-
actions; it treats (optical) phonons as local ion vibrations, and assumes that each atomic site oscillates with the 
same characteristic frequency ωE. With NNN hopping included, the Hamiltonian that describes such a system is:

 

∑ ∑

∑ ∑ω ω

= − + − +

+ + + .

δ
δ δ

γ
γ γ+ + + +

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

† † † †

† † †

H t c c c c t c c c c

a a g a a c c

( ) ( )

( )
(1)

E E

j
j j j j

j
j j j j

j
j j

j
j j j j

,
2

,

Here, t and t2 are the nearest neighbour and NNN hopping integrals respectively with δ and γ being the vectors to 
the nearest neighbour and next nearest neighbour sites, respectively. The sum over the vector of site positions j 
covers all sites. The electron creation and phonon creation operators at site j are ˆ†c j  and ˆ†aj , respectively, and 
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 is a dimensionless measure of the electron-phonon coupling strength, with M being the atomic mass 

and α being the coupling strength as defined in real space.
In order to diagonalize this Hamiltonian, we transform into k-space, according to the equation:
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k is a wave vector summed over the First Brillouin Zone (FBZ). The relation 
for ̂ †c j may be obtained simply by taking the Hermitian conjugate of the above expression, and the bosonic Fourier 
transforms are defined almost identically. In the FBZ there are N distinct k values within π π− a a( / , / ) in each 
direction. The transformed Hamiltonian then becomes
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and holds for all dimensions with dispersion relations 


k( ) given in Table 1.
In this paper, we will examine various properties of the ground state, which for > −′t
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4
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momentum p. For all dimensions this results in a low energy dispersion Ep quadratic in p =  |p|, so that the ground 
state effective mass of the electron is given by:
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Weak-coupling perturbation theory. Beginning with the perturbative approach (in the weak coupling 
regime), we consider the electron-phonon interaction to be the perturbation, so that the unperturbed energy is 
simply = ≡

��
E p( )p p

(0)   . The unperturbed ground state for arbitrary p is therefore

Dim. 


k( )

1D − 2t cos ka −  2t2 cos 2ka

2D − + −t k a k a t k a k a2 (cos cos ) 4 cos cosx y x y2

3D
− + +t k a k a k a2 (cos cos cos )x y z

− + +t k a k a k a k a k a k a4 (cos cos cos cos cos cos )x y x z y z2

Table 1.  Electron dispersion relations for the Holstein model, allowing for next-nearest neighbour 
hopping.
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φ = .ˆ†c 0 (5)p p
(0)

Here, 0  is simply the electron-phonon vacuum state. Unperturbed excited states include all states with a single 
electron and any number of phonons such that the total crystal momentum still adds to p. It is easy to check that 
given these definitions, =E 0p

(1) , independent of the choice of total crystal momentum. Under these conditions, 
the energy correction to second order (in α or g) is:
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In this case, V̂pert is the electron-phonon interaction term of the Hamiltonian in Eq. 3. Note that only one phonon 
is considered in the unperturbed excited states because V̂ pert only creates (annihilates) one phonon. Upon evalu-
ating this sum, we may apply Eq. 4 to find the effective mass. In order to do so, we convert the sum in Eq. 6 to an 
integral over k-values, since the thermodynamic limit (N →  ∞ ) implies a continuum of k values between − π/a 
and π/a.

In the one-dimensional case, the corrected energy according to second order perturbation theory (in g) is
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where we have defined dimensionless parameters ω ≡ ω
E t

E  with β β ω β≡ + + + +b pa pa1 8 ( cos cos2 )E/2  
and β ≡ t t/2 . The above result, substituted into Eq. (4), gives an expression for the effective ground-state electron 
mass m* at p =  0:
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where b is evaluated at p =  0, and with λ ≡ ωg
W

2 E
2

, where W is the electronic bandwidth. This definition for λ 
applies for 3D as well, though in 2D, λ ≡ ω

π
g

t2
E

2
 is used. This definition is preferred by the authors since it better 

captures the density of states for a single electron in the band, and only differs by an integral multiple of π/2 any-
way. Note that in the above equation, we have normalized by the inverse of the electron band mass (unperturbed 
effective mass):
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More generally, evaluating for the second-order energy correction in two or three dimensions proves tedious, 
and has a cumbersome, unenlightening answer (as in eq. (8)). For these cases, we have also integrated the result 
numerically to check our analytical results. In the figures that follow, these are referred to as “numerically inte-
grated perturbation theory.”
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For an approximate analytical result, we observe that the integrand in the energy correction expression decays 
more or less to 0 by some k0 <  π for most small values of the parameters β and ωE. Cutting the integral off at this 
k0 and making the approximation that k 1 for k ≤  k0, we achieve the analytic approximations shown in Table 2. 
Unfortunately, these approximations prove to be rather crude in 2D and 3D, which limits their usefulness. 
Regardless, we present them alongside our numerically integrated results for completeness in Figs 1, 2 and 3. The 
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Table 2.  Approximate ground state effective mass for small ω ω≡ t/E E  and small β ≡ t t/2 , from weak-
coupling perturbation theory.

Figure 1. Numerically integrated perturbation theory, approximate perturbation theory, and exact 
numerical solution in 1D. Note that the approximate perturbation theory is on top of the numerically 
integrated perturbation theory so here the approximation in Table 2 works very well. We used parameter values 
of ωE/t =  0.1 and t2/t =  0.025.

Figure 2. Numerically integrated perturbation theory, approximate perturbation theory, and exact 
numerical solution in 2D. Here the approximate perturbation calculation fails quite badly even in the very 
small perturbative regime from g2 =  0 to g2 =  1. We used parameter values of ωE/t =  0.2 and t2/t =  0.025.
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approximations do work better for smaller ωE; however we have tested then in a reasonably physically represent-
ative regime of small ωE

12 and even here the agreement is poor.
Secondly, it is important to note that even without approximations, the range of coupling strengths over which 

the numerical perturbation theory is valid is very small. This feature is similar to our results for the standard 
Holstein model12 so we do not recommend using the perturbation calculations for physical predictions but only 
as a check on more powerful numerical calculations such as the Trugman Method.

Modified Trugman method for exact numerical solutions. The single polaron problem is solved 
here with the variational exact diagonalization method described in Bonča et al.5 and revised by the authors as 
described in refs 6,12 to account for a rapidly growing Hilbert space from the additional terms in the Hamiltonian. 
For the data included in these plots 20–100 preliminary diagonalizations were performed with the most strongly 
contributing basis states selected at each iteration to seed the next iteration. All results were converged for the 
effective mass. While our algorithm for generating basis states differs significantly from that of Chakraborty  
et al.13, our 1D results are in agreement with theirs and our algorithm permits efficient calculations in higher 
dimensions and for realistic values of ωE/t.

Note that the introduction of non-zero t2 leaves the bandwidth invariant; however it does alter the curvature 
of the dispersion relation near k =  0. The result is a different bare electron mass (see Eq. (9)) and, correspondingly, 
a different effective bandwidth. The different bare electron mass and different normalization of the effective mass 
has been noted before13, but the different effective bandwidth was not considered. If we take some small k a1/0 , 
and calculate the bandwidth in the region [− k0, k0] up to second order accuracy in k0, then we find the ratio of 
next-nearest neighbour bandwidth to nearest neighbour bandwidth to be:
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This suggests the phonon energy scale ωE also should be rescaled by the same factors to keep the ratio of 
phonon energy to effective bandwidth constant. The interaction strength parameter g is dimensionless and thus 
remains unchanged, though the electron-phonon interaction term in the Hamiltonian is rescaled since it is pro-
portional not simply to g, but to ωg E. It can be seen from the result in Table 2 that rescaling ωE by the effective 
bandwidth change would transform the NNN approximate effective mass onto that for NN hopping only. In other 
words, if we use a renormalized phonon frequency with the same value with respect to the effective electronic 
bandwidth, then the addition of next nearest neighbour hopping has no effect on the effective mass (according to 
Table 2). However these are only approximate perturbation calculations and the exact results show that the NNN 
effective mass is substantially different from the NN effective mass even when the proper scalings have been taken 
into account.

On the other hand, this rescaling of ωE (which was not done by Chakraborty et al.13), definitely reduces the 
effect of the NNN hopping on the polaron effective mass.

Figure 3. Numerically integrated perturbation theory, approximate perturbation theory, and exact 
numerical solution in 3D. Again the approximate perturbation calculation fails even in the very small 
perturbative regime from g2 =  0 to g2 =  3. We used parameter values of ωE/t =  0.3 and t2/t =  0.025.
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In Fig. 4 we compare the data with and without the scaling of ωE to the original Holstein model in 1D with 
= ± .t t/ 0 12 . The 1D case has no crossover coupling strength in the standard Holstein model, where the polaron 

effective mass suddenly begins to increase exponentially with coupling strength, and while t2 >  0 did decrease the 
effective mass somewhat, no crossover point was found for the NNN Holstein model in 1D either. Our results are 
in agreement with Chakraborty et al.13 for the same value (i.e. unscaled) of ωE. However, including the correction 
described in the preceding paragraph decreases the effective mass change and even the direction of the change. 
The 1D case is not very realistic for bulk materials so we continue with 2D and 3D calculations.

In two and three dimensions we find that for small NNN hopping parameters the effective mass deviates from 
the standard Holstein model only slightly until the crossover coupling strength in 2D and 3D is reached. At this 
point the effective masses increases sharply for both models. However, the introduction of non-zero t2 changes 
the crossover point slightly. We have included the unscaled results with the ωE/t scaled results for the sake of com-
pleteness in Figs 5 and 6 for 2D and 3D, respectively.

While our approximate perturbation theory suggests that the scalings of ωE/t given in Table 2 would map the 
NNN effective masses onto the NN effective mass, Figs 4, 5 and 6 make it clear that this scaling does not work 
very well except in the 2D case. The approximate perturbation theory only agrees exactly with the numerical 

Figure 4. Exact numerical results in 1D for t2/t = 0, ±0.1. Note that the effect of NNN hopping when the 
phonon frequency is scaled is smaller that that reported previously by Chakraborty et al. for identical values of 
NNN hopping. The scaling we have used also changes the direction of the scaling, as positive t2 now raises the 
effective mass and negative t2 lowers it. We use a relatively small value of ωE/t =  0.1 since phonon energies near 
the adiabatic regime are representative of real phonons in real materials.

Figure 5. Exact numerical results in 2D for t2/t = 0, ±0.025. Note that the scaling of ωE maps the NNN 
calculations back to the original. This is in agreement with our approximate perturbation theory results, though 
perhaps serendipitously since the approximate perturbation theory was not very close to the exact numerical 
perturbation theory.
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perturbation theory in 1D and there is no reason to trust even the numerical perturbation theory for the effective 
mass outside of very small coupling strength as we have remarked on other occasions12. In 2D the approximate ωE 
scaling suggested in Table 2 mapped the effective masses back close to that obtained with no NNN hopping, but 
in 1D and 3D it over-corrected the change in the effective mass. Also, not surprisingly, in all three dimensions a 
simple scaling does not work well in the very strong coupling regime. So in agreement with Chakraborty et al.13, 
NNN hopping does introduce changes in the properties of the polaron, and leads to a decreased effective mass 
for some additional (positive) t2 hopping if no phonon frequency scaling is introduced. But NNN hopping leads 
to an increased effective mass if the phonon frequency is also increased to account for the increase in the ‘local’ 
bandwidth. Most importantly for our understanding of the conventional framework for superconductivity, the 
inclusion of NNN hopping changes the critical coupling strength in 3D at which the effective mass increases 
sharply towards infinity (see the large coupling regime of Fig. 6).

Heuristic scaling. In the course of our investigations we further found a heuristic scaling of the coupling 
strength that, combined with the bandwidth-inspired scaling, works very well; however, the underlying physical 
motivation is still rather unclear. We introduce a scaling factor in the dimensionless interaction parameter 

⋅ =g B goriginal scaled such that the new term in the Hamiltonian is:

Figure 6. Exact numerical results in 3D for t2/t = 0, ±0.025. Note the change in the crossover coupling 
strength. Here it seems that the rescaling of ωE enhances the effect of the NNN hopping on the effective mass 
beyond the crossover point, albeit reversed in sign as was the case in 1D.

Figure 7. Exact numerical results in 1D, with g scaling for t2/t = 0, ±0.1. Note that the scale is much larger 
than that of Fig. 4 and the scaling works very well over the previous range, and improves the agreement with the 
numerical results at stronger couplings.
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∑ω +ˆ ˆ ˆ ˆ† †g a a c c( )
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j j j j

By experimenting with different values of B we found that in 1D, B =  1 +  4β and in 3D, B =  1 +  β work very well. 
These statements are validated in Figs 7 and 8 and at least for 3D this scaling is very accurate, even in the crossover 
regime.

Summary and Conclusions
We have performed weak coupling perturbation calculations for the Holstein model with next nearest neighbour 
(NNN) hopping and compared them with exact calculations in one, two, and three dimensions. We confirmed 
previous results obtained in one dimension by Chakraborty et al.13. However, we point out that a more appro-
priate comparison, at least in weak coupling, requires a change of the phonon frequency, ωE, as given in Table 2, 
for the case with NNN hopping. With this change accounted for we find that the effect of NNN hopping on the 
effective mass is opposite to the change without a phonon frequency change. Including t2 with the same sign as t 
reduces the polaron effective mass when the same phonon frequency is used, whereas including a change in the 
phonon frequency according to the changes in effective bandwidth as in Eqs (10) and (11) increases the effective 
mass in 1D and 3D. We feel that including the change in phonon frequency is the more physically correct proce-
dure. In two dimensions NNN hopping has very little effect on the effective mass in weak coupling.

In 1D and 3D we have also found a heuristic scaling factor for g, the dimensionless electron-phonon coupling 
strength, that maps the results for the polaron effective mass of the NNN Holstein model back onto the standard 
model without NNN hopping. While the physical reason for this effect is not known, this heuristic scaling allows 
us to crudely estimate how increasing t2 impacts the coupling strength at which the (sharp) crossover occurs for 
polaronic behaviour. For small values of t2/t the crossover remains in the regime of moderate electron-phonon 
coupling. Therefore it remains difficult to reconcile the fairly strong coupling attributed to some real metals/
superconductors with the diverging effective mass predicted for a single polaron at the same coupling strength.
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