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Regulation of CLC-1 chloride 
channel biosynthesis by FKBP8  
and Hsp90β
Yi-Jheng Peng1, Jing-Jia Huang1, Hao-Han Wu1, Hsin-Ying Hsieh1, Chia-Ying Wu1,  
Shu-Ching Chen2, Tsung-Yu Chen3 & Chih-Yung Tang1,4

Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia 
congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. 
We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently 
unclear how quality control and protein degradation systems coordinate with each other to process the 
biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control 
system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 
90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase 
homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the 
protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is 
also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably 
increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) 
that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with 
Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role 
in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation.

CLC-1 chloride (Cl−) channels are essential for setting the membrane excitability of skeletal muscle, where the 
Cl− channels are estimated to contribute up to 70–80% of the resting membrane conductance1–3. More than 
100 different mutations in the CLCN1 gene, which encodes the human voltage-gated CLC-1 Cl− channel, have 
been associated with the hereditary muscle disorder myotonia congenita that is characterized by muscle stiff-
ness after voluntary contraction4–7. One of the myotonia congenita-associated mutations involves a conservative 
alanine-to-valine mutation (A531V) located at the transmembrane helix O of the human CLC-1 channel8. The 
A531V mutation is found in significant prevalence in northern Finland and northern Scandinavia8,9. Unlike 
many myotonia-related CLCN1 mutations that result in notably altered gating functions of CLC-1 channels10–13, 
we previously demonstrated that the gating property of the A531V mutant is similar to that of its wild-type (WT) 
counterpart14. Nonetheless, the mutant channel displays a dramatically diminished whole-cell current density 
and a considerable reduction in the total protein level, both of which can be attributed to enhanced protein deg-
radation14,15. Reduced protein expression and defective membrane trafficking may also be associated with other 
myotonia-related CLC-1 mutations16,17.

The A531V mutant appears to be endowed with a folding anomaly that makes the mutant channel unde-
sirable for the protein quality control system in endoplasmic reticulum (ER), thereby tilting the biosynthetic 
balance toward the degradation pathway. It is still unclear, however, how the ER quality control system and 
the ER-associated degradation (ERAD) system recognize and process disease-associated mutant CLC-1 pro-
teins. We recently reported that two cullin (CUL)-really interesting new gene (RING) E3 ubiquitin ligases, 
CUL4A/B-damage-specific DNA binding protein 1 (DDB1)-cereblon (CRBN) E3 ligase complexes, catalyze the 
polyubiquitination and promote the degradation of CLC-1 channels18. Therefore, one further step to addressing 
the molecular pathophysiology of myotonia congenita is to elucidate the interplay between the protein quality 
control system and the CUL4A/B-DDB1-CRBN complex-mediated degradation pathway.
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Figure 1. Effects of FKBP8 and Aha1 on protein expression and membrane trafficking of CLC-1. (A) (Top) 
Representative immunoblots showing the effect of Myc-tagged FKBP8 and Aha1 on protein level of Flag-tagged 
CLC-1 channels. Co-expression with the Myc vector was used as the vector control. Expressions of tubulin are 
displayed as the loading control. Proteins were detected with the indicated antibodies (α -Myc, α -Flag, or  
α -Tubulin). The molecular weight markers (in kiloDaltons) are labeled to the left. (Bottom) Quantification of 
relative CLC-1 level. Protein density was standardized as the ratio of CLC-1 signal to cognate tubulin signal. 
Values from the FKBP8/Aha1 co-expression group (hatched bars) were then normalized to those for the 
corresponding vector control (clear bars). (B) Surface biotinylation experiments on HEK293T cells expressing 
Flag-CLC-1. (Top) Representative immunoblots. Cell lysates from biotinylated intact cells were either directly 
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A cardinal process during protein biogenesis involves conformation surveillance of nascent polypeptide by 
a network of molecular chaperones and cofactors (co-chaperones) that efficiently assist protein folding, thereby 
minimizing degradation/aggregation of proteins in nonnative states19–21. In this study, we aim to investigate the 
molecular nature of the chaperone/co-chaperone network monitoring the biosynthesis of human CLC-1. We 
demonstrate that CLC-1 channels are associated with the molecular chaperones heat shock cognate protein 70 
(Hsc70) and heat shock protein 90β  (Hsp90β ), as well as their co-chaperones FK506-binding protein 8 (FKBP8; 
also known as FKBP38), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein 
(HOP). Biochemical and electrophysiological characterizations reveal that these co-chaperones and chaperones 
enhance both the protein level and the functional expression of CLC-1 WT and A531V mutant. Importantly, we 
present additional evidence suggesting that, in addition to promoting CLC-1 protein folding, FKBP8 and Hsp90β  
may also play a critical role in regulating CLC-1 degradation by the CUL4A/B-DDB1-CRBN complex.

Results
Promotion of CLC-1 protein level by co-chaperones. To study the molecular nature of CLC-1 protein 
quality control system, we began by searching for potential CLC-1-binding partners that are previously demon-
strated to play a role in the chaperone/co-chaperone network. By performing yeast two-hybrid screening of a 
mouse skeletal muscle cDNA library with a bait sequence corresponding to an intracellular carboxyl-terminal 
region of the human CLC-1 channel (see Supplementary Methods), we identified the co-chaperones FKBP8 and 
Aha1. FKBP8 is an Hsp90-associated membrane-anchored immunophilin with potential peptidyl-prolyl cis-
trans isomerase function, whereas Aha1 is a cytosolic protein regulating the ATPase activity of Hsp9019,22–24. 
Furthermore, both FKBP8 and Aha1 have been demonstrated to play critical roles in ER quality control of cystic 
fibrosis transmembrane conductance regulator (CFTR) Cl− channels25–28. The interaction of CLC-1 with FKBP8/
Aha1 was further confirmed by GST pull-down assay (see Supplementary Methods) with GST fusion proteins 
comprising C-terminal regions of CLC-1 (GST-CLC-1-C1, -C2, and -C3) (Suppl. Fig. 1A), and by immunopre-
cipitation experiment with full-length CLC-1 channel (Suppl. Fig. 1B). Over-expression of FKBP8/Aha1 substan-
tially increases the protein level of CLC-1 WT and A531V mutant heterologously expressed in HEK293T cells 
(Fig. 1A) (Suppl. Table S1). CLC-1 surface expression, as determined by the surface biotinylation assay, is also 
significantly promoted by both FKBP8 and Aha1 (Fig. 1B) (Suppl. Table S1). Moreover, the membrane trafficking 
efficiency of CLC-1, which was quantified by the ratio of surface expression to total protein level, appears to be 
enhanced by FKBP8, but not by Aha1 (Fig. 1B) (Suppl. Table S1). Interestingly, FKBP8, but not Aha1, seems to 
display a more prominent effect on the A531V mutant than on its WT counterpart. For CLC-1 WT, FKBP8 co-ex-
pression leads to about 2.5-fold and 3.8-fold increase in the total protein and surface expression, respectively. 
For the A531V mutant, however, FKBP8 co-expression results in about 3.7-fold and 9.9-fold increase in the total 
protein and surface expression, respectively. On the other hand, upon down-regulating endogenous FKBP8/Aha1 
level in HEK293T cells with the RNA interference technique, we found that CLC-1 protein level is effectively 
reduced by lentiviral infection with the shRNA for Aha1, but not by that for FKBP8 (Fig. 1C) (Suppl. Table S1).

CLC-2 is a ubiquitously expressed Cl− channel that, along with CLC-1, belongs to the CLC Cl− channel family29.  
In a different set of experiments in which we performed yeast two-hybrid screening of a rat brain cDNA library 
with a carboxyl-terminal region of mouse CLC-2, we identified the co-chaperone HOP. HOP is a soluble protein 
mediating the interaction of Hsp70 and Hsp90, as well as regulating Hsp90 ATPase activity19,22. In addition, HOP 
has been implicated in ER-associated folding of CFTR as well25. To test the idea that HOP may also contribute to 
CLC-1 protein quality control, we first employed GST pull-down and immunoprecipitation assays to verify the 
interaction of CLC-1 with HOP (Suppl. Fig. 2A). Heterologous expression studies in HEK293T cells further con-
firm that HOP promotes both the total protein level and the surface expression of CLC-1 WT and A531V mutant 
(Fig. 2A,B). Similar to the result observed for Aha1, HOP fails to discernibly affect the membrane trafficking of 
CLC-1 (Fig. 2B). Furthermore, also like Aha1, shRNA knock-down of endogenous HOP in HEK293T cells leads 
to a notable reduction of CLC-1 protein level (Fig. 2C).

Together, these observations suggest that the co-chaperones FKBP8, Aha1, and HOP promote CLC-1 bio-
synthesis. In addition, our data seem to imply that the role of FKBP8 in CLC-1 protein quality control may be 
considerably different from that of Aha1 and HOP.

employed for immunoblotting analyses (total) or subject to streptavidin pull-down prior to immunoblotting 
analyses (surface). Expressions of GAPDH are displayed as the loading control. (Bottom) Quantification of 
surface protein level (Surface) and membrane trafficking efficiency (Surface/Total). The surface protein density 
was standardized as the ratio of surface signal to cognate total GAPDH signal, followed by normalization to 
that of the corresponding vector control. The total protein density was standardized as the ratio of input signal 
to GAPDH signal. The membrane trafficking efficiency was expressed as surface protein density divided by 
the corresponding standardized total protein density. The mean ratios in the presence of FKBP8/Aha1 were 
normalized to those of corresponding vector controls. (C) shRNA knock-down of endogenous FKBP8/Aha1 
in HEK293T cells. The shRNA for GFP was used as the lentiviral infection control. Expressions of tubulin are 
displayed as the loading control. The protein density was standardized as the ratio of Flag-CLC-1 signal to 
cognate total tubulin signal, followed by normalization to that of the corresponding GFP control. Asterisks 
denote significant difference from the control (*, t-test: p <  0.05). See Supplementary Table S1 for more details 
on quantification values. The gels were run under the same experimental conditions. Uncropped images of 
immunoblots are shown in Supplementary Fig. S4.
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Facilitation of CLC-1 biosynthesis by chaperones. FKBP8, Aha1, and HOP serve as co-chaperones 
for the interconnected Hsp70 and Hsp90 molecular chaperone systems19,22,30. Moreover, a recent report employ-
ing mass spectrometry combined with luminescence-based mammalian interactome assays indicates that the 

Figure 2. Effects of HOP on protein expression and membrane trafficking of CLC-1. (A) Representative 
immunoblots showing the effect of HA-tagged HOP on CLC-1 protein level. The mean relative protein levels 
for WT (n =  10) and A531V (n =  13) are about 1.4 and 1.3, respectively. (B) HOP co-expression on surface 
protein level and membrane trafficking efficiency of CLC-1. The mean relative surface expression ratios for WT 
(n =  5) and A531V (n =  3) are about 1.3 and 1.5, respectively. The mean relative membrane trafficking ratios for 
WT and A531V are about 0.9 and 1.0, respectively. (C) shRNA knock-down of endogenous HOP in HEK293T 
cells. The mean relative protein levels for WT (n =  17) and A531V (n =  11) are about 0.8 and 0.8, respectively. 
Asterisks denote significant difference from the control (*, t-test: p <  0.05). The gels were run under the same 
experimental conditions. Uncropped images of immunoblots are shown in Supplementary Fig. S4.
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Figure 3. Effects of Hsc70 and Hsp90β on protein expression and membrane trafficking of CLC-1.  
(A) Representative immunoblots showing the effect of V5-tagged Hsc70 or HA-tagged Hsp90β  co-expression 
on CLC-1 protein level. The mean relative protein levels for WT (n =  9–10) are about 1.4 (Hsc70) and 1.6 
(Hsp90β); those for A531V (n =  11–13) are about 1.7 (Hsc70) and 1.5 (Hsp90β ). (B) Hsc70 or Hsp90β  co-
expression on surface protein level and membrane trafficking efficiency of CLC-1. The mean relative surface 
expression ratios for WT (n =  4) are about 1.4 (Hsc70) and 1.8 (Hsp90β ); those for A531V (n =  4) are about 2.3 
(Hsc70) and 2.4 (Hsp90β ). The mean relative membrane trafficking ratios for WT are about 1.1 (Hsc70) and 1.2 
(Hsp90β ); those for A531V are about 1.1 (Hsc70) and 1.3 (Hsp90β ). (C) shRNA knock-down of endogenous 
Hsc70 or Hsp90β  in HEK293T cells. The mean relative protein levels for WT (n =  6–15) are about 0.7 (Hsc70) 
and 1.5 (Hsp90β ); those for A531V (n =  6–13) are about 0.7 (Hsc70) and 1.4 (Hsp90β ). Asterisks denote 
significant difference from the control (*, t-test: p <  0.05). The gels were run under the same experimental 
conditions. Uncropped images of immunoblots are shown in Supplementary Fig. S4.
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co-chaperone FKBP8 may interact more strongly with Hsp90β  (the constitutive Hsp90 isoform) than with 
Hsp90α  (the inducible Hsp90 isoform)31. We therefore went on to investigate the potential role of the consti-
tutively expressed chaperone isoforms Hsc70 and Hsp90β  in CLC-1 biogenesis. Representative GST pull-down 
and immunoprecipitation data illustrated in Supplementary Fig. 2B indicate that, in HEK293T cells, CLC-1 may 
be physically associated or at least stably co-exist in the same protein complex with Hsc70. Over-expression of 
Hsc70 significantly increases both the protein level and the surface expression of CLC-1 WT and A531V mutant, 
but does not appreciably alter the membrane trafficking efficiency of the Cl− channel (Fig. 3A,B). Conversely, 
suppressing endogenous Hsc70 expression in HEK293T cells with shRNA prominently reduces CLC-1 protein 
level (Fig. 3C).

The interaction between CLC-1 and Hsp90β  was only demonstrated by GST pull-down (Suppl. Fig. 2C), but not 
by immunoprecipitation, suggesting that the two protein molecules probably form transient association with each 
other. Similar to the effect of Hsc70, Hsp90β  promotes CLC-1 protein level and surface expression, but not membrane 
trafficking (Fig. 3A,B), suggesting that both Hsc70 and Hsp90β  facilitate CLC-1 biosynthesis. Since over-expressing 
the inducible chaperone isoforms Hsp70/Hsp90α  fails to discernibly increase CLC-1 protein level (data not 
shown), the foregoing observations do not appear to result from non-specific CLC-1 responses to Hsc70/Hsp90β   
over-expression in HEK293T cells. Surprisingly, shRNA knock-down of endogenous Hsp90β  in HEK293T cells 
results in a remarkable enrichment of the protein level of CLC-1 WT and A531V mutant (Fig. 3C), which may be 
caused by a unknown compensatory response to Hsp90β  suppression in HEK293T cells. Alternatively, this result 
may imply a differential role between Hsc70 and Hsp90β  in CLC-1 quality control system.

Regulation of CLC-1 degradation by FKBP8 and Hsp90β. Given the regulatory role of ER quality 
control system in protein homeostasis (proteostasis), an increase in the net expression level can be attributed to an 
enhanced chaperone-assisted folding of native protein and/or a reduced chaperone-directed degradation of mis-
folded protein19–21,32. To address whether the abovementioned co-chaperones and chaperones may control protein 
degradation of CLC-1, next we examined their role in CLC-1 protein stability by performing the cycloheximide 
chase experiment. Figure 4A and Supplementary Table S2 exemplify the effect of FKBP8 over-expression on the 
protein degradation time course of CLC-1 WT and A531V mutant in HEK293T cells. FKBP8 effectively raises 
the protein half-life of CLC-1 WT from about 6.6 to 10.1 hours. Furthermore, for the A531V mutant that is asso-
ciated with enhanced proteasomal degradation14, FKBP8 considerably increases its protein half-life from about 
3.6 to 8.0 hours. We then investigated the effect of over-expressing Aha1, HOP, Hsc70, or Hsp90β . Figure 4B and 

Figure 4. FKBP8 improves CLC-1 protein stability. Characterization of CLC-1 protein turn-over kinetics 
in HEK293T cells by employing different treatment durations of 100 μ g/ml cycloheximide (CHX). (A) (Top) 
Representative immunoblots showing the effect of FKBP8 co-expression. Co-expression with the Myc vector 
was used as the control experiment. (Bottom) Quantification of CLC-1 protein half-life. Protein densities were 
normalized to those of corresponding no-treatment controls at 0 hr. (B) Quantification of the effect of co-
chaperone/chaperone co-expression on A531V protein half-life. See Supplementary Table S2 for more details 
on the estimated protein half-life values. The gels were run under the same experimental conditions. Uncropped 
images of immunoblots are shown in Supplementary Fig. S4.
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Figure 5. 17-AAG reduces CLC-1 protein degradation. Biochemical demonstration of the regulation of 
CLC-1 WT and A531V mutant by 17-AAG treatment in HEK293T cells. (A) (Left) Representative immunoblots 
showing the effect of 17-AAG on CLC-1 protein level. DMSO treatment (0 μ M) was used as the control 
experiment. (Right) Quantification of relative CLC-1 protein levels in response to different concentrations of 
17-AAG. (B) The effect of 17-AAG on endogenous FKBP8, Aha1, HOP, Hsc70, Hsp90β , and HSP70 levels in 
HEK293T cells. (C) The effect of 17-AAG on endogenous CUL4A and CUL4B levels in HEK293T cells. See 
Supplementary Table S3 for more details on the quantification of 17-AAG effects on protein levels. (D) (Left) 
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Supplementary Table S2 show that only FKBP8 is capable of significantly improving protein stability of the A531V 
mutant, suggesting that FKBP8 is remarkably effective in correcting the protein folding defect of the CLC-1 
mutant.

In addition to its common role in stabilizing client proteins, Hsp90β  may also promote the degradation of 
misfolded client proteins by directly interacting with E3 ubiquitin ligases33–35. In other words, depending on the 
mechanistic role of Hsp90β  in the ER quality control system of its client proteins, pharmacological inhibition 
of Hsp90β  function may lead to either enhanced or reduced protein degradation36–38. To gain further insight 
into the role of Hsp90β  in the proteostatic mechanism of CLC-1, we assessed the effect of the Hsp90 inhib-
itor 17-allylamino-17-demethoxygeldanamycin (17-AAG), which suppresses the ATPase activity by blocking 
ATP binding to Hsp9039,40. Figure 5A and Supplementary Table S3 demonstrate that, in HEK293T cells, treat-
ment with 17-AAG for 24 hours dramatically increases the protein level of both CLC-1 WT and A531V mutant 
in a concentration-dependent manner. A simple interpretation of this result appears to be that, rather than 
assisting the formation of mature CLC-1 conformation, Hsp90β  promotes the degradation of the Cl− channel. 
Nevertheless, given that Hsp90β  may interact with multiple client proteins in HEK293T cells, an alternative pos-
sibility is that the observed CLC-1 up-regulation arises from 17-AAG-induced disruption of Hsp90β  interaction 
with endogenous client protein(s) in HEK293T cells, which in turn alters CLC-1 proteostasis. To test the latter 
hypothesis, we examined the effect of 17-AAG treatment on endogenous FKBP8, Aha1, HOP, Hsc70, and Hsp90β  
levels in HEK293T cells. Figure 5B and Supplementary Table S3 clearly show that 17-AAG fails to noticeably 
affect the protein expression of these co-chaperones and chaperones. Pharmacological inhibition of Hsp90 with 
geldanamycin or 17-AAG is known to induce prominent up-regulation of Hsp70 (Fig. 5B) (Suppl. Table S3)41,42; 
however, as mentioned above, over-expressing Hsp70 did not appreciably increase CLC-1 protein level, sug-
gesting that, at least in HEK293T cells, up-regulation of Hsp70 does not seem to contribute to the enhancement 
of CLC-1 expression by 17-AAG. Since suppression of endogenous CUL4A/B with either dominant-negative 
CUL4 mutants or shRNA for CUL4 effectively enhances CLC-1 expression in HEK293T cells18, we then exam-
ined the effect of 17-AAG treatment on endogenous CUL4A/B expression in HEK293T cells. Figure 5C and 
Supplementary Table S3 depict that 17-AAG indeed significantly decreases endogenous CUL4A/B expression in 
HEK293T cells, with CUL4B showing a more prominent concentration-dependent reduction pattern. Moreover, 
similar to the effect of FKBP8 over-expression, 17-AAG treatment markedly raises the protein half-life of the 
A531V mutant from about 3.8 to 8.4 hours, which can be attributed to reduced polyubiquitination of CLC-1 
channels (Fig. 5D) (Suppl. Table S2). However, unlike FKBP8, 17-AAG treatment fails to discernibly alter the 
membrane trafficking efficiency of CLC-1 (Fig. 5E).

The foregoing data strongly suggest that Hsp90 may be essential for stabilizing CUL4A/B. A previ-
ous study involving luminescence-based interactome assays suggests that Hsp90 may directly interact with 
CUL4B43. To confirm this potential interaction between CUL4 and Hsp90β  in HEK293T cells, we went on to 
perform immunoprecipitation experiments. Figure 6A shows that CUL4B, but not CUL4A, can be effectively 
co-immunoprecipitated with Hsp90β  in HEK293T cells. Importantly, shRNA knock-down of endogenous 
Hsp90β  in HEK293T cells significantly enhances CLC-1 protein level (see Fig. 3C). Consistent with this notion, 
shRNA knock-down of endogenous Hsp90β  in HEK293T cells results in a noticeable interruption of the poly-
ubiquitination of CLC-1 (Fig. 6B). Together, these observations imply that suppression of Hsp90β  function 
may vigorously down-regulate CUL4 expression in HEK293T cells, consequently reducing CLC-1 degradation. 
Furthermore, results from immunoprecipitation experiments support the idea that FKBP8 may also co-exist in 
the same protein complex with CUL4A/B (Fig. 6C). Therefore, when we consider the overall impact of shRNA 
knock-down or pharmacological inhibition of Hsp90β /FKBP8 on CLC-1 proteostasis, the effect of disrupted 
CLC-1 folding may be virtually diminished or even out-balanced by that of reduced CLC-1 degradation.

Enhancement of CLC-1 current level by co-chaperones and chaperones. One critical ques-
tion that remains unanswered is whether the increased protein biosynthesis induced by the abovementioned 
co-chaperones and chaperones really corresponds to enhanced amount of surface CLC-1 protein capable of form-
ing functional Cl− channels. To address this question, we studied the effect of the co-chaperones and chaperones 
on CLC-1 functional expression in HEK293T cells. Due to their drastically different protein level, CLC-1 WT 
and A531V mutant were subject to cell-attached and whole-cell patch clamp analyses, respectively14,18. Figure 7A 
illustrates that FKBP8 over-expression results in remarkable augmentation of cell-attached current amplitude and 
whole-cell current density of CLC-1 WT and A531V mutant, respectively. Consistent with the aforementioned 
biochemical observations (Fig. 1) (Suppl. Table S1), the functional enhancement effect of FKBP8 is slightly more 
prominent for the A531V mutant (~2.5-fold increase) than for CLC-1 WT (~1.9-fold increase). Moreover, FKBP8 

The effect of 1 μ M 17-AAG on protein turn-over kinetics of Flag-CLC-1 A531V mutant. DMSO treatment was 
used as the control experiment. See Supplementary Table S2 for more details on the estimated protein half-life 
values. (Right) Representative immunoblots showing the effect of 1 μ M 17-AAG on protein ubiquitination 
of Myc-CLC-1 A531V mutant. Cell lysates were immunoprecipitated with the anti-Myc antibody, and 
CLC-1 polyubiquitination [CLC-1-(Ub)n] by endogenous ubiquitin was identified by immunoblotting the 
immunoprecipitates with the anti-ubiquitin (Ub) antibody. (E) The effect of 1 μ M 17-AAG on surface protein 
level (Surface) and membrane trafficking efficiency (Surface/Total) of CLC-1. The mean ratios were normalized 
to those of the corresponding DMSO controls. The mean relative surface expression ratios (n =  4) are about 3.6 
(WT) and 1.7 (A531V). The mean relative membrane trafficking ratios are about 0.9 (WT) and 1.1 (A531V). 
Asterisks denote significant difference from the control (*, t-test: p <  0.05). The gels were run under the same 
experimental conditions. Uncropped images of immunoblots are shown in Supplementary Fig. S4.
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over-expression does not appreciably alter the steady-state voltage-dependence (Po–V curve) of CLC-1 currents, 
suggesting that FKBP8 probably induces up-regulation of CLC-1 channels endowed with mature and correct 
protein conformation. Similar current enhancement effects were also observed when we co-expressed CLC-1 
with Aha1, HOP, Hsc70, or Hsp90β  (Fig. 7B–E). Furthermore, treatment with the Hsp90 inhibitor 17-AAG also 
effectively increases the functional expression of CLC-1 WT and A531V mutant (Fig. 7F).

Discussion
Anomalous protein maturation arising from disrupted ER quality control, excessive ERAD, or defective mem-
brane trafficking has been implicated in the molecular pathogenesis of many ion channel diseases (channel-
opathies)21,44. Given that the myotonia congenita-related A531V mutant is associated with enhanced protein 
degradation and defective membrane trafficking properties14,15, it is imperative to decipher the molecular machin-
ery essential for protein biosynthesis of CLC-1. The discovery of the CUL4A/B-DDB1-CRBN complex as the E3 
ubiquitin ligase catalyzing CLC-1 polyubiquitination18 prompted us to further identify the conformation surveil-
lance mechanism regulating CLC-1 proteostasis. In this study, we show that the co-chaperones FKBP8, Aha1, 
and HOP, as well as the constitutively expressed chaperones Hsc70 and Hsp90β , may directly interact with CLC-1 
Cl− channels. Over-expression of these co-chaperones and chaperones substantially promotes the biosynthesis 
and functional expression of CLC-1 WT and A531V mutant. Conversely, shRNA knock-down of endogenous 
Aha1, HOP, or Hsc70 expression in HEK293T cells results in notable down-regulation of CLC-1 protein level, 
consistent with idea that Aha1, HOP, and Hsc70 are responsible for facilitating CLC-1 protein folding in the 
quality control system.

By contrast, shRNA knock-down of endogenous FKBP8 level in HEK293T cells does not appreciably change 
CLC-1 protein level. Moreover, infection with shRNA for Hsp90β  prominently enhances CLC-1 biosynthesis. 
These apparently paradoxical results appear to imply that FKBP8 and Hsp90β  may play additional roles in the 
CLC-1 quality control system. Consistent with this notion, suppression of Hsp90β  function with 17-AAG dramat-
ically down-regulates endogenous CUL4 expression in HEK293T cells, thereby reducing polyubiquitination and 
degradation of CLC-1. In addition, like Hsp90β , FKBP8 co-exists in the same protein complex with CUL4, rais-
ing the possibility that FKBP8 may also contribute to the stabilization of CUL4 by Hsp90β . Importantly, FKBP8 
displays three unique features: 1) a more prominent biosynthesis-enhancement effect on the A531V mutant than 
on its WT counterpart (see Fig. 1A, Suppl. Table S1, and Fig. 7A); 2) effective improvement of CLC-1 protein sta-
bility (see Fig. 4 and Suppl. Table S2), and 3) significant promotion of CLC-1 membrane trafficking efficiency (see 
Fig. 1B and Suppl. Table S1). Therefore, our results appear to suggest that FKBP8 plays a decisive role in correcting 
protein folding defect of CLC-1.

Taken together, we suggest a model of CLC-1 proteostasis mechanism that is schematically represented in 
Fig. 8. The inferred protein folding pathway for CLC-1 resembles the ER quality control model previously pro-
posed for another Cl− channel, CFTR25,27,28,45,46. We propose that Hsc70 and HOP may assist the early stage 
of CLC-1 folding before passing the channel protein to the Hsp90β  cycle, wherein Aha1, Hsp90β , and FKBP8 
work in concert to further promote CLC-1 folding. We hypothesize that FKBP8 is responsible for the last stage 
of protein folding and is essential for determining whether CLC-1 protein can be properly exported for mem-
brane trafficking. The major difference between our scheme and the CFTR model concerns the coupling between 
molecular chaperones and the protein degradation pathway. One of the best characterized E3 ubiquitin ligases for 

Figure 6. Cullin 4 co-exists in the same protein complex with Hsp90β and FKBP8. Interaction of cullin 
4 with Hsp90β  and FKBP8 in HEK293T cells. (A) Co-immunoprecipitation of Myc-CUL4B, but not Myc-
CUL4A, with HA-Hsp90β . (B) shRNA knock-down of Hsp90β  reduces CLC-1 polyubiquitination. (C) Co-
immunoprecipitation of Myc-CUL4A and Myc-CUL4B with HA-FKBP8. Corresponding expression levels 
of CUL4A/B, Hsp90β , and FKBP8 in the lysates are shown in the Input lane. Input represents about 10% of 
the total protein used for immunoprecipitation. The gels were run under the same experimental conditions. 
Uncropped images of immunoblots are shown in Supplementary Fig. S4.
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Figure 7. Co-chaperones and chaperones increase the functional expression of CLC-1. Electrophysiological 
analyses of Flag-CLC-1 WT and A531V mutant channels in HEK293T cells. (A) The effect of FKBP8 co-
expression. (Left panels) Representative cell-attached and whole-cell patch clamp recordings of WT and 
A531V, respectively. The holding potential was 0 mV. The voltage protocol comprised a 200-ms test pulse 
(Vm) ranging from + 100 mV to − 140 mV in − 20 mV steps, followed by a second voltage step (tail potential) 
to − 100 mV for 200 ms. (Upper right panels) Instantaneous cell-attached current amplitudes (WT) or whole-
cell current densities (A531V) at the test pulse potential of − 140 mV were used for normalization with respect 
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CFTR is carboxyl terminus of Hsc70-interacting protein (CHIP); misfolded CFTR is thought to be recognized 
through Hsc70-CHIP interaction and thereafter subject to CHIP-mediated polyubiquitination45,47. By contrast, 
the present report suggests that Hsp90β  and FKBP8 may play an additional role in regulating CLC-1 degradation 
by interacting with CUL4. We therefore suggest that misfolded CLC-1 may be primarily processed by Hsp90β /
FKBP8-CUL4 interaction. Nevertheless, we cannot rule out the possibility that Hsc70 may also be essential for 
CLC-1 ubiquitination mediated by as yet unknown E3 ligases.

The majority of our conclusions are based on biochemical experiments using heterologous expression system. 
One potential limitation with immunoblotting analyses involving protein over-expression is that the sensitivity 
of the protein detection system from time to time needs to be reduced to avoid signal saturation. Consequently, 
it is likely that we may occasionally overlook the contribution of chaperones/co-chaperones imparting minute 
effects on CLC-1 biosynthesis. This potential bias against weaker protein signals may additionally contribute to 
the quantitative discrepancy between immunoblotting and electrophysiological analyses reported in this study. 
Due to the voltage clamp capacity of the signal amplifier for the patch clamp system, there is a stringent limita-
tion on the size of the CLC-1 current amplitudes that can be properly recorded; in other words, cells with higher 
CLC-1 protein expression levels are more likely to be excluded from our functional data analyses. Nevertheless, 
the results derived from immunoblotting and electrophysiological analyses do agree nicely on a qualitative basis. 
Another related issue on electrophysiology concerns the fact that CLC-1 WT currents were recorded using the 
cell-attached configuration. As we reported previously, under the whole-cell mode, CLC-1 currents from WT 
channels were recorded 4–7 hours post-transfection; by contrast, no significant Cl− currents were observed for 
A531V until 8–11 hours post-transfection14. The current amplitudes of A531V reach a steady-state level at about 
24 hours post-transfection, at which whole-cell WT current amplitudes invariably exceed the range of optimal 
voltage clamp efficiency for the patch amplifier system. This problem can only be overcome by a dramatic reduc-
tion of the amount of CLC-1 cDNA used for transfection, which, however, would render it virtually impossible 
to effectively co-express any chaperone or co-chaperone protein. On the other hand, a likely caveat associated 
with the cell-attached configuration is that CLC-1 proteins may not be evenly distributed over the cell surface. 
To minimize the impact of this potential problem, we incorporated a large number of WT membrane patches 
(ranging from 10 to 31; see Fig. 7) for statistical analyses. Moreover, the validity of the WT data collected with the 
cell-attached configuration was confirmed by repeating the identical co-expression experiments with the A531V 
mutant using the whole-cell mode.

One of the surprising findings of our research is the promotion of CLC-1 biosynthesis by the Hsp90 inhibitor 
17-AAG. The suppressive effect of 17-AAG treatment on CUL4A/B protein level does not seem to be a special 
case for HEK293T cells, as a similar result was also observed in HeLa cells treated with a chemical analogue 
of 17-AAG37. Together these data are consistent with the idea that, in human cells, Hsp90β  is essential for the 
stabilization of CUL4. Further investigations are required to elucidate the detailed mechanisms underlying how 
17-AAG treatment leads to down-regulation of CUL4. Since Hsp90β  is a binding partner of CUL4B, but not 
CUL4A (see Fig. 6A)43, we speculate that Hsp90β  may indirectly stabilize CUL4A through other client protein(s). 
Interestingly, FKBP8 has been shown to interact with the S2 subunit of the 19S proteasome in HEK293T cells and 
may contribute to anchoring a subset of the proteasome complexes to the organellar membrane of mitochondria 
and ER in various cell lines48. Therefore, it remains to be determined whether FKBP8 may facilitate protein fold-
ing/stability of CUL4 via certain Hsp90-dependent and/or -independent processes. Overall, our findings seem to 
raise an intriguing possibility that Hsp90β  may serve as a molecular hub that facilitates the association of CLC-1 
channels with Aha1, FKBP8, and CUL4, thereby dynamically coupling the protein folding and degradation path-
ways of CLC-1 biosynthesis.

Another fascinating discovery arising from the present study is that only FKBP8 can pronouncedly enhance 
the membrane trafficking efficiency of CLC-1 channels. Emerging evidence indicates that membrane-bound 
protein is also susceptible to stringent conformation surveillance and substantial degradation by the 
endosomal-lysosomal pathway, a mechanism known as peripheral quality control49,50. FKBP8 is usually con-
sidered as an internal membrane protein resident at mitochondria and ER23,24. In line with this notion, FKBP8 
was previously suggested to contribute to the ER biogenesis, but not the peripheral quality control, of CFTR51. 
However, an alternative interpretation of the unique membrane trafficking effect of FKBP8 on CLC-1 is that the 
co-chaperone may additionally contribute to the peripheral quality control of CLC-1 localized at the plasma 
membrane. Future experiments will be required to address whether FKBP8, as well as the other CLC-1-related 

to the corresponding vector control. The mean relative current levels for WT and A531V are about 1.9 and 
2.5, respectively. (Lower right panels) Steady-state voltage-dependence of the open probability (Po–V curve) of 
CLC-1 channels. Compared to CLC-1 WT, the A531V mutant displays an apparently left-shifted Po–V curve, 
which primarily arises from the different cytoplasmic ATP concentrations between cell-attached (WT) and 
whole-cell (A531V) configurations (refer to Suppl. Fig. S3 for experimental evidence). See Supplementary 
Methods for more details on the analysis of Po–V curves. (B) The effect of Aha1 co-expression. The mean 
relative current levels for WT and A531V are about 1.4 and 2.5, respectively. (C) The effect of HOP co-
expression. The mean relative current levels for WT and A531V are about 1.5 and 1.9, respectively. (D) The 
effect of Hsc70 co-expression. The mean relative current levels for WT and A531V are about 2.2 and 2.3, 
respectively. (E) The effect of Hsp90β  co-expression. The mean relative current levels for WT and A531V are 
about 2.7 and 2.7, respectively. (F) The effect of treatment with 1 μ M 17-AAG. The mean relative current levels 
for WT and A531V are about 3.5 and 2.0, respectively. Two types of drug-free incubation (control and 0.1% 
DMSO) were used to verify the effect of 17-AAG. Asterisks denote a significant difference from the control 
condition (*, t-test: p <  0.05).
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co-chaperones, chaperones, or even E3 ubiquitin ligase complex proteins, may also be involved in the peripheral 
quality control of CLC-1 WT and A531V mutant. In addition, as defective biosynthesis appears to contribute to 
other myotonia congenita mutations16,17, it is critical to investigate whether FKBP8 may also improve the protein 
expression and membrane trafficking of the other disease-related CLC-1 mutant channels.

Recent advances in the molecular elucidation of defective protein biosynthesis mechanisms underlying 
numerous human diseases drive the developments of novel therapeutic strategies aiming at adapting proteo-
stasis networks to restore normal physiology32,52. For example, a substantial amount of different chemical com-
pounds have been developed to correct the biosynthetic anomaly of disease-associated mutant CFTR proteins53,54. 
Current treatment for myotonia primarily focuses on the symptomatic relief of enhanced muscle tone with action 
potential-reducing agents such as Mexiletine, which exerts use-dependent block of surface voltage-gated Na+ 
channels (NaV1.4) in skeletal muscles55–57. No CLC-1-targeting drug is available at present. Previously, we provided 
the first evidence showing that CLC-1 ubiquitination is suppressed by MLN4924, which blocks the neddylation 
of cullin E3 ligases and has emerged as an anti-cancer agent58,59. In the current study, we presented the novel dis-
covery that CLC-1 degradation is prevented by the Hsp90 inhibitor 17-AAG, which is also being tested in various 
clinical trials as an anti-cancer agent39,40,60. Together, these data highlight the therapeutic potential of CLC-1 
proteostasis modification in treating myotonia patients. In order to further address the clinical significance of our 
findings, more work is required to verify the specificity, as well as the effectiveness, of MLN4924 and 17-AAG in 
skeletal muscles. For example, since the biosynthetic mechanism of NaV1.4 remains unclear56, it will be imperative 
to determine whether (and perhaps how) these drugs may affect the protein expression and membrane trafficking 
of the Na+ channels in skeletal muscles.

Methods
cDNA constructs. Epitope-tagged CLC-1 constructs were generated by subcloning human CLC-1 cDNA 
into either the pcDNA3 vector (Invitrogen) (for Myc and HA tags)14 or the pFlag-CMV2 vector (Sigma) (for 
Flag tag)18. Other cDNA constructs employed in this study include pcDNA3.1-Myc mouse Aha1, pcDNA3-Myc 
human cullin 4A/4B (Addgene 19951/19922), pcDNA3.1-Myc mouse FKBP8, pcDNA3-HA rat HOP, pcD-
NA5-V5 human Hsc70 (Addgene 19514), pcDNA5-V5 human Hsp70 (Addgene 19510), pcDNA3-HA human 
Hsp90α  (modified from an original clone kindly provided by Dr. Didier Picard, University of Geneva), and pcD-
NA3-HA human Hsp90β  (Addgene 22847).

Cell culture and DNA transfection. Human embryonic kidney (HEK) 293T cells were grown in 
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 2 mM glutamine, 10% heat-inactivated 
fetal bovine serum (Hyclone), 100 units/ml penicillin, and 50 μ g/ml streptomycin, and were maintained at 
37 °C in a humidified incubator with 95% air and 5% CO2. Transient transfection was performed by using the 
Lipofectamine 2000 (LF2000) reagent (Invitrogen). Briefly, cells were plated onto 6- or 12-well plates (for bio-
chemical experiments) or poly-D-lysine-coated coverslips in 24-well plates (for electrophysiological recordings) 
24 hrs before transfection. The amount of CLC-1 cDNA used in each well was about 300 (for biotinylation) to 
700 (for shRNA knock-down) ng/mL, and the molar ratio for co-transfection (relative to CLC-1 cDNA) ranged 
from 1 to 3. Various expression constructs were incubated with LF2000 reagent for 20 min at room temperature, 

Figure 8. A model of the ER quality control system for CLC-1 channel. In this schematic diagram of CLC-1 
biogenesis process, the ER protein quality control system is hypothesized to comprise the co-chaperones 
FKBP8, Aha1, and HOP, as well as the constitutively expressed chaperones Hsc70 and Hsp90β . Hsc70 and HOP 
may assist the early stage of CLC-1 folding, whereas Aha1, Hsp90β , and FKBP8 may promote the late stage 
of CLC-1 folding. FKBP8 is further proposed to be essential for determining whether CLC-1 protein can be 
properly folded for subunit assembly and thereafter exported for membrane trafficking. In addition, Hsp90β  
and FKBP8 may regulate ER-associated degradation (ERAD) of CLC-1 by interacting with the cullin 4 E3 
ligase complex that catalyzes the covalent linkage of ubiquitin (Ub) to CLC-1. The degradation of CLC-1 can be 
effectively attenuated by the cullin E3 ligase blocker MLN4924, as well as the Hsp90 inhibitor 17-AAG.



www.nature.com/scientificreports/

13Scientific RepoRts | 6:32444 | DOI: 10.1038/srep32444

and DNA-lipofectamine diluted in Opti-MEM (Invitrogen) was added to culture wells. After 6-hr incubation at 
37 °C, the medium was changed and the culture cells were maintained in the 37 °C incubator for 24–48 hrs before 
being used for biochemical or electrophysiological experiments. Where indicated, drugs [cycloheximide (Sigma) 
or 17-AAG (Sigma)] were applied to the culture medium.

RNA interference. Lentivirus-based shRNA constructs (subcloned into the pLKO.1 vector) targeting spe-
cific human Aha1 (5′ -CCCTGAGAAACATATTGTGAT-3′ ), FKBP8 (5′ -AGTGGACATGACGTTCGAGGA-3′ ),  
HOP (5′ -CGACCTTCATCAAGGGTTATA-3′ ), Hsc70 (5′ -CGTCTGATTGGACGCAGATTT-3′ ), or Hsp90β   
(5′ -CTTGTGTTGAAGGCAGTAAAC-3′ ) sequence were purchased from National RNAi Core Facility, Taiwan. 
The shRNA for GFP (5′-GACCACCCTGACCTACGGCGT-3′ ) was used as a control. Recombinant lentivirus was 
generated by co-transfecting HEK293T cells with the packaging plasmid pCMV-Δ R8.91, the envelope plasmid 
pMD.G, and shRNA expressing constructs. The virus-containing supernatant was harvested and concentrated by 
ultracentrifugation to yield the viral stock, which in turn was supplemented with 8 μ g/ml of polybrene for infec-
tion of HEK293T cells. The infected cells were selected by 5 μ g/ml of puromycin and subsequently transfected 
with the cDNA for CLC-1.

Immunoblotting. Transfected HEK293T cells were washed twice with ice-cold PBS [(in mM) 137 NaCl, 2.7 
KCl, 4.3 Na2HPO4. 2H2O, 1.4 KH2PO4, pH 7.3] supplemented with 2 mM EDTA, and resuspended in a lysis buffer 
[(in mM) 150 NaCl, 5 EDTA, 50 Tris-HCl pH7.6, 1% Triton X-100) containing protease inhibitor cocktail. After 
adding the Laemmli sample buffer to the lysates, samples were sonicated on ice (three times for five seconds each) 
and heated at 70 °C for 5 min. Samples were then separated by 7.5–10% SDS-PAGE, electrophoretically trans-
ferred to nitrocellulose membranes, and detected using rabbit anti-Aha1 (1:2500; Thermo), rabbit anti-CUL4A 
(1:2000; GeneTex), rabbit anti-CUL4B (1:1000; ProteinTech), rabbit anti-Flag (1:5000; Sigma), rabbit anti-FKBP8 
(1:4000; EnoGene), rabbit anti-GAPDH (1:8000; GeneTex), rat anti-HA (1:5000; Roche), rabbit anti-HOP 
(1:10000; Abcam), rabbit anti-Hsc70 (1:750; Abcam), rabbit anti-Hsp70 (1:10000; GeneTex), rabbit anti-Hsp90β  
(1:500; Abcam), mouse anti-Myc (clone 9E10), or rabbit anti-α -tubulin (1:5000; GeneTex) antibodies. Blots were 
then exposed to horseradish peroxidase-conjugated anti-mouse/rabbit IgG (1:5000; Jackson ImmunoResearch) 
or goat anti-rat IgG (1:5000; Santa Cluz), and revealed by an enhanced chemiluminescence detection system 
(Thermo Scientific). Results shown are representative of at least three independent experiments. Densitometric 
scans of immunoblots were quantified by using ImageJ (National Institute of Health).

Co-immunoprecipitation. Transfected cells were incubated at 37 °C in the presence of 10 μ M MG132 for 
24 hrs. Cells were solubilized in ice-cold IP buffer [(in mM) 100 NaCl, 4 KCl, 2.5 EDTA, 20 NaHCO3, 20 Tris-HCl, 
pH 7.5, 1 dithiothreitol, 1 PMSF, 1% Triton X-100] containing the protease inhibitor cocktail. Insolubilized mate-
rials were removed by centrifugation. Solubilized lysates were pre-cleared with protein G sepharose beads (GE 
Healthcare Biosciences) for 1 hr at 4 °C, and then incubated for 16 hrs at 4 °C with protein G sepharose beads 
pre-coated with the anti-Myc or anti-HA antibody. Beads were gently spun down and washed twice in a wash 
buffer [(in mM) 100 NaCl, 4 KCl, 2.5 EDTA, 20 NaHCO3, 20 Tris-HCl, pH 7.5] supplemented with 0.1% Triton 
X-100, and then twice with the wash buffer. The immune complexes were eluted from the beads by heating at 
70 °C for 5 min in the Laemmli sample buffer.

Biotinylation of cell surface proteins. Transfected cells were washed extensively with D-PBS (Sigma) 
supplemented with 0.5 mM CaCl2, 2 mM MgCl2, followed by incubation in 1 mg/ml sulfo-NHS-LC-biotin 
(Thermo Scientific) in D-PBS at 4 °C for 1 hr with gentle rocking. Biotinylation was terminated by removing the 
biotin reagents and rinsing three times with 100 mM glycine in PBS, followed by once in TBS buffer [(in mM) 20 
Tris-HCl, 150 NaCl, pH 7.4]. Cells were solubilized in a lysis buffer [(in mM) 150 NaCl, 50 Tris-HCl, 1% Triton 
X-100, 5 EDTA, 1 PMSF, pH 7.6] supplemented with the protease inhibitor cocktail. Insolubilized materials were 
removed by centrifugation. Solubilized cell lysates were incubated overnight at 4 °C with streptavidin-agarose 
beads (Thermo Scientific). Beads were washed once in the lysis buffer, followed by twice in a high-salt buffer [(in 
mM) 500 NaCl, 5 EDTA, 50 Tris-HCl, pH7.6, 0.1% Triton X-100] and once in a low-salt buffer [(in mM) 2 EDTA, 
10 Tris-HCl, pH7.6, 0.1% Triton X-100]. The biotin-streptavidin complexes were eluted from the beads by heating 
at 70 °C for 5 min in the Laemmli sample buffer.

Protein ubiquitination analyses. Transfected cells were incubated at 37 °C in the presence of 10 μ M 
MG132 for 24 hrs. Cells were solubilized in the IP buffer supplemented with 2.5 mg/ml N-Ethylmaleimide, fol-
lowed by immunoprecipitation with the anti-Myc antibody as described above.

Electrophysiological recordings. Conventional whole-cell and cell-attached patch clamp techniques were 
employed to record CLC-1 Cl− currents. Cells co-transfected with the cDNA for Flag-tagged CLC-1 and pEGFP 
(molar ratio 1:0.1) were identified with an inverted fluorescence microscope (Leica-DM IRB). Recording electrodes 
were pulled by a PP-830 puller (Narashige), and displayed a resistance of 2–3 MΩ when filled with the pipette solu-
tion. For whole-cell recordings, the pipette solution contained (in mM): 120 CsCl, 10 EGTA, 10 HEPES, pH 7.4; while 
the bath solution comprised (in mM): 140 NaCl, 4 CsCl, 2 MgCl2, 2 CaCl2, 10 HEPES, pH 7.4. Where indicated, 5 mM 
Mg-ATP was freshly prepared on the day of experiment and added to the pipette solution. For cell-attached record-
ings, the pipette solution was the same as the whole-cell bath solution. The bath solution contained (in mM): 130 KCl, 
5 MgCl2, 1 EGTA, 10 HEPES, pH 7.4. Data were acquired and digitized with Axopatch 200B and Digidata 1322A, 
respectively, via pCLAMP 9.0 (Molecular Devices). Cell capacitances were measured using the built-in functions of 
pCLAMP 9.0 and were compensated electronically with Axopatch 200B. The holding potential was set at 0 mV. Data 
were sampled at 2 kHz and filtered at 1 kHz. All recordings were performed at room temperature (20–22 °C).
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Statistical analyses. All values were presented as mean ±  SEM. The significance of the difference between 
two means was tested using the Student’s t test, whereas means from multiple groups were compared using the 
one-way ANOVA analysis. All statistical analyses were performed with Origin 7.0 (Microcal Software).
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