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Tomographic brain imaging with 
nucleolar detail and automatic cell 
counting
Simone E. Hieber1, Christos Bikis1, Anna Khimchenko1, Gabriel Schweighauser2, 
Jürgen Hench2, Natalia Chicherova1,3, Georg Schulz1 & Bert Müller1

Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging 
the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack 
spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard 
X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain 
samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje 
cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per 
mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of 
sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. 
The method suggests that automatic cell feature quantification of human tissues is feasible in phase 
tomograms obtained with isotropic resolution in a label-free manner.

From Cajal’s publication in 18881 the cerebellum has been subject to investigations seeking to correlate brain 
microanatomy with function2. Magnetic resonance imaging (MRI) is the current standard for in vivo studies, 
while functional MRI (fMRI) and diffusion tensor sub-modalities enable the extraction of functional informa-
tion and the identification of neuronal paths, respectively3. Positron emission tomography (PET) also reveals 
functional information, for instance in the investigation of the cerebellum’s involvement in neuropathic pain4. 
Contrast agents are required for PET imaging and MRI5. While in vivo methods have significantly improved only 
recently, ex vivo techniques currently remain the only option for reaching sub-cellular resolution when the imag-
ing depth moves beyond light microscopy range. The predominant method is histology that have been showing 
progress in microscopy, such as the optimisation of optical coherence scanning, confocal microscopy and light 
sheet illumination6–8. It allows for the three-dimensional visualisation of tissue slices more than 100 micrometers 
in thickness with or without serial sectioning6–8. In the case of the cerebellum, such approaches have been applied 
to provide insights into the three-dimensional cerebellar structure and the changes during its development6–8. 
More recently, a specimen preparation technique was developed to render opaque tissues transparently, thereby 
providing the three-dimensional visualisation of, for example, murine brain samples9. Shortcomings of the clear-
ing methods include technical demand, tissue consumption, a restriction on antibody-based labelling, the limited 
storage time of the sample and the low amount of individual stainings that can be applied to a single specimen. 
Since the discovery of cells, visual inspection has been a common investigation method for localisation and anal-
ysis purposes. In the past few years, increasing numbers of automatic cell and nuclei segmentation methods have 
been developed for localization and analysis purposes, particularly in cytology10,11. However, most contemporary 
approaches are restricted to two dimensions.

Automated neuron segmentation approaches can be categorized into global and local ones as described in 
reviews12,13. In global methods fore- and background separation is followed by skeletonization. Information from 
the entire image is assessed towards an initial reconstruction, usually by global thresholding or edge detection 
algorithms. A refinement process follows, where the initial reconstruction is thinned in an iterative way. Global 
methods are computationally expensive, because the complete image has to be considered, even if the region 
of interest covers only a fraction. Recent advances include the use of curvelet pre-processing and multi-scale 
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image treatment prior to skeletonization14, as well as DF (distance-field) tracing approach, to skeletonize the 
neurons based on two thrust-pressure force fields15. In local methods, the image is investigated around initial 
seeding points that are manually or automatically selected. Afterwards a minimal energy method such as snake or 
watershed segmentation is used to trace the neuronal path, cf. for example16–18. Local methods are challenged by 
branching points or crossing neurites, and the automatic selection of seeding points is not a trivial task. Tracing 
dendrites or axons beginning from the cell body has thus been proposed19 also for images with low signal-to-noise 
ratio20. A prevalent example of a combination of the global and local approach is the APP (All-Path Pruning) 
algorithm21 and recent developments thereon22,23. All mentioned methodologies are designed for microscopy 
data sets, where the neural structures of interest are labelled and the remaining tissue components form the back-
ground. Thus, they are not suitable for X-ray phase contrast tomograms.

Efforts in three-dimensional data acquisition most frequently involve confocal microscopy. They remain 
limited to a specimen thickness below 200 μ m6. In computational pathology, automatic evaluation has not yet 
achieved diagnostic accuracy for most applications24, with cytological specimen analysers used for pre-screening 
of cervical smear specimens25. Within this context, X-ray phase contrast tomography promises to provide a solu-
tion for the three-dimensional visualisation and quantification of tissues embedded for histological examination 
prior to sectioning26,27. Typical specimen diameters range from 6 to 10 mm. Recently, X-ray phase tomography 
has provided sufficient image contrast in biomedical imaging, microscopy and materials science (ref. 28 and 
refs. therein). Measuring the real part of the refractive index offers an efficient technique featuring sub-micron 
resolution in three dimensions, without the use of staining or contrast agents, in analogy to differential interfer-
ence contrast, a method employed to visualise sub-cellular features in thin layers of live cells through the use of 
polarised light29. The method has already been applied to the three-dimensional visualisation of Purkinje cells in 
the cerebellum26 and the detection of breast cancer brain micrometases, with the prospect of in vivo application30. 
Herein, we present the first three-dimensional visualisation and quantification of the human cerebellum with 
sub-cellular resolution down to the Purkinje cell nucleolus, by using phase contrast. Within the isotropically 
resolved volume we were able to detect and segment several thousand Purkinje cells, without labelling or using 
contrast agents. A sub-micron resolution measurement revealed the dendritic tree of Purkinje cells as well. The 
results were validated by conventional histology.

Results
Feature identification based on histology. Human cerebellum specimens were measured using syn-
chrotron radiation-based micro computed tomography (SRμCT) in local phase contrast mode, and they were 
subsequently histologically sectioned for validation. Figure 1 shows a direct correlation between the registered 
computed tomography (CT) slice (Fig. 1b) and the respective histological section (Fig. 1c) in terms of cerebellar 
tissue layers and cell boundaries. The three-dimensional dataset covers a cylindrical volume of 43 mm3 with an 
isotropic voxel length of 1.75 μ m, and it is located inside a cylindrical formalin-fixed paraffin-embedded speci-
men. Figure 1a illustrates the location of the histological slice in the CT data, automatically found using 2D-3D 
registration. The relative intensities match in both modalities. The phase contrast tomography dataset shows 
minor local gradients, while the histological slice shows a variation in overall colour intensity, due to common 
staining inhomogeneity.

Figure 2a displays a selection of 3D Purkinje cells which were automatically identified, validated by histo-
logical findings (Fig. 2b–e) and finally extended into the third dimension. The Purkinje cells detected by apply-
ing a Frangi-based filter, and fully segmented using subsequent region growing (Fig. 2d), match well with their 
corresponding features found within the histological slice, using automatic registration (Fig. 2f). The original 
CT slice (Fig. 2b) is recoloured without and with the separate consideration of Purkinje cells (Fig. 2c,e, respec-
tively), in order to resemble the histological slice and to emphasise the two samples’ correspondence. The slice 

Figure 1. 2D-3D registration and comparison of registered CT slice vs. histological slice. (a) Identification 
of the histological section within the CT data set. (b) CT slice and selected region mapped to (c) histological 
section. The automatic 2D-3D registration provides the identification of the Stratum granulosum and Stratum 
moleculare with comparable intensities, as well as the location of the Purkinje cells (see also Supplementary 
Video 1).
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in the three-dimensional image (Fig. 2a) represents the location and the thickness of the histological section 
in comparison to the volumetric Purkinje cells using the CT dataset in isotropic spatial resolution. The exten-
sion of Purkinje cells identified in the registered phase contrast slice was performed within a box measuring 
0.70 mm ×  0.23 mm ×  0.03 mm. The cells were detected by Frangi-based filtering, and their morphology was seg-
mented using a region-growing approach. Haematoxylin and eosin staining is not optimised for the visualisation 
of Purkinje cell structures. The nucleoli of the Purkinje cells are hardly visible in the histological slide, which is 
likely the result of post mortem autolysis. Nonetheless, the anatomical microstructures remain detectable.

Quantification of the Purkinje layer. In the present study the Purkinje cell layer and related quantities 
were determined based on cell positions, as illustrated in Fig. 3, rather than by extracting the separation layer 
between the Stratum moleculare and Stratum granulosum. The feature-based filter adapted to the geometry of 
Purkinje cells selects all tubular and spherical microstructures within the specified range, including blood ves-
sels and Corpora amylacea. After selecting elliptically shaped objects, 108 objects were automatically detected 
as cells within a volume of 0.2 mm3. A comparison, using visual inspection, led to three false positives and two 
negative trues. Thus, the error of Purkinje cell localisation corresponds to 5%. Visual inspection was performed 
on 300 tomography slices and two histological slices. The histological slices were registered within a ROI1 sized 
600 ×  220 ×  300 voxels and used to match the counterparts of the Purkinje cells in the tomographic data set. The 
criteria to identify further Purkinje cells in the tomographic ROI1 were the size, the morphology and the char-
acteristic gray-value intensity of the nucleolus. In addition, we examined the detection error based on four his-
tological slices and obtained an error of 11% considering the 61 Purkinje cells of the histological slices and their 
counterparts. The analysis is restricted to a region where the intensity change is less than a half compared to ROI1.

Figure 4 shows the Purkinje cells of the acquired dataset and the Purkinje layer colour-coded by local cell 
density. The layer forms the characteristic shape of the interface between the Statum granulosum and moleculare. 
The average segmented volume of the approximately 5,000 formalin-fixed paraffin-embedded Purkinje cells is 
4,850 μ m3.

Figure 2. Localisation of the Purkinje cells using histological findings and its extension into the third 
dimension. (a) 3D view of Purkinje cells with a tomogram slice resembling a 3D extension of histology and (b–g)  
their identification. (b) Registered phase contrast image. (c) Phase contrast image coloured similar to H&E 
staining. (d) Purkinje cell segmentation mask. (e) Phase contrast image with separately coloured Purkinje cells to 
resemble f, H&E histology. The staining is insufficient to visualise the nucleolus, due to post mortem autolysis. g, 
Biospy - H&E section with nucleoli visible. The scale bar corresponds to 100 μm (see also Supplementary Video 2).
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The computational time for the cell identification of one height step of size 1500 ×  2400 ×  2400 is 28.2 hours 
by means of a laptop computer (Intel®  CoreTM i7-4600U CPU @ 2.10 GHz up to 3.3 GHz, 8 GB RAM). The time 
is reduced to 1.0 hour on a computing cluster with 48 cores (Intel®  Xenon X5650 @ 2.67 GHz, 8 GB RAM). The 
computational effort is approximately a factor of 10 less expensive than a multi-scale neuron segmentation 
approach presented very recently by Hernandez-Herrera, P. et al.31.

Purkinje cell with a dendritic tree. The dataset recorded with sub-micron resolution from the same cer-
ebellum not only confirms our findings concerning the identification of Purkinje cells, but it also indicates the 
spherical boundary of the nucleus, as shown in Fig. 5b. The haematoxylin and eosin staining of the histological 
slice (Fig. 5c) reveals the nucleolus in a typical Purkinje cell in a manner that would be suitable for manual cell 
counting. The microscopic image provides sub-micrometer resolution laterally but covers approximately 4 μ m in 
the axial direction. Thanks to the isotropic resolution of the phase contrast dataset, the dendritic tree is signifi-
cantly more recognisable in the shown CT slice. The three-dimensional extension of the findings is performed 
using Frangi filtering and yields the segmentation of the complete cell, including a major part of its dendritic tree 
(Fig. 5a). Signal-to-noise values of 13 and 5 were obtained for the data sets acquired at ESRF, Grenoble, France, 
and Diamond Light Source, Didcot, UK, respectively, cf. Method section.

Figure 3. Purkinje cell layer identification in a volume of 0.4 mm × 1.0 mm × 0.5 mm. (a) Objects detected 
by the Frangi-based filter include vessels and Corpora amylacea. (b) After deselecting extremely tubular and 
spherical structures, the error rate was determined based on approximately 100 objects. (c) The Purkinje cell 
layer is coloured according to local cell density, shown with cell locations (red). The cell density was evaluated 
with respect to surface area and varied between 90 and 290 cells per mm2. Average cell density was 177 cells 
per mm with respect to the Purkinje cell layer (see also Supplementary Video 3).
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Discussion
As shown above, phase tomography enables the investigation of three-dimensional microstructures in brain 
tissue, reaching down to sub-cellular spatial resolution. The visualisation of individual Purkinje cells fixed in 
formalin has already been accomplished by Schulz et al.26, using hard X-ray phase contrast tomography, based 
on grating interferometry with a pixel size of 5.1 μ m and an estimated spatial resolution of 20 μ m. As the spatial 
resolution of grating interferometry is currently limited to gratings’ periodicities of several micrometers, a spatial 
resolution of about 1 μ m can only be achieved using in-line phase contrast techniques. To overcome the issue of 
the lower contrast of single-distance phase contrast tomography in comparison to grating interferometry32, brain 
tissue was embedded in paraffin. The reduction of the pixel size to one-third the size employed in the previous 
study was necessary to visualise the 3 μ m-thick nucleoli.

Conventional histological embedding exchanges water and most lipids for wax, a mixture of paraffin and pol-
ymers33. The percentage of processing-induced shrinkage is expected to be high and can be estimated at approx-
imately 30% according to its original size34. After shrinking by 30%, tissue contrast is expected to increase by 
approximately 40%. Furthermore, potential small-scale deformations, caused by the rotation of the specimen, are 
suppressed by paraffin wax solidification.

Andersen et al.35 estimated the density of Purkinje cells as being 810 cells per mm3, while we found a den-
sity of 116 mm−3 in the 43 mm3 specimen, covering about 1/3000 of an average human cerebellum. However, 
when extrapolating the relationship of Purkinje cell density during ageing, presented in a recent study36, a human 
within the considered age range would exhibit about 130 cells per mm3, which is in agreement with our result. It 
has to be noted that volumetric Purkinje cell density depends strongly on the choice of the considered volume, as 
large neurons form thin layers only. Thus, density with respect to the area of the cell layer leads to more reliable 
characterisation within small volumes. Provided a sufficient amount of beam time, a scan would be feasible for 
a complete cerebellum separated into parts using the present approach. Assuming a human brain with a volume 
of 1.3 dm3 and a cerebellum with approximately 10% of its volume, 6,500 scans would be necessary to cover the 
entire cerebellum with a pixel length of 1.75 μm, using a 2000 ×  2000 detector with volumes of approximately 
20 mm3. A scan time of five minutes–as achieved in our last experiments–leads to a necessary beam time of  
23 days in total. Before the scans, the cerebellum should be embedded in paraffin and cut into rod-like blocks on 
a basis of about 2.5 ×  2.5 mm2.

Cell morphology, including the nucleolus, is readily visible in both datasets with pixel sizes 1.75 and 0.45 μ m 
(see Figs 2 and 5). Interestingly, the nucleolus is only just about recognisable in the mapped histological slice, as 
shown in Fig. 2, most probably due to autolysis that starts immediately after death and is thus a common chal-
lenge in autopsy histology. Particularly after death, the chromatin is affected within hours37.

The results show that the nucleolus reveals a significantly larger phase shift, which indicates the higher electron 
density of the nucleolus in comparison to its surroundings. Nucleoli are compact structures composed mainly of 
RNA and proteins. They are observable in monolayers under a phase-contrast microscope38. It is already known 
that the density of the nucleolus is double the remaining nucleus and the cytoplasm in Xenopus oocytes39. Similar 
results were obtained in human cells at a laser wavelength of 633 nm40.

Figure 4. Purkinje layers coloured according to the local density of Purkinje cells and their location in 
a volume of 43 mm3. (a) The average detected density was 165 cells per mm2, related to the manifold and 
volumetric cell density to 116 mm−3 of (b) localised Purkinje cells. Segmented objects were filtered in sparse 
distributions not connected to the Purkinje layer, which is derived and described implicitly using a level set 
approach. It features disconnectivities at the border of the dataset. The axes of the scale bar correspond to 1 mm 
(see also Supplementary Video 4).
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Generally, the present methodology can provide better insights into various morphological features that have 
been revealed by neuroimaging for cerebellar hypoplasia, cerebellar agenesis, pontocerebellar hypoplasia, cer-
ebellar dysplasia, cerebellar dysmorphia and cerebellar atrophy (see also41 and refs. therein). It is expected to 
master quantification tasks, including volume measurements of an animal model cerebellum, its cellular layers, 
or its adjacent microstructures, isotropic cell counting of different cell types in the entire tissue volume and the 
investigation of cellular morphology. In particular, the loss of Purkinje cells is characteristic of diseases and dis-
ease models that include essential tremors42, Cockayne syndrome43, experimental autoimmune encephalomyeli-
tis44, PGC-1a knock-out mice45, leaner mouse models46, neuronal nitric oxide synthase deficient mouse models47, 
paraneoplasmic cerebellar degeneration48, and a three-factor autism model36,49. Within this context, we see large 
potential application of the proposed method in a) developmental and morphology studies, b) disease studies and 
disease model development and c) the evaluation of possible therapeutic interventions. Note that the complete 
murine cerebellum can be scanned in non-local phase contrast tomography and that mouse Purkinje cells are 
only approximately 30% smaller than their human counterparts.

Purkinje cells are among the largest cells in the human body. Additionally, they occur within a distinct ana-
tomical location, i.e. the cerebellar Purkinje cell layer. On one hand these characteristics facilitate automatic 
counting. On the other hand the Frangi-filter is hindered by the elliptical shape. It is expected that the proposed 
procedure can be likewise applied to count other cell types such as astrocytes and pyramidal neurons. Automatic 
counting of Purkinje cells might be affected by anatomical features at a higher spatial resolution. For example, the 
neurons in the Stratum granulosum show a dense distribution of clusters which might be mis-detected as Purkinje 
cells. Resampling the data to the pixel or voxel size used in the present study, however, would circumvent such 
complicacy. Our segmentation task differs from the usual neuron segmenting problem, where from early on, the 
images had a relatively high signal-to-noise ratio. e.g. by means of fluorescence microscopy50,51. It could be argued 

Figure 5. Purkinje cell including the main dendritic tree. (a) Representation as a 3D surface and (b) a 2D 
phase tomogram slice in comparison to (c) a H&E stained histological image of a Purkinje cell. The images 
verify clear correspondence with respect to cell morphology and the nucleolus, and it is less visible in the 
nucleus. In the 3D view the red-coloured surface represents the outer contour of the segmented cell and the 
blue one the nucleolus. The dimensions of the region of interest, namely 382.5 ×  247.5 ×  54.0 μ m3, result in 56.1 
million isotropic voxels with an edge length of 0.45 μ m (see also Supplementary Video 5).
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that our task is more similar to the automated segmentation of MRI images for neuronal tractography with a low 
signal-to-noise ratio and high structure density. Hence, segmentation approaches such as the one presented in 
ref. 52 could be considered, although they need the incorporation of complex anatomical knowledge, and the 
extrapolation of findings is problematic given the entirely different problem size scales. We exploited global and 
local methods’ complementarity, using Frangi filtering on the entire dataset to find seeding points for subsequent 
region-growing, comparable in part to the Tree2Tree algorithm53.

Our approach proposes how to automatically identify nucleoli in brain tissue volumes of more than 40 mm3. 
As described in recent literature, analogous tasks are often performed by manually counting within the field of 
view. In detail, the frequency of binucleate cells in human cerebellar tissue from patients with multiple sclerosis 
was examined post mortem and found to be increased with respect to controls54. The methodology presented 
features two major challenges. Firstly, the frequency of binucleate cells was given with respect to total Purkinje 
cell numbers, albeit not assessing the volume density parameter of either population. Secondly, a total of 20,000 
cells needed to be counted manually, and then the prime binucleate candidates were imaged in 3D, in a copious 
and time-consuming two-step procedure. Using the proposed approach, the cellular and sub-cellular features in 
question could be investigated in the specimen automatically and efficiently, in one 3D imaging step and without 
any sectioning or staining. Such an approach could also benefit other analogous tasks, such as, for example, the 
investigation of nucleolar size as a possible prognostic characteristic for specific types of malignancies38,55. Since 
the nucleolus comprises packed proteins besides RNA molecules38, it is expected that phase contrast imaging will 
allow for the identification of protein aggregates caused by neuronal disorders such as Alzheimer’s disease.

Phase contrast micro-tomography not only assures backwards compatibility, but also synergies with 
other methods and modalities can be achieved, offering the opportunity for multimodal data analysis. The 
three-dimensional information obtained for the entire sample can be exploited to investigate brain tissue at 
sub-cellular resolution in health and disease. Scanning times only account for a fraction of the time that would 
have been needed for imaging based on serial sectioning, while they also avoid mechanical deformations and 
tissue loss due to preparation. Furthermore, inherent in destructive methods, sampling errors are also taken out 
of the equation. In comparison to microscopy methods after optical clearing, our approach is perfectly compati-
ble with subsequent traditional histological sectioning and staining, including immunochemistry methods. It is 
also a method that preserves the chemical composition and physical properties of the examined sample to the 
greatest extent possible, given that the scanning of fresh samples in phosphate-buffered saline (PBS) has also been 
proven to provide satisfactory results27. Last but not least, copious tissue preparation is not necessary, given that 
fresh, formalin-fixed or paraffin-embedded samples can be used, without inconsistencies and limitations due to 
labelling techniques56. The procedure can be applied to further tissue types, such as the hippocampus, and larger 
pieces by stitching together local tomography datasets.

In conclusion, phase contrast tomography reveals sub-cellular structures of paraffin-embedded brain tissue, 
enables their three-dimensional quantification for scientific purposes and possibly complements medical diag-
nostics. Since paraffin embedding has served as a standard approach for tissue conservation for more than a 
century, considerable archives of formalin-fixed paraffin-embedded specimens can be examined using the pro-
posed method, being also applicable to other soft tissues. The proposed methodology enables the identification 
of Purkinje cells based on automatic filtering. Thus, the study shows that automatic cell feature quantification of 
human tissues is feasible based on synchrotron radiation-based micro computed tomography. For the identifi-
cation of structures over various length scales it could be beneficial to follow approaches such as the multi-scale 
neuron segmentation based on morphological filtering31.

Methods
Specimen preparation and histology. Post mortem specimens of a human cerebellum were excised 
from the donated brain of a 73-year-old male. Informed consent for scientific use was obtained. All proce-
dures were conducted in accordance with the Declaration of Helsinki and approved by the Ethikkommission 
Nordwestschweiz. Specimens were fixed in 4% histological-grade buffered formalin, dehydrated in ethanol, trans-
ferred to xylenes and embedded in a paraffin/plastic polymer mixture (Surgipath Paraplast, Leica Biosystems, 
Switzerland). Two cylindrical fragments with a height of 4 mm were excised from paraffin blocks measuring 2.6 
and 6.0 mm in diameter. After data acquisition the tissue was re-embedded for histological sectioning with a 
thickness of approximately 4 μ m. The haematoxylin- and eosin-stained slides were digitised using a histological 
slide scanner (Olympus VS120 Virtual Slide Microscope, Japan).

Data acquisition and reconstruction. Phase-contrast, single-distance X-ray tomography experiments 
were performed at two synchrotron facilities in local tomography configuration. The specimen with a diameter of 
6 mm was scanned at the beamline ID 19 (ESRF, Grenoble, France)57 with an effective pixel size of 1.75 μ m and a 
mean photon energy 19.45 keV. The detection system was a FReLoN 2 K CCD with 2048 ×  2048 pixels. The scan 
with two height steps covered a cylindrical volume with a diameter of 3.5 mm and a height of 4.5 mm. Projections 
were acquired at a propagation distance of 80 cm with a pink beam. Images were taken at 2004 angular steps over 
360 degrees with an exposure time of 1 s per raw image.

To reproduce the findings, the other specimen with a volume of 3 mm3 was scanned at Diamond Manchester 
Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK)58. The effective pixel size was 0.45 μ m and the mean 
photon energy 19 keV, using a pco.4000 camera (PCO AG, Kelheim, Germany) with 4008 ×  2672 pixels. The recon-
structed volume had a diameter of 1.6 mm and a height of 1.6 mm. At a distance of 5 cm, images were taken with 
a monochromatic beam and an exposure time of 8 s per raw image for 2400 equi-angular steps over 180 degrees. 
The phase shift profiles of the specimens were determined by single-distance phase retrieval. Phase contrast was 
recovered from a single projection taken at a defined specimen-detector distance, generated by the free-space 
propagation of X-rays32. Measurement sample-detector distances were selected based on the contour plot of the 
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critical propagation distances for various pixel sizes and photon energies, as described by Weitkamp et al.59.  
Since the sample diameter was bigger than the detector field-of-view (FOV), measurements were performed in 
local tomography configurations for both beamlines. Flat-field and dark-field correction of local tomography data 
was performed using the software tool ANKAphase59 with an input parameter δ/β, i.e. the ratio of the refractive 
index decrement over the absorption coefficient of paraffin at the given energy and distance. Phase recovery 
was performed based on a single-distance, non-iterative, phase-retrieval algorithm with flat-field correlation 
and an input ratio. The tomographic reconstruction of the data used the filtered back-projection (FBP) method 
with a standard the Ram-Lak filter. Both steps were employed by in-house implementations in Matlab R2014b 
(Simulink, The MathWorks, Inc., USA). Radial gradients and ring artefacts were reduced prior to tomographic 
reconstruction, using zero-padding and a combined wavelet-Fourier filtering technique60, and then applied to the 
sinograms in the reconstruction procedure.

Image analysis. Mapping to histology. To register a histological slice within the three-dimensional 
phase tomogram, we applied an automatic 2D-3D registration algorithm, an extension of the previous work of 
Chicherova et al.61,62. A first match was identified according to the published algorithm in a dataset covering the 
entire diameter of the specimen. We applied the scale- and rotation-invariant feature detector and descriptor 
SURF63 to both the tomogram and the histological slice to identify matching feature points in the 3D dataset. 
Plane fitting to the filtered point cloud led to an estimation of the slice position and orientation. To improve the 
registration, we extended the algorithm by applying dense feature detector self-similarity64. In contrast to SURF, 
the self-similarity detector calculates a descriptor vector on a regular grid of points which allowed us to take into 
account homogeneous areas of the tissue and embedding. After registering the found virtual CT slice with its 
histological counterpart in 2D, positioning of the plane was refined by reapplying the described approach with 
self-similarity as a feature point detector. Finally, the resulting set of plane parameters was transferred to extract 
the matching slice from the local tomography data set.

Data selection. The analysis of the individual Purkinje cells was performed on both tomograms. A region of inter-
est was selected in each tomography dataset. One region of interest (ROI1) comprising a size of 600 ×  220 ×  300 
voxels with voxel length of 1.75 μ m, and a smaller one (ROI2) comprising a size of 850 ×  550 ×  100 voxels with 
voxel length 0.45 μ m, was chosen to illustrate a representative part of the Purkinje cell layer. Tomography data 
were segmented using an implementation of the Frangi filter in Matlab R2014b (Simulink, The MathWorks, Inc., 
USA) by Kroon65,66.

Purkinje cell segmentation. The intensity values of the in-line tomograms overlap, so that thresholding is insuf-
ficient for segmentation. Hence, an implementation of a feature-based segmentation algorithm based on the 
‘Frangi filter’ was used to identify cells and dendrites. Originally designed for the detection of vessels, the Frangi 
filter provides the probability that voxel belongs to a tubular or spherical structure67 by analysing the eigenvalues 
λ λ λ λ= ( , , )1 2 3  of the 3D Hessian matrix. The Frangi filter function of the scale s is described by:

α β γ=V s f R s R s S s( ) ( ( )/ , ( )/ , ( )/ ) (1)a b

The ratio λ λ=R /a 2 3  distinguishes between sheet- and tube-like structures, whilst the ratio λ λ λ=R /b 1 2 3  
accounts for spherical structures and for the second-order structuredness λ=S . For an ideal tubular structure, 
the eigenvalues fulfil the conditions λ λ λ λ λ≈ ≈0, ,1 1 2 2 3

67. The constants α, β and γ determine the 
sensitivity of the filter measures Ra, Rb, and S. Finally, the measure is the maximum value of the vesselness func-
tion within a scale range given in voxels. To segment the Purkinje cells a scale range was chosen from 3 to 6 voxels 
(5.25 to 10.50 μ m), the sensitivity parameters were α =  0.2, β =  0.5 and γ =  40 and objects smaller than 300 voxels 
(1600 μ m3) and larger than 3000 voxels were neglected. For the dendritic tree we considered scales from 1 to 3 
voxels (0.45 to 1.35 μ m), sensitivity parameters α =  0.5, β =  0.1 and γ =  10 and chose the largest object within the 
region of interest. All parameters and thresholds were chosen by visual inspection, to avoid the segmentation of 
noise. A level set representation was used to visualise the segmented objects and to categorise their geometry68. 
Corpora amylacea could be identified by an absolute mean level set value larger than 12, due to their spherical 
shape. The ratio between the object size and the mean level set value squared was above 450 for tubular structures, 
thereby indicating blood vessels. Both object types were detected by the Frangi filter and sorted by the criteria 
detailed above. The filter was sufficiently stable despite small local gradients in the dataset. Objects on the speci-
men border, within a margin of 10 voxels, were neglected. To improve the outer contours of the cell the segmented 
area was extended using region growing, with a maximum intensity distance of 0.0385 for the segmentation mask 
shown in Fig. 2. Colour maps, utilised to compare virtual CT slices and histological sections, were determined by 
visual inspection and applied to the segmented Purkinje cells and the surrounding tissue separately after back-
ground gradient subtraction. Application of the procedure to the entire specimen resulted in spread 
mis-segmentations away from the Purkinje cell layer. To separate them, the segmented objects were sorted into a 
grid with a spacing of 50 voxels, and the largest connected set of filled cubes was selected as the domain of the 
Purkinje cell layer. Nucleolus location was determined by the maximal phase shift within a segmented Purkinje 
cell, and the nucleolus itself was segmented using gray-value thresholding according to Otsu’s method69 in Fig. 5.

Purkinje cell layer and local density. To estimate the Purkinje layer from the cell locations, we interpolated the 
scattered data for Fig. 3 and developed an approach based on level sets68 for point clouds that fold in all dimen-
sions. The level set method describes a manifold implicitly based on a signed distance function. Note that the der-
ivation of a smooth curve from a irregular set of points remains an active field of research for a variety of recent 
publications also including level sets70. Here, distances to the Purkinje cells were evaluated on a coarse grid with a 
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spacing of 10 voxel lengths. After smoothing the distance transform, the zero level set was defined at a distance of 
44 voxels in length. Local Purkinje cell density was computed on all grid points and projected onto the extracted 
manifold in a neighbourhood with a radius of 100 μ m.

Signal-to-noise ratio. For the comparison of the signal-to-noise ratios of the data sets obtained from the two 
beamlines the higher resolved data set was binned four times. The binning resulted in a voxel size of 1.80 μ m, 
comparable to the voxel size of 1.75 μ m in the data set from the ESRF data. The signal-to-noise ratio SNR was 
derived from the Stratum moleculare assuming that the paraffin forms the background and using volumes com-
prising 600 voxels. The signal-to-noise ratio is defined by σ= | − |x xSNR /mol par par , where xmol represents the 
mean intensity value of the selected Stratum moleculare region, xpar the mean value of paraffin and σpar the stand-
ard deviation of the paraffin values.
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