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In silico identification of enhancers 
on the basis of a combination of 
transcription factor binding motif 
occurrences
Yaping Fang1,2, Yunlong Wang1,2, Qin Zhu1,2, Jia Wang1,2 & Guoliang Li1,2,3

Enhancers interact with gene promoters and form chromatin looping structures that serve important 
functions in various biological processes, such as the regulation of gene transcription and cell 
differentiation. However, enhancers are difficult to identify because they generally do not have fixed 
positions or consensus sequence features, and biological experiments for enhancer identification 
are costly in terms of labor and expense. In this work, several models were built by using various 
sequence-based feature sets and their combinations for enhancer prediction. The selected features 
derived from a recursive feature elimination method showed that the model using a combination of 141 
transcription factor binding motif occurrences from 1,422 transcription factor position weight matrices 
achieved a favorably high prediction accuracy superior to that of other reported methods. The models 
demonstrated good prediction accuracy for different enhancer datasets obtained from different cell 
lines/tissues. In addition, prediction accuracy was further improved by integration of chromatin state 
features. Our method is complementary to wet-lab experimental methods and provides an additional 
method to identify enhancers.

Understanding eukaryotic gene transcription and regulation is an important task in the post-genomic era. Gene 
transcription and regulation is a complex and multi-stage process involving many factors, such as enhancers 
and gene promoters. Enhancers are a class of non-coding regulatory DNA elements that interact with distal and 
proximal gene promoters with the help of activators or mediators. Since the first enhancer was discovered in 
SV40 DNA in 1981, many enhancers from different species have been identified1. It is now widely accepted that 
enhancers are present extensively in higher eukaryotes1,2. Enhancers play important roles in biological processes, 
such as gene transcription and regulation3, determination of the three-dimensional structure of chromatin4–6, 
cell differentiation6 and diseases7,8. Recent studies have shown that enhancers are complex regulatory elements 
that are associated with epigenetic information, such as histone methylation, open chromatin regions and tran-
scription factor (TF) binding sites9,10. For example, enhancers usually overlap with open chromatin regions and 
are associated with certain chromatin state11,12. Enhancers are generally classified into two groups according to 
their activities. The first group comprises the active enhancers, which are usually characterized by histone Lys4 
mono-methylation (H3K4me1) and histone Lys27 acetylation (H3K27ac). The other group comprises the poised 
enhancers, which are characterized by H3K4me1 and H3K27me313. In addition, enhancers may be transcribed 
into RNA transcripts14 designated “eRNAs”. These eRNAs promote the formation of loops between enhancers and 
promoters during gene regulation.

Traditionally, enhancers have been identified through enhancer trap techniques10 using reporter 
genes in model organisms, such as humans, mice, and C. elegans15. These experiments are often high-cost, 
time-consuming, labor-intensive and low-throughput. Owing to the large advantages of current sequencing 
technology, the functions of enhancers can now be identified and investigated via whole genome sequencing. 
Generally, two high-throughput experiment methods can be used to identify enhancers in whole genome studies. 
The first method is to identify enhancers by investigating open chromatin regions via DNase I hypersensitivity 
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mapping16,17. However, open chromatin regions contain insulators and promoters in addition to enhancers. The 
second method is to identify enhancers from the DNA binding sites of proteins via chromatin immunoprecip-
itation coupled with massively parallel sequencing (ChIP-Seq) technology18. The immunoprecipitated proteins 
may be various TFs, such as p300 (also called EP300 or E1A binding protein p300), as well as CBP proteins (also 
known as CREB-binding protein or CREBBP) and histones. However, owing to the costs and resources required 
for ChIP-Seq experiments, this methodology can identify only a fraction of enhancers. Thus, there is a need to 
develop high-throughput and rapid in silico methods to reliably detect enhancers in the entire genomes.

In addition to the above wet-lab-based methods, several computation-based methods have been developed to 
predict enhancers. These methods for enhancer prediction generally fall into the following two categories: those 
using chromatin state measurements as features16 and those using DNA sequence features19–21. For example, 
Rajagopal et al.16 have developed a random forest model to predict enhancers on the basis of 24 histone modi-
fications. Zhu et al.13 have constructed a model to predict enhancers on the basis of histone modifications with 
a logistic regression algorithm. Podsiadlo et al.22 have built a model to predict active enhancers on the basis of 
histone modifications and collective motif data. Taher et al.23 have developed a model to predict distal enhancers 
by using the sequence signatures of promoters and the Support Vector Machine (SVM) algorithm. Ghandi et al.21 
have developed a model to predict enhancers on the basis of gapped k-mer features. Erwin et al.24 have developed 
an SVM model to predict enhancers by integrating various data, such as evolutionary conservation, regulatory 
protein binding, chromatin modifications, and DNA sequence motifs. Recently, Whitaker et al.25 have reviewed 
current progress in terms of the prediction and annotation of enhancers. However, there are several limitations to 
these methods. First, not all annotation data, such as histone modifications, are readily available for a particular 
cell type or tissue, thus restricting the use of these methods. Second, it is unclear which feature groups used in the 
above methods are important to the performance of the models.

To answer these questions, we built models based on various types of sequence information to identify 
enhancers. The feature groups included DNA properties, k-mers, chromatin state and 1,422 transcription factor 
binding motif occurrences. A recursive feature elimination method was used to select the informative features for 
each feature group and their combinations. The results showed that with sequence-based features, our method 
using the combination of TF binding motif occurrences was superior to other reported methods, with the per-
formance values as follows: sensitivity (Se) 0.8473, specificity (Sp) 0.9753, accuracy (ACC) 0.9113, area under 
the receiver operating characteristic (ROC) curve (AUC) 0.9698 and Mathews correlation coefficient (MCC) 
0.8293. In addition to the sequences around enhancers, we also included histone modification ChIP-Seq datasets 
when they were available. The model incorporating TF binding motif occurrence and chromatin state achieved 
the following performance: Se 0.955, Sp 0.95, ACC 0.9525, AUC 0.989 and MCC 0.9051. The results indicate that 
enhancers can be predicted by using only the sequence-based TF binding motif occurrence model, which can be 
further improved by the addition of chromatin state features. It is reveals that complementary effects are present 
not only in the TFs and chromatin states but also between them. Compared with previous methods, our method 
demonstrates superior performance and should be a useful methodology for the study of enhancers.

Results
Performance of individual sequence-based feature groups. A previous publication has indicated 
that GC content is important for splicing and transcription regulation26. To verify the significance of GC content 
present in both enhancers and random genomic sequences, GC distributions were calculated and compared. The 
results showed that there were no statistically significant difference between these two groups (p-value =  0.3696 
with paired Student t-test).

Because different feature groups generally represent different types of information regarding enhancers and 
control regions, it is necessary to systematically evaluate the performance of different feature groups and their 
combinations. The sequence-based feature groups and their combinations used to build models, as well as spe-
cific results, are given in Table 1. For single feature groups, the performance in decreasing order was: TF binding 
motif occurrence, DNA properties and k-mers. The model based on TF binding motif occurrence demonstrated 
the best performance with an ACC of 0.8993, MCC of 0.8087 and AUC of 0.9687. These results indicate that TF 
binding motifs play a vital role in the identification of enhancers and suggest that TFs are important for enhancer 
function. The model based on DNA properties also demonstrated acceptable performance. This interesting result 
indicates that DNA structural information also plays a role in the identification of enhancers. Although previous 
publications have indicated that k-mer information is important for the identification of genes and regulatory 
sequences13,27, the results in this work suggest that k-mer information has little effect on the identification of 

Feature groups # of features Se Sp ACC MCC AUC

DNA property(I) 23 0.7759 0.6675 0.7217 0.4460 0.7943

TF binding motif occurrence(II) 1422 0.8203 0.9783 0.8993 0.8087 0.9687

k-mers(III) 2772 0.5197 0.4695 0.4946 − 0.0108 0.5024

I +  II 1445 0.8256 0.9785 0.9020 0.8136 0.9703

I +  III 2795 0.8050 0.5962 0.7006 0.4103 0.7806

II +  III 4194 0.8170 0.9739 0.8955 0.8008 0.9678

I +  II +  III 4217 0.8190 0.9753 0.8972 0.8043 0.9699

Table 1. Performance of models built on sequence-based feature groups. I represents DNA property 
features; II represents TF binding motif occurrence features and III represents k-mer features.
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enhancers. The reasons for this may be that only a limited set of k-mers were considered, and those k-mers were 
not specifically developed for the prediction of enhancers.

Combinations of different sequence-based feature groups were tested for enhancer identification. The results 
show that there is no improvement in prediction performance (Table 1), when compared with the results from TF 
binding motif occurrence model alone. These findings suggest that TF binding motif occurrence exerts a domi-
nant effect in the identification of enhancers.

Performance of ChIP-Seq-based feature groups and the combination of chromatin state and 
sequence-based feature groups. Generally, enhancers are characterized according to the binding 
sites of different histones, such as H3K4me1, H3K27ac and H3K27me3 11. The results in Table 2 indicate that 
the model incorporating chromatin state demonstrated good performance consistent with that in previous 
publications11,13,16.

In addition to the models described above, we also constructed a model based on the Reads Per Million 
mapped reads per base pair densities (RPM) of 61 TFs. The results are listed at the end of Table 2. The perfor-
mance of the TF RPM-based model was superior among all models in Table 2, with an ACC of 0.9937, MCC of 
0.9874 and AUC of 0.9989. It has been suggested that TF binding signals play a crucial role in the identification 
of enhancers. When we considered both TF RPM, which was based on experimental data, and TF binding motif 
occurrence, which was based on sequence data, both models suggested that TFs play a very important role in 
the identification of enhancers. Because the model incorporating TF RPM features required 61 transcription 
factor ChIP-Seq datasets and achieved near-perfect performance, it was not combined with other features in the 
following analyses.

For the combinations of chromatin state features and sequence-based features, the results indicate that the 
models incorporating the TF binding motif occurrence or chromatin state feature group generally demonstrated 
good performance. The model with the best performance incorporated the combinatorial features of TF bind-
ing motif occurrence and chromatin state and achieved an ACC of 0.9466, MCC of 0.8937and AUC of 0.9882, 
which was better than any single feature group involving TF binding motif occurrence and chromatin state. 
This result indicates a complementary effect between chromatin state and TF binding motif occurrence, imply-
ing that both chromatin state and TF binding should be considered in the studies of enhancer functions. The 
results also indicate that different combinations of different feature groups result in differential performance, and 
the combinational feature groups usually demonstrate better performance than single feature groups. However, 
the model incorporating the largest number of features (DNA properties, TF binding motif occurrence, k-mers 
and chromatin state) did not exhibit the best performance. These results suggest that good-quality features with 
proper characterization are the most important component for the identification of enhancers, and increasing the 
number of features does not always result in improved performance, because new features may introduce noise 
into the model and consequently worsen the performance.

Feature selection and the performance of different selected feature sets. Although the models 
in Tables 1 and 2 generally demonstrated good performance, they are built on many features. Per the Pareto cri-
terion, a good model possesses a larger fitness metric, such as ACC, MCC or AUC, and a parsimony metric, such 
as a smaller number of features27. To reduce the number of features and improve the performance, the varSelRF 
package was used to select the informative features28 from all models in Tables 1 and 2. The updated results for 
all of the models based on the selected features are given in Table 3. When the performance of models in Table 3 
was compared with the performance of the corresponding models in Tables 1 and 2, fitness metrics such as ACC, 
MCC or AUC were relatively stable or improved, although the number of features was notably smaller. When 
the number of features in Table 3 was compared with the features of the corresponding models in Tables 1 and 2,  
only a small fraction of features were important for the identification of enhancers. The percentage of selected 
features in different feature groups is shown in Fig. 1. In particular, only 141 (~10%) features in the TF binding 
motif occurrence feature group were retained without performance deterioration. This result indicates that the 
majority of features, even 80% or 90%, can be removed, suggesting that most features have little effect on the 
identification of enhancers.

When we compared the performance of all models in Table 3, models based on the feature groups for chro-
matin state, TF binding motif occurrence, the combination of both chromatin state and TF binding motif occur-
rence, and TF RPM usually demonstrated better performance. Among these 4 models, the model based on the 

Feature groups # of features Se Sp ACC MCC AUC

Chromatin state(IV) 65 0.8883 0.8939 0.8911 0.7822 0.9174

II + IV 1487 0.9324 0.9609 0.9466 0.8937 0.9882

II +  III +  IV 4259 0.9184 0.9657 0.9421 0.8852 0.9874

I +  II +  IV 1510 0.9332 0.9612 0.9472 0.8948 0.9884

I +  II +  III +  IV 4282 0.9183 0.9650 0.9417 0.8843 0.9871

TF RPM 61 0.9965 0.9909 0.9937 0.9874 0.9989

Table 2. Performance of models with ChIP-Seq-based features added. I represents DNA property features; 
II represents TF binding motif occurrence features; III represents k-mer features; IV represents chromatin state 
features; TF RPMs represent the Reads Per Million mapped reads per base pair densities (RPM) of ChIP-Seq 
data from 61 TFs.
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TF binding motif occurrence feature group used only sequence information. The other three models used exper-
imental information, including corresponding ChIP-Seq datasets when available. The ROC curves of selected 
feature groups are given in Fig. 2. The results clearly showed that the model with transcription factor binding 
motif occurrence features achieved a performance with an AUC of 0.9698, which was comparable to the perfor-
mance of models with ChIP-Seq-based features. This result indicates that it is reasonable to predict enhancers via 
sequence-based features alone. The number of selected features in the model based on the feature group of TF 
binding motif occurrence was 141. There are nearly 1,900 known TFs in humans29, and most of them are con-
served in mice29. However, only a small fraction of these TFs are important in the identification of enhancers, thus 
suggesting that TFs are involved in very complex mechanisms in the context of enhancer function.

The model incorporating the feature groups for TF binding motif occurrence and chromatin state demon-
strated the best performance in Table 3, achieving an AUC of 0.989 and ACC of 0.9525, with the exception of the 
TF RPM model. This performance was better than that of any model for a single feature group such as TF binding 
motif occurrence or chromatin state. Although the number of features in the model based on chromatin state was 
only 10, its performance achieved an ACC of 0.8905, MCC of 0.781 and AUC of 0.9159. These results indicate 
that chromatin state is important for the identification of enhancers. In addition, the number of features in the 
model based on the combinational feature group of TF binding motif occurrence and chromatin state was much 
smaller than the number of features in the model based on the feature group of TF binding motif occurrence. 
These findings clearly demonstrate a complementary effect between chromatin state and TFs, which is consistent 
with a recent publication stating that enhancers not only are a collection of TF binding sites but also are enriched 
in certain chromatin states14. All of the above results indicate that it is possible to predict enhancers on the basis 
of a combination of TF binding motif occurrence and chromatin state.

Feature groups # of features Se Sp ACC MCC AUC

DNA property(I) 21 0.7734 0.6683 0.7209 0.4442 0.793

TF binding motif occurrence(II) 141 0.8473 0.9753 0.9113 0.8293 0.9698

k-mer(III) 463 0.5559 0.4912 0.5235 0.4724 0.5213

Chromatin state(IV) 10 0.8878 0.8933 0.8905 0.7810 0.9159

I +  II 141 0.8545 0.9724 0.9135 0.8328 0.9711

I +  III 22 0.7760 0.6669 0.7215 0.4456 0.795

II +  III 160 0.8468 0.9776 0.9122 0.8316 0.9697

II + IV 69 0.9550 0.9500 0.9525 0.9050 0.989

I +  II +  III 179 0.8533 0.9749 0.9141 0.8344 0.9711

II +  III +  IV 77 0.9537 0.9514 0.9525 0.9050 0.9894

I +  II +  IV 71 0.9519 0.9502 0.9511 0.9021 0.9891

I +  II +  III +  IV 87 0.9183 0.9650 0.9417 0.8843 0.9891

TF RPM 24 0.9869 0.9735 0.9802 0.9605 0.9964

Table 3.  Performance of models built on different selected feature sets. I represents DNA property features; 
II represents TF binding motif occurrence features; III represents k-mer features; IV represents chromatin state 
features; TF RPM represent the Reads Per Million mapped reads per base pair densities (RPM) of ChIP-Seq data 
from 61 TFs.

Figure 1. Percentage of selected features across different feature groups. The x-axis represents different 
feature groups and their combinations. The y-axis represents the percentage of selected features. I represents 
DNA property features; II represents TF binding motif occurrence features; III represents k-mer features; IV 
represents chromatin state features.
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In addition, we applied the varSelRF method to select informative features according to TF RPM signals. The 
performance of the model with 28 selected TF RPM features achieved an ACC of 0.994, MCC of 0.998 and AUC 
of 0.9985. Because several TFs were also used to define enhancers such as Oct4, Sox2, Nanog and Med1 in previ-
ous publications8,30, we excluded these 4 TFs, and the rebuilt model still demonstrated a performance achieving 
an ACC of 0.9802, MCC of 0.9605 and AUC of 0.9964. The specific results are listed at the end of Table 3. Among 
the remaining 24 TFs, it should be noted that p300 was included; however, the binding sites of p300 are generally 
considered to be enhancers19,31. Thus, p300 was also excluded, and the model was rebuilt with the remaining 23 
TFs. The performance of this model achieved an ACC of 0.9871, MCC of 0.9613 and AUC of 0.9966. These results 
implied that enhancers are enriched in many TFs, not only those used in previous studies8,30 but also many others 
that are not fully understood. Furthermore, there is a great deal of crosstalk between different TFs.

Again, it is clear that only a small fraction of TFs are important in the identification of enhancers. Moreover, 
these selected TFs may possess important roles in enhancer function.

Importance of selected features. To further evaluate the importance of our selected features, a permu-
tation method implemented in the R package rfPermute32 was applied. The importance of the top 50 features in 
the TF binding motif occurrence model is shown in Fig. 3. The importance of all 141 selected features is provided 
in Supplementary Figure S1A. In addition, according to the feature importance, the top 50 features of the model 
incorporating the feature groups for TF binding motif occurrence and chromatin state are also shown in Fig. 4A, 
and the full list of all selected features can be found in Supplementary Figure S1B. A Venn diagram is given 
in Fig. 5 comparing the model incorporating TF binding motif occurrence and the model incorporating both 
TF binding motif occurrence and chromatin state. Among the 63 TF binding motif occurrence features in the 
model based on the feature group incorporating TF binding motif occurrence and chromatin state, 57 features 
overlapped with the 141 selected features from the model based on TF binding motif occurrence. This finding 
demonstrates that most features from the model incorporating TF binding motif occurrence and chromatin state 
overlapped with the model incorporating TF binding motif occurrence.

Figure 4A indicates that most of the selected features corresponded to TF binding motif occurrence, whereas 
only 5 features comprised histone modifications. These histone modifications are consistent with the results of 
a previous publication showing that active enhancers are usually enriched in H3K4me1 and H3K27ac binding 
sites33. Although most individual TF binding sites have little effect on the identification of enhancers, their com-
bination exerts much more important effects than any sites from single TFs. Comparison of the importance of 
different feature groups in Fig. 4A indicated that a single chromatin state feature often plays a more important 
role than a single TF binding motif occurrence feature for enhancer identification. However, this is not the case 
for combinations of chromatin state and TF binding motif occurrence: their integration can greatly improve 
enhancer identification.

Based on the experimental TF RPM datasets, the TFs selected by the varSelRF method were Brd4, CBP, 
CDK8, CDK9, CHD7, cMyc, Ell3, HDAC2, Lsd1, MBD, MCAF1, Med1, Med12, Mi2b, Nanog, Nipbl, Oct4, p300, 
Prdm14, Rad21, SA1, Smad3, Smc1, Smc3, Sox2, TBP, Tcf3 and TET1. Their relative importance is indicated in 
Fig. 4B. It has been suggested that these TFs are important for enhancer functions. For example, the TFs Nanog, 

Figure 2. The receiver operator characteristic (ROC) curves for selected feature groups. Area under the 
ROC curve (AUC): DNA property features (black line): 0.793; TF binding motif occurrence features (red 
dashed line): 0.9698; k-mer features (orange dashed line): 0.5213; chromatin state features (green dashed line): 
0.9159; chromatin state and TF binding motif occurrence features (blue dashed line): 0.989; TF RPM features 
(purple dashed line): 0.9964. TF RPM represents the Reads Per Million mapped reads per base pair densities 
(RPM) of ChIP-Seq data from 61 TFs.
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Figure 3. Importance of the model incorporating TF binding motif occurrence features. The importance of 
the top 50 selected features in the model with 141 TF binding motif occurrence features is shown. The prefix M 
represents Position Weight Matrix (PWM).

Figure 4. Importance of selected features. (A) shows the importance of the top 50 selected features in the 
model with the feature groups for TF binding motif occurrence and chromatin state in Table 3. (B) shows the 
importance of the 28 selected features in the model based on the feature group TF RPM in Table 3. TF RPM 
represents the Reads Per Million mapped reads per base pair densities (RPM) of ChIP-Seq data from 61 TFs. 
The prefix M represents Position Weight Matrix(PWM).
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Oct4 and Sox2 demonstrate the greatest feature importance in Fig. 4B and have been used to define enhancer 
regions in previous publications8,30. Furthermore, they are master transcription factors and play important roles 
in cell differentiation. After excluding all TFs used to define enhancers, the rebuilt model still demonstrated good 
performance (see Table 3). In addition, many other general enhancer-related TFs were identified, such as Brd4, 
CBP, CHD7, cMyc, HDAC2, Lsd1, MBD, Med12, Mi2b, Nipbl, p300, Prdm14, Smad3, Smc1 and Smc3, which are 
cofactors involved in enhancer functions8. p300 binding sites are generally considered to be enhancers19,31. After 
exclusion of p300 binding sites, the performance of the rebuilt model was still retained. A recent publication34 has 
indicated that CDK8 and CDK9 are involved in the functions of super-enhancers. The Ell3 protein is an elonga-
tion factor that can bind to enhancers35. The TET1 protein is related to DNA methylation36 and controls enhancer 
functions15. Recent studies have also revealed that other TFs, such as MCAF137, SA138, Rad2138,39, TBP39 and 
Tcf340, play roles in enhancer functions. In particular, our recently published results have revealed that cohesin 
complex components Rad21 and Smc3 exhibit co-occupancy with CCCTC-binding factor (CTCF)41, which plays 
important roles in the structures of enhancer-promoter loops. These results indicate that enhancers are associated 
with a variety of TFs and suggest that there are synergistic effects among different TFs; thus, special attention 
should be paid to the co-regulation of these selected TFs.

Comparison with previous methods and application to other datasets. There are several methods 
for predicting enhancer activities, such as the logistic regression model13, Bayesian network22, random forest16 
and SVM11. Both Rajagopal et al.16 and Zhu et al.13 have used histone modification features to predict enhancers. 
The results from these methods are shown in Table 4; certain criteria were not available for certain methods. 
Among the three criteria in Table 4, MCC is the most rigorous. Table 4 shows that our methods were superior to 
previous methods for all three criteria.

Figure 5. Venn diagram of the selected TF binding motif occurrence features of the model incorporating 
the feature group TF binding motif occurrence and the model incorporating the feature groups of TF 
binding motif occurrence and chromatin state. A represents selected TF binding motif occurrence features 
of the model incorporating the feature group TF binding motif occurrence and chromatin state. B represents 
selected TF binding motif occurrence features of the model incorporating the feature group TF binding motif 
occurrence.

Method (Reference) ACC AUC MCC

Zhu et al.13 — 0.935 0.712

RFECS16 0.828 — —

Taher11 — 0.93 —

BNFinder22 — 0.93 —

Gapped k-mers19 0.8531 0.9311 0.7065

Our method 0.9113 0.9698 0.8293

Our methoda 0.9525 0.989 0.905

Table 4. Comparison of our model with previously reported models. Superscripts represent the model based 
on the combination of TF binding motif occurrence and chromatin state features in Table 3.
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Previous studies have indicated that k-mers, particularly gapped k-mers, can be effectively used to predict 
enhancers21. To further compare k-mer approaches, our method was applied to mouse embryo brain and limb 
datasets comprising p300 protein binding sites. For the mouse embryo brain dataset, our method achieved a 
performance of AUC 0.8742, which was somewhat less rigorous than the previously reported performance of 
0.9442. For the mouse limb dataset, our method achieved a performance of AUC 0.8738, which was also somewhat 
less rigorous than the previously reported performance of 0.9142. The value of k in the k-mers used in a previ-
ous study42 ranged from 3 to 10, a larger range than that achieved with our k-mer method. An improved k-mer 
method, the gapped k-mer approach21, has been applied to identify p300 protein binding sites and has demon-
strated a performance of AUC 0.94721. When our method was applied to this dataset, it achieved a performance 
of AUC 0.8643. Both ROC and precision-recall curves are given in Supplementary Figure S2.

In addition, the gapped k-mer method was also applied to our datasets, and the results are listed in Table 4. 
It achieved a performance of ACC 0.8531 and AUC 0.9311, which is somewhat poorer than our method. All 
of those results indicate that our TF binding motif occurrence method demonstrates good performance for 
enhancer prediction and may be superior or comparable to the gapped k-mer method.

Different datasets were used to further test the performance of the sequence-based model. The first data-
set encompassed enhancer and heterochromatin regions generated by ChromHMM43 according to chromatin 
state and transcription factors. The ChromHMM43 method is a clustering-based method to annotate the regula-
tory regions of the genome, and it was applied to murine embryonic stem cells (mESCs) based on the available 
chromatin state ChIP-Seq datasets for H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K27me3 and 
H3K36me3 as well as of the RNA polymerase II (Pol II) and CTCF proteins. In total, 43,675 enhancers and 13,282 
heterochromatin regions were annotated on the basis of histone modification and transcription factor ChIP-Seq 
signals. Among the 43,675 enhancers, 6,855 (15.7% accuracy) enhancers from ChromHMM could be mapped 
to the 10,627 enhancers used in the current work. Additionally, 5,990 of 10,627 enhancers (56.37% coverage) 
uniquely mapped to the 43,675 ChromHMM predicted enhancers.

For testing purposes, the model comprising 141 TF binding motif occurrence features was applied to predict 
all 43,675 enhancers. The results showed that 43,564 (99.75%) enhancers were correctly identified. Furthermore, 
the model was applied to the heterochromatin regions predicted by ChromHMM. Among the 13,282 heterochro-
matin regions, 10,869 (81.83%) were identified as non-enhancer regions. Thus, the model comprising only the 
141 selected TF binding motif occurrence features could be used to identify both enhancer and non-enhancer 
regions.

The second dataset consisted of mouse enhancers from the Vista enhancer project. We downloaded all 
568 mouse enhancers from the Vista enhancer project (http://enhancer.lbl.gov/) website. Among these mouse 
enhancers, only 18 enhancers could be mapped to the 10,627 enhancers in the current work. When the model 
with the 141 selected TF binding motif occurrence features was applied to this dataset, 566 (99.65%) were cor-
rectly identified as enhancers. Given that many enhancers in the Vista enhancer project are tissue-specific, this 
result indicates that the model with the 141 TF binding motif occurrence features could be applied to identify 
enhancers in other cell lines/tissues.

In addition, we tested our model on human enhancer datasets. There are 68 enhancer datasets from different 
human cell lines/tissues available from the FANTOM5 project11. We downloaded all 68 enhancer datasets and 
applied our model with 141 TF binding motif occurrence features without changes. The prediction accuracy 
ranged from 93.15% to 100%, and the specific results for each cell line are listed in Supplementary Table S1. These 
results suggest that the model with the 141 selected TF binding motif occurrence features can be used to predict 
enhancers not only from murine embryonic stem cells (mESCs) and other cells but also from different human 
cell lines/tissues.

Discussion
Enhancers play important roles in gene regulation and expression, cell differentiation, chromatin looping and 
3-dimensional (3D) genome structure. Enhancers generally carry out their functions together with promoters 
and recruit various TFs and histone modifications to assist in these processes. In this work, we systematically 
investigated various sequence-based feature sets, such as DNA properties, k-mers, TF binding motif occurrence 
and their combinations. The results indicated that the performance of the model incorporating TF binding motif 
occurrence was best, followed by DNA properties and k-mer features. Then, a recursive feature elimination 
method was applied to select the most informative features. In most cases, 80% or even 90% of features could be 
removed without significantly affecting fitness metrics, such as ACC, MCC and AUC.

We tested our sequence-based model incorporating 141 selected TF binding motif occurrence features on 
different datasets. The results based on datasets derived from the mouse ChromHMM chromatin state, FANTOM 
enhancers, and human enhancers in different cell lines showed that our model was applicable to different cell lines 
and two different species. Thus, our model is robust for generalized enhancer prediction.

When ChIP-Seq-based features were included, the best model incorporated both TF binding motif occurrence 
and the chromatin state and achieved an ACC of 0.9525, AUC of 0.989 and MCC of 0.905. This model contained 
only 69 features, of which 6 were chromatin state features and 63 were TF binding motif occurrence features. The 
results indicate that, of the 1422 available TF binding PWMs, only a small fraction of TF binding sites are impor-
tant in enhancer identification. Selected features, such as TFs and chromatin state, are known to play various 
important roles in determining the functions of enhancers. Our results also show that enhancers can be identified 
by integrating both TF binding motif occurrences and chromatin state. There are complementary effects between 
TFs and chromatin state. A single TF exerts a minor effect on the identification of enhancers. However, the com-
bination of TFs can have a determinant effect on enhancer functions, thus implying that special attention should 
be paid to TFs in addition to chromatin state in studies of enhancer functions. Our methods represent alternative 
ways to study the functions of enhancers and may be complementary to wet-lab experimental methods.

http://enhancer.lbl.gov/
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Methods
Datasets. A total of 10,627enhancers, considered positive samples, from murine embryonic stem cell 
(mESCs) were collected from previous publication8. Enhancer regions were defined as the regions enriched in 
H3K27ac and TFs, such as Oct4, Sox2, Nanog and Med18,30. Random genomic regions of equivalent sizes to the 
enhancers, used as negative samples, were generated via random shifts on the same chromosome8 and were also 
collected from previous publication8. In total, there were 21,254 enhancers and control regions in the final data-
set. The sequence of each region was extracted from the mm9 mouse reference genome. These datasets are given 
in Supplementary Dataset S1 in bed format. To improve the predictive performance of enhancers, transcription 
factor ChIP-Seq datasets were also collected from previous publication8.

Feature construction. In this work, features were divided into two categories: sequence-based and 
ChIP-Seq-based. The sequence-based features included the following three groups: DNA properties, k-mers 
and transcription factor binding motif occurrences. In total, 4,343 individual features, which are summarized in 
Table 5, are described in the following subsections, Group I to Group V. In addition to sequence-based features, 
we used available ChIP-Seq datasets to generate ChIP-Seq-based features. These features were considered for 
situations in which histone modification or transcription factor ChIP-Seq datasets were available. Detailed infor-
mation for each of these feature groups is described in the subsections under Group IV and Group V.

DNA property-based features (Group I). For a given enhancer or control region, the DNA properties 
were calculated by using the structural properties of di- or tri-nucleotides with a corresponding sliding window 
width of 2 or 3 along the DNA sequence throughout the region. Then, the average of each property was calculated 
as the final DNA property. In total, we collected 23 structural properties of nucleotides, which were used in previ-
ous publications31,44. These 23 properties were calculated on the basis of experimental data or molecular modeling 
of a DNA helix or a DNA-protein complex. Thus, this feature group, which characterizes the structure of a DNA 
molecule, was designated “DNA properties” and contained 23 features.

TF binding motif occurrence-based features (Group II). Previous studies have shown that DNA reg-
ulatory regions are occupied by many TFs2,22. Generally, the binding sites of TFs can be characterized by Position 
Weight Matrix (PWM). In this work, a total of 1,422 PWMs were collected from Cistrome45 and the TRANSFAC 
track in the UCSC Genome Browser46. For a given sequence, the ability of a TF to bind DNA was represented by 
the transcription factor affinity prediction (TRAP) score47, which was calculated according to the transcription 
factor motif PWM by the TRAP47 program. The parameters of the TRAP program used default values. Because 
one PWM generates a TRAP score, there were 1,422 TRAP scores for a given sequence. This feature group was 
designated “TF binding motif occurrence” and contained 1,422 features.

k-mer-based features (Group III). K-mer features of sequences are widely used for coding DNA44,48 and 
RNA49. The value of k is important in this method. In a previous study, k was systematically evaluated from 1 to 6, 
and the relative importance of each k-mer feature was assessed; ultimately, 2,772 k-mers were retained44. In this 
work, the composition of these 2,772 k-mers was calculated for each sequence of an enhancer or control region. 
Thus, this feature group was designated “k-mers” and contained 2,772 features.

Chromatin state-based features (Group IV). In this work, histone modification datasets from mice were 
collected from the ENCODE Project12, which catalogs 64 histones from different mouse tissues. For a given 
enhancer or control region, 1 was indicated if the region contained a histone modification peak; otherwise, the 
region was encoded as 0. This procedure was repeated for the other 63 histone modification datasets. For a given 
region, the summary feature was the total number of histone modifications across all 64 histone modification 
datasets. Thus, this feature group was designated “chromatin state” and contained 65 features.

TF RPM-based features (Group V). Transcription factor ChIP-Seq datasets were collected from previous 
publications8. Enhancer and control regions were characterized by the Reads Per Million mapped reads per base 
pair densities (RPM) from ChIP-Seq data from 61 TFs. For each enhancer and control region, the final densities 
were calculated via the subtraction of the RPM of a given TF from the RPM of the corresponding input file for 
that TF. Thus, this feature group was designated “TF RPM” and contained 61 features.

Machine learning method and feature selection. Random forest is an ensemble method based on 
decision trees in which each tree is constructed independently of a data subset50. Our previous work51,52 has 
indicated that random forest and Support Vector Machine (SVM) usually demonstrate good performance with 

Group Features Number of features Source

Sequence-based features

I DNA property 23 In-house script

II TF binding motif occurrence 1,422 45, 46

III k-mers 2,772 44, 48

ChIP-Seq-based features
IV Chromatin state 65 12

V TF RPM 61 8

Table 5. The list of 4,343 features.
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various datasets. This finding is consistent with the recently published work of Fernandez-Delgado et al.53, who 
have systematically evaluated 179 classifiers across 121 UCI datasets, and have found random forest to be the best 
family of classifiers. In this work, random forest was applied because it is generally more robust than SVM, which 
is a parameter-sensitive method and requires a long period of time to optimize parameters. The random forest 
package in R software was used in this study, as in our previous study52. The ntree parameter was set to 5,000, 
which historically has demonstrated good performance51,52, and the importance was set to TRUE. To build a 
robust model, the Pareto optimization rule27 was applied, which favors a good model with better performance and 
fewer numbers of features. The varSelRF R package was used to select informative features28; this package includes 
a recursive feature elimination method and utilizes feature importance for feature evaluation and selection. The 
drop fraction in each iteration was set to 0.1. Other parameters were set to default. To further evaluate the relative 
importance of the selected features, another R package, rfPermute32, was used, which is a feature importance 
evaluation method that permutes the response variable. The number of permutation replicates was set to 100, and 
ntree was set to 5,000. The average decreasing accuracy was used to evaluate the feature importance. An overall 
schematic of our work is shown in Fig. 6.

Performance evaluation. The performance of all models was evaluated with 10-fold cross-validation. 
Specifically, the enhancers and control regions were divided into 10 groups of nearly equal size. One group of 
enhancers and one group of control regions were then taken together as the testing dataset, and the others were 
used as the training dataset. This procedure was repeated until each group of enhancers and control regions was 
taken as the testing set once. To assess the performance of the built models, several metrics were used and are 
given below.

=
+

=
+

=
+

+ + +

=
+

=
× − ×

+ + + +TP FP TP FN TN FP TN FN

Sensitivity (Se) TP
TP FN

Specificity (Sp) TN
TN FP

ACC TP TN
TP TN FP FN

Precision TP
TP FP

MCC TP TN FP FN
( )( )( )( )

where TP, TN, FP and FN are true positive, true negative, false positive and false negative, respectively. ACC 
indicates accuracy. Sensitivity is referred to as the true positive rate and is also referred to as recall. The Mathews 
correlation coefficient (MCC) is a measure of the correlation coefficient between the observed and predicted 
binary classifications. The parameter MCC is more rigorous than ACC. The receiver operating characteristic 
(ROC) curve is a graphic plot of sensitivity against the false-positive rate (1-specificity). The area under an ROC 
curve (AUC) demonstrates the trade-off between sensitivity and specificity. The value of AUC is within the range 
of 0 to 1. An AUC of 0.5 represents random classification, and an AUC of 1 indicates perfect prediction.

Figure 6. Overall schematic of this work. 
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