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Fine mapping QTL for resistance to 
VNN disease using a high-density 
linkage map in Asian seabass
Peng Liu1,2,*, Le Wang2,*, Sek-Man Wong1,2,3 & Gen Hua Yue1,2,4

Asian seabass has suffered from viral nervous necrosis (VNN) disease. Our previous study has mapped 
quantitative trait loci (QTL) for resistance to VNN disease. To fine map these QTL and identify causative 
genes, we identified 6425 single nucleotide polymorphisms (SNPs) from 85 dead and 94 surviving 
individuals. Combined with 155 microsatellites, we constructed a genetic map consisting of 24 linkage 
groups (LGs) containing 3000 markers, with an average interval of 1.27 cM. We mapped one significant 
and three suggestive QTL with phenotypic variation explained (PVE) of 8.3 to 11.0%, two significant 
and two suggestive QTL with PVE of 7.8 to 10.9%, for resistance in three LGs and survival time in four 
LGs, respectively. Further analysis one QTL with the largest effect identified protocadherin alpha-C 
2-like (Pcdhac2) as the possible candidate gene. Association study in 43 families with 1127 individuals 
revealed a 6 bp insertion-deletion was significantly associated with disease resistance. qRT-PCR showed 
the expression of Pcdhac2 was significantly induced in the brain, muscle and skin after nervous necrosis 
virus (NNV) infection. Our results could facilitate marker-assisted selection (MAS) for resistance to 
NNV in Asian seabass and set up the basis for functional analysis of the potential causative gene for 
resistance.

The aquaculture industry has already provided more than 50% of seafood consumed worldwide1. The ever-growing 
demand for high-efficient aquaculture production to feed the world’s fast-growing population in the face of rapidly 
degenerating climate is still strong. To meet this challenge, selective breeding programs are adopted to accelerate 
the genetic gain and the subsequent performance, resulting in substantial improvement of production in several 
cultured aquatic species2. However, most traits of economic importance, including disease resistance are quantita-
tive traits, controlled by quantitative trait loci (QTL) and influenced by environment3. Using traditional breeding 
methods to enhance genetic improvement has reached its bottleneck, due to slow speed, low efficiency, and being 
expensive for some traits like disease resistance3. Molecular breeding, including marker-assisted breeding (MAS) 
and a more advanced approach genomic selection (GS)4, possesses the great potential to overcome these difficul-
ties. Those methods involve in using genetic markers in linkage disequilibrium (LD) with QTL or directly using 
quantitative trait nucleotide (QTN) to predict the phenotype and select the desirable individuals.

A large number of polymorphic genetic markers are essential for linkage map construction and QTL mapping. 
Currently, most linkage maps in aquatic species are built on genetic markers, such as restriction fragment length pol-
ymorphisms (RFLPs), amplified fragment polymorphisms (AFLPs) and simple sequence repeats (SSRs), and a few of 
them are constructed on single nucleotide polymorphisms (SNPs) or mixed types of markers2. To date, genetic maps 
of over 45 fish species have been reported2. However, development of these markers based on Sanger sequencing and 
genotyping large populations are slow, labor-intensive, time-consuming, and expensive. Moreover, the resolution of 
linkage maps built on these markers is moderate. Precise QTL mapping and further determination of causative poly-
morphisms, even positional cloning of the causative genes, require a great number of genome-wide polymorphic mark-
ers and high-resolution genetic maps to saturate the LD between marker and QTL3. It is hard for such conventional 
methods for marker development and genotyping to meet the increasing requirement for robust development of a large 
number of unbiased markers across the whole genome and high-density genotyping a large population at low cost5.

1Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117543. 
2Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604. 3National 
University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, China 215123. 4School of Biological Sciences, 
Nanyang Technological University, 6 Nanyang Drive, Singapore 637551. *These authors contributed equally to this 
work. Correspondence and requests for materials should be addressed to S.-M.W. (email: dbswsm@nus.edu.sg) or 
G.H.Y. (email: genhua@tll.org.sg)

Received: 22 April 2016

Accepted: 02 August 2016

Published: 24 August 2016

OPEN

mailto:dbswsm@nus.edu.sg
mailto:genhua@tll.org.sg


www.nature.com/scientificreports/

2Scientific RepoRts | 6:32122 | DOI: 10.1038/srep32122

With the rapid advances of next-generation sequencing (NGS) technology, high-throughput sequencing-based 
marker discovery and genotyping have been quickly developed and adopted in many organisms5,6. The 
sequencing-based genotyping methods generally include multiplexing a proper number of samples with bar-
codes to greatly reduce per sample cost, and only sequencing a small fraction of a genome with increasing times 
of coverage, which naturally improves the accuracy of genotyping5. A small portion of a genome can be archived 
by reducing the complexity of the genome by restriction enzymes, such as the reduced-representation libraries 
(RRLs), restriction-site-associated DNA sequencing (RAD-seq) and genotyping-by-sequencing (GBS)5. Among 
them, GBS is a widely used approach especially in the non-model organisms without genome references or solid 
genomes6. The improved GBS approach employs two enzymes, one common cutter and one rare cutter. The com-
bination of two enzyme cutters enables this approach to capture fragments associated with the rare cutters, which 
are roughly evenly distributed across the genome6. The hundreds of thousands fragments are then sequenced and 
millions of reads are produced, generating tens of thousands of unbiased SNPs spaced across the whole genomes. 
The feature of producing a larger amount of unbiased markers in an inexpensive way, enables GBS to become 
the preferable approach to build high-density and high-resolution maps, facilitating QTL mapping and genomic 
selection, even map-based cloning6. Riding the wave of GBS, genetic studies, high-density maps and/or QTL 
mapping for economically important traits have been conducted in several aquatic species. For example, GBS has 
been used in Atlantic salmon (Salmo salar) for disease resistance7 and genetic map8, blue catfish (Ictalurus fur-
catus) for genetic structure9, sea cucumber (Apostichopus japonicas) for body weight10, and Pacific white shrimp 
(Litopenaeus vannamei)11, Asian seabass (Lates calcarifer)12 and large yellow croaker (Larimichthys crocea)13 for 
growth traits. Besides these commercial fish species, GBS was also applied in several species of ecological impor-
tance, such as Chinook salmon (Oncorhynchus tshawytscha) for population structure14, sticklebacks (Gasterosteus 
aculeatus) for skeletal traits15 and Mexican tetra (Astyanax mexicanus) for genetic map16. These work demon-
strated that GBS had the ability to construct high-density maps, which facilitate QTL mapping.

Asian seabass is an important food fish in Southeast Asia, with annual production reaching 75405 tons in 
201217. Despite the increasing economic importance of Asian seabass to this region, the genetic improvement 
of several important traits (e.g. disease resistance and meat quality) was lagging. Our lab has worked on Asian 
seabass for decades, focusing on growth12,18–21, meat quality22 and disease resistance23–25, through conventional 
and molecular breeding and selection26–29. The performance of these traits has been improved significantly since 
then. However, Asian seabass still suffer from several major diseases. Among them, viral nervous necrosis (VNN) 
disease, caused by nervous necrosis virus (NNV), is the most severe one, as it causes more than 90% mortality 
of Asian seabass larvae and continues to threaten Asian seabass in the juvenile stage30. One our previous work 
used 145 SSR markers to construct a genetic map and several QTL for resistance against VNN were identified25. 
However, these QTL still have large confidence intervals, making it hard to use these markers in the MAS pro-
gram in Asian seabass. Moreover, dissection of QTL and identification of genes or genetic polymorphisms under-
lying these QTL are impossible due to the large region in the chromosome.

To fine map these QTL and further identify candidate genes underlying the QTL, we employed GBS and 
identified 6425 SNPs. We constructed a high-density genetic map consisting of 2852 SNPs, and 148 SSR markers 
from a previous study25. We further conducted QTL mapping analysis and identified four QTL for resistance 
and survival time, with phenotypic variation explained (PVE) ranging from 7.8 to 11.0%. We further identi-
fied a candidate gene, protocadherin alpha-C 2-like (Pcdhαc2), underpinning the QTL of qNNV-Re_20.1 and 
qNNV-Su_20.1. It was significantly associated with the phenotype. Furthermore, its expression levels in the brain, 
kidney, muscle and skin were significantly up-regulated in the NNV challenged Asian seabass. Our results could 
facilitate MAS in selective breeding schemes for disease resistance and set up the foundation for further detailed 
functional analysis of the potential candidate genes for VNN resistance in Asian seabass.

Results and Discussion
Discovering and genotyping of genome-wide SNPs. With high efficiency and low cost, NGS tech-
nology has revolutionized the way how the polymorphic markers are developed and genotyped6. Using GBS, we 
sequenced four libraries consisting of each 95 of early dead fish and randomly selected surviving fish and two 
parents. Each of the two categories (dead and surviving) was subdivided into two subgroups. Each subgroup was 
used to construct a library. These fish with extreme phenotypes could provide strong QTL mapping power31. After 
reads processing, including removing low quality reads, trimming and filtering missing genotype and offspring, 
a total of 784.68 million high-quality clean reads were obtained. Of these filtered reads, an average of 4.36 mil-
lion reads were assigned to each offspring, 14.74 million and 19.05 million reads were assigned to sire and dam, 
respectively. Using the clean reads from parents, a catalogue consisting of 18857 loci was obtained. This catalogue 
was used as a reference to obtain the SNPs and genotypes of the mapping population. A total of 6425 SNPs was 
identified in 85 dead and 94 surviving fish with the filtering criteria of < 20% missing data across all the samples 
and > 5x coverage for each data point. The sample size of 179 fish for fine mapping QTL in this work is higher 
than our previous study of 144 individuals, and enabled us to successfully identified a gene, peroxisomal acyl-co-
enzyme A oxidase 1 (Acox1), located in a major QTL for growth in Asian seabass12.

Construction of a high-density linkage map. A linkage map is essential for downstream analysis like 
QTL mapping. In order to construct a linkage map, all the 6425 SNPs discovered from GBS and 155 SSRs from 
our previous study25 were assessed for Mendelian segregation by Joinmap 4.132 before map construction. After 
removal of distorted markers, 3017 SNPs and 155 SSRs were used to construct a genetic map. Among these, a 
total of 2852 SNPs, and 148 SSRs, were successfully mapped to the genetic map. This high-density map consisted 
of 24 LGs (Fig. 1), contained 3000 markers (Supplementary Table S1) and spanned 2957.79 cM with an average 
marker interval of 1.27 cM (Table 1 and Supplementary Table S1). In this linkage map, a total of 670 markers were 
observed to be clustered together at 366 positions across the 24 LGs and co-segregated in groups (Table 1). No 
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recombination happened between these markers, thus the marker interval was zero. Although these markers were 
known to be clustered together in the map positions, their orientations were hard to determine. This is referred 
as bin signature33. Similar findings of bin signature has also been reported in the linkage map of Pacific white 
shrimp11. Several reasons could contribute to this, including the very close physical positions of these markers 
in the same chromosome resulting in nearly no recombination. Alternatively, these markers could be physically 
distant from each other but located in the cold spots of recombination34. Additionally, a relatively small mapping 
population (e.g. 179 individuals in this study) could limit the detection of recombination events during meiosis. 
Thus, increasing the number of individuals could increase the power to detect recombination between markers as 
well as to determine their orientations in the bin signature. Nevertheless, the quality of this map is much higher 
than our previous map for QTL mapping for NNV resistance in terms of marker number (3000 vs 145) and 
density (1.27 vs 6.86 cM)25. This demonstrates that GBS has the ability to robustly identify a larger number of 
high-quality and high-confidence markers than conventional SSR marker discovery, for construction of genetic 
maps in aquatic species. This further indicates that the present map has much more power for QTL mapping than 
the previous SSR marker based map25, increasing the capability to capture QTL while reducing the possibility 
of false positive QTL. The higher resolution of the map could also narrow down the QTL confidence interval. 
Nevertheless, the number of mapped SNPs was slightly less than the 3321 SNPs produced by GBS in a map for 
QTL mapping for growth in Asian seabass12. A possible reason could be due to the differences of cross design. For 
example, we used a backcross population of 179 individuals while the previous map used an F2 population of 144 
for the map12. It is obvious that backcross could reduce the genetic variance because one fourth of homozygous 
genotypes were absent in the offspring population compared to the F2 population. Therefore, this absence has 
translated into the reduced number of polymorphic SNPs.

In addition, the total length of the present genetic map (2957.79 cM) was longer and its average marker inter-
val was larger, than those in the previous map of 1577.67 cM and 0.52 cM12, respectively. It is known that the 
genetic map is built on chromosome recombination during meiosis. There is a common difference in recombi-
nation frequencies between sexes of fish species, including Asian seabass, in which the length of female LGs was 
longer than that of male12,18. It is straight forward that the longer the linkage map is, the less recombination, under 
a comparable number of genetic markers in the same species. However, the reasons for the huge difference in total 
length between our two linkage maps in Asian seabass remain unclear. It could be due to the different families 
used for constructing the genetic maps and further genetic map analysis on more families of Asian seabass could 
clear this suspicion.

The length of each LG ranged from 80.70 (LG15) to 180.30 (LG8) cM with an average length of 123.24 cM 
(Table 1). The number of markers in each LG varied from 43 (LG6) to 233 (LG21) with an average number of 
125. The marker interval of each LG ranged from 0.53 (LG19) to 4.03 (LG18) cM with an average of 1.27 cM. This 

Figure 1. The linkage map of Asian seabass containing 24 linkage groups. 
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small average marker interval could substantially improve the map resolution, which naturally enhances the effec-
tiveness of fine mapping. The largest marker interval gap was 38.95 cM, located in LG 20. Furthermore, marker 
intervals were not consistent across all the LGs. We also compared this map with the previous one12 which was 
constructed by markers identified by the same method of GBS, and found that there were differences in length, 
number of markers and average marker interval in each LG. This could be a result of different families, different 
genomic structure of the chromosomes and/or the specific sequences produced by enzyme digestion. Further 
studies of mapping those reads to the genome reference of Asian seabass could answer this question.

Mapping QTL for resistance to VNN disease. A high-resolution genetic map could improve the capabil-
ity to map high-confidence QTL and narrow down the large interval of QTL to a relatively small one, facilitating 
identification of causative polymorphisms responsible for the QTL. In order to identify QTL related to NNV 
resistance in Asian seabass, we performed QTL mapping using the high-resolution map and trait values for resist-
ance (Re) and survival time (Su). QTL mapping analysis resulted in four QTL being detected in three LGs (4, 10 
and 20) for Re (Table 2), and another four QTL being mapped in four LGs (4, 10, 20 and 23) for Su (Table 3). In 
contrast, our previous results showed that thirteen QTL in nine LGs and ten QTL in six LGs were identified for Re 
and Su, respectively25. The differences could be caused by the low-density map, which may have resulted in possi-
ble false positives in the previous study35. This also highlights that a high-density map could yield more creditable 
QTL. For resistance, qNNV-Re_20.1 located in LG 20 was detected as significant with a PVE of 11.0% (Fig. 2 and 
Table 2), the highest among all the detected QTL. It was the same QTL detected in the previous study which also 
explained the highest proportion of phenotypic variance 4.1%25. In this study, this QTL spanned 1.76 cM from 
76.85 to 78.61 cM with peak position at 77.61 cM, where the SSR marker LcaTe0441 is located, in LG 20 (Table 2). 
In contrast, this QTL spanned a region of 3 cM in the previous map25, much larger than in the current study. This 
clearly demonstrates that the high-density map of the current study has dramatically narrowed down the QTL 
region to a small confidence interval while increasing the PVE explained by the same QTL. In addition, two more 
suggestive QTL were detected in LG 10 with relatively small confidence interval (Table 2). It again shows that the 
current map could yield more accurate QTL mapping.

For survival time, two significant and other two suggestive QTL were detected in four LGs. One significant 
QTL qNNV-Su_20.1, with the highest PVE of 10.9%, was detected in LG 20 (Fig. 2 and Table 3). It spanned 3.16 
cM from 75.85 to 78.61 cM with SSR marker LcaTe0441 at the peak position of 77.61 cM. This QTL was repeat-
edly identified as significant with the highest PVE for Re and Su in both current and previous studies25. It not only 

Linkage 
group

No. of 
markers

No. of markers in 
bin signature

No. of markers for 
map statistics

Total length 
(cM)

Average 
length (cM)

1 130 23 107 163.19 1.53

2 124 5 119 142.59 1.20

3 233 79 154 90.79 0.59

4 131 11 120 150.39 1.25

5 230 66 164 88.12 0.54

6 159 28 131 89.20 0.68

7 173 36 137 93.02 0.68

8 224 82 142 180.30 1.27

9 130 23 107 127.60 1.19

10 177 32 145 125.17 0.86

11 63 11 52 116.67 2.24

12 122 22 100 88.45 0.88

13 93 18 75 143.93 1.92

14 59 40 19 137.38 7.23

15 117 29 88 80.70 0.92

16 72 15 57 97.35 1.71

17 92 16 76 118.76 1.56

18 43 6 37 149.24 4.03

19 214 58 156 83.17 0.53

20 66 14 52 96.65 1.86

21 78 18 60 148.11 2.47

22 65 15 50 166.96 3.34

23 112 33 79 132.43 1.68

24 93 19 74 147.64 2.00

Total 3000 670 2331 2957.79

Minimum 43 5 37 80.70 0.53

Maximum 233 82 164 180.30 4.03

Average 125 28 97 123.24 1.27

Table 1.  Statistics of 24 linkage groups in the linkage map of Asian seabass.
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highlights the cross-validation of this QTL by two studies, but also strongly suggests that the same genes or path-
ways could be responsible for both resistance and survival time. This overlapping by Re and Su was also noticed 
by several QTL studies for resistance to viruses36, bacteria37 and parasites38 in turbot (Scophthalmus maximu).  
Furthermore, the different QTL mapped for Re and Su could reflect the genes involved different aspects and 
development stages of disease39.

In the present study, we have mapped multiple loci explaining relatively small to moderate proportions of phe-
notypic variance for VNN disease resistance in Asian seabass. This reflects the polygenetic nature of quantitative 
traits, which is in line with the classical quantitative genetics theory31. Similar results were also reported in other 
aquatic species for disease resistance, such as QTL in Atlantic salmon40, turbot36–38, eastern oyster (Crassostrea 
virginica)41 for resistance against viruses, bacteria and parasites. However, we also noticed that several studies 
reported major QTL for resistance to infectious pancreatic necrosis (IPN) virus42–44 and salmonid alphavi-
rus45, explaining up to 50% phenotypic variation, in Atlantic salmon. Due to their large effect on the trait, these 
QTL have already been applied in MAS in Atlantic salmon, greatly reducing the economic losses of the salmon 
industry46. The failure of mapping major QTL in our study could be attributed to a single family being used 
for mapping, which probably does not have major QTL, or due to no major QTL in Asian seabass population. 
Multi-family screening could increase the possibility to detect major QTL because a large number of individu-
als with extreme traits could exist in the mapping populations, thus increasing the detection power for major 
QTL. In addition, mapping QTL in multi-family would allow precise mapping as the LD block is smaller and 
cross-validation of these QTL to reduce the false positives. This was demonstrated in Atlantic salmon, as most of 
these studies were performed on multi-family43–45,47. Therefore, future studies should focus on QTL mapping on 
multi-family using GBS, which could allow detection of common QTL for resistance to VNN in Asian seabass. It 
is worth noting that even if the trait values of parents in the present study were unknown, it would still be feasible 

LG QTL Interval (cM) Sig.
Threshold 

LOD
Peak 
LOD

Peak position 
(cM) PVE (%)

Nearest 
marker

Marker 
position K* Sig.

4 qVNN-Re_4.1 41.15–42.15 suc 3.2 3.46 41.15 8.5 LcaTe0075 41.15 13.95 *****

10 qVNN-Re_10.1 60.77–70.57 suc 3.0 3.74 62.35 9.2 24304 62.35 10.878 *****

10 qVNN-Re_10.2 115.34–116.47 suc 3.0 3.38 115.63 8.3 25617 115.63 11.263 *****

20 qVNN-Re_20.1 76.85–78.61 sic 3.9 4.55 77.61 11.0 LcaTe0441 77.61 14.132 ******

Table 2.  Identified QTL for resistance (Re) to VNN in Asian seabass. QTL are significant (sic) and suggestive 
(suc) at chromosome-wide level, Sig. significant level ***** < 0.001, ****** < 0.0005.

LG QTL
Interval 

(cM) Sig.
Threshold 

LOD
Peak 
LOD

Peak position 
(cM) PVE (%)

Nearest 
marker

Marker 
position K* Sig.

4 qVNN-Su_4.1 40.1–43.15 suc 3.1 3.75 41.15 9.2 LcaTe0075 41.15 17.501 ******

10 qVNN-Su_10.1 62.35–64.35 sic 4.0 4.1 62.35 10.0 24304 62.35 11.44 *****

20 qVNN-Su_20.1 75.85–78.61 sic 3.8 4.5 77.61 10.9 LcaTe0441 77.61 10.947 *****

23 qVNN-Su_23.1 78.11–78.44 suc 3.0 3.17 78.11 7.8 96495 78.11 0.013 —

Table 3.  Identified QTL for survival time (Su) to VNN in Asian seabass. QTL are significant (sic) and 
suggestive (suc) at chromosome-wide level, Sig. significant level ***** < 0.001, ****** < 0.0005.

Figure 2. Two significant QTL of qVNN-Re_20.1 and qVNN-Su_20.1 detected in LG 20 of Asian seabass, Re 
for resistance and Su for survival time, c0.01Re and c0.01Su for 0.01 significant level on chromosome-wide. 
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to use their offspring to conduct QTL mapping. This is because the reassortment and recombination of different 
alleles in the offspring population could produce a range of phenotypic values48.

As the QTL tracked in this study could only explain up to 37.0% and 37.9% of phenotypic variation for resist-
ance and survival time (Tables 2 and 3), respectively, the vast majority of missing PVE was not assigned to any 
QTL. This could be a result of the stringent threshold set by the current QTL mapping approach which could 
filter out many QTL with very small effects that might explain the missing PVE. GS could overcome this barrier 
to capture all the QTL with small, moderate and large effect4. GS refers to estimation of genomic breeding values 
of selected candidate using genome-wide high-density genetic markers, with an assumption that all the causative 
QTL are in LD with at least one genetic marker4. Accurate prediction of the genomic estimated breeding values 
(GEBV) requires a considerable number of genome-wide markers, preferably SNPs, and genotypes of a large 
training population4. GBS, possessing the capability to produce tens of thousands of cheap SNPs in a large pop-
ulation, in combination with genotype imputation within the linkage block to reduce the genotyping cost, has 
the great potential to be applied in aquaculture breeding programs49,50. With the aforementioned merits, GS is 
becoming a powerful tool in selective breeding in livestock like dairy cattle, sheep, pig and other domesticated 
animals, greatly improving their genetic gain in a reduced period in the past decade3. Therefore, future studies 
could include GS to accelerate the genetic gain for disease resistance in Asian seabass.

Identification of a candidate gene underlying the significant QTL of qNNV-Re_20.1 and 
qNNV-Su_20.1. Fine mapping QTL with a relatively large effect in a narrow region and using the polymor-
phism in LD with the corresponding QTL are plausible in LD-MAS. However, LD decays over generations at var-
ious degrees and thus compromises the effectiveness of MAS31. Moreover, little information could be presented 
for understanding of the mechanism of disease resistance unless the causative polymorphisms underlying gene 
or regulatory region variance were identified31. Therefore, translation of QTL into causative genes containing the 
QTN could be essential for comprehensive understanding the mechanism of disease resistance. Thus, in order 
to identify candidate genes in the identified QTL region, we mapped the transcriptome of Asian seabass51 to the 
corresponding genomic DNA of qNNV-Re_20.1 covering 300 kb using GMAP52. The result showed that there 
were 62 predicted genes in this region (Supplementary Table S1). After careful comparison and consideration of 
the potential functions of 62 genes, a candidate gene protocadherin alpha-C 2-like (Pcdhαc2), was proposed to 
be the possible causative gene controlling qNNV-Re_20.1. However, we can not rule out the possibility of other 
genes being the candidate gene underlying QTL of qNNV-Re_20.1 and qNNV-Su_20.1. Interestingly, a recent 
study showed that the causative gene underlying a major QTL for resistance to the IPN virus in Atlantic salmon 
was the epithelial cadherin (Ecdh) gene46. Ecdh is a calcium-dependent cell-cell adhesion molecule with versatile 
functions in epithelial cell behavior, tissue formation, cancer suppression, as well as receptor for pathogens53. 
There was a missense mutation in the coding region of Ecdh, explaining a majority of phenotypic variation46. 
Further study showed that Ecdh bound to IPN virions, facilitating the internalization of the virus in the sus-
ceptible Atlantic salmon individuals while preventing the virus internalization in resistant ones46. Surprisingly, 
Pcdhαc2, together with Ecdh, belongs to the cadherin superfamly54.

This aroused our speculation that Pcdhαc2 may play a role during the interaction between NNV and Asian 
seabass. Therefore, we first examined the cDNA sequence of Pcdhαc2 (Supplementary Fig. S1) by retrieving 
it from the Asian seabass transcriptome51. This sequence, 7 kb long, contained an ORF of 3 kb long encoding 
999 amino acids, and consisting of four exons (Supplementary Figs S1 and S2). Next, we examined the coding 
sequence (CDS) of Pcdhαc2 in the two Asian seabass parents, and found no SNPs in any of the four exons, mak-
ing it impossible to use SNPs to examine the association between this gene and trait. We further examined the 
genomic sequence of Pcdhαc2 in the parents and found that there was a six bp insertion-deletion (InDel) and two 
nucleotides mutations in the 3181 bp of the 2th intron (Supplementary Figs S2 and S3). In order to conduct asso-
ciation study of Pcdhαc2 to phenotype, a pair of primers was designed for targeting the six bp InDel. In addition, 
an association mapping population from a mass cross was also developed. This association population consisted 
of 1127 individuals (476 survival and 651 mortalities) from 43 families of 15 parents. Capillary gel electrophoresis 
of the fluorescence labeled DNA fragments showed that length of PCR product was 254 and 260 bp. The associ-
ation study of genotypes with phenotypes by Chi-square test showed that the InDel of Pcdhαc2 is significantly 
associated with disease resistance (p =  0.0325). The proportions of individuals in mortality and survival groups 
with genotype 254_254 were 19.51 and 25.42%, respectively. While for genotype 260_260, the proportions for 
mortality and survival were 28.11 and 23.32%, respectively (Fig. 3). Besides genotypic analysis, the allelic test 
showed that there was significant difference in the allele frequencies between the survival and mortality groups 
(p =  0.0120). The frequencies of 254 and 260 in the survival group were 51.05% and 48.95%, respectively; those 
in the mortality group were 45.70% and 54.31%, respectively. These results could indicate that genotype 254 may 
be the resistant allele, while 260 may be the susceptible allele. It could further indicate that the 6 bp deletion is 
associated with the increased survival proportion. The possible reason could be that InDel in the intron could 
influence the mRNA transcription, splicing, stability and degradation, and eventually phenotypic expression3. 
However, it is impossible to identify the exact cause with our current data. Further study is required to understand 
the function of the 6 bp InDel in Pcdhαc2.

The association between the genotype of Pcdhαc2 and phenotype aroused our interest in examining the 
expression level of this gene in the mock and NNV-challenged fish. We conducted qRT-PCR to determine the 
expression of Pcdhαc2 in ten tissues and organs: brain, eye, fin, heart, intestine, kidney, liver, muscle, skin and 
spleen of NNV-challenged and mock Asian seabass at 5 day-post challenge (dpc) (Fig. 4). The result showed that 
Pcdhαc2 was significantly induced in the brain (p =  0.0189), muscle (p =  0.0027) and skin (p =  0.0164) after NNV 
infection, while was suppressed in spleen (p =  0.0013). This indirectly indicates that Pcdhαc2 may play a role in 
NNV-Asian seabass interaction. Whether the Pcdhαc2 binds to the virion of NNV, thus playing a similar role to 
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Ecdh in Atlantic salmon, or plays a different role, is still unknown. Further studies will focus on elucidating the 
exact function of Pcdhαc2 in NNV Asian seabass interaction.

Conclusion
In the present study, we constructed a high-density linkage map of Asian seabass consisting of 3000 SNPs and 
microsatellites. Using this map, we fine mapped four moderate QTL for resistance and survival time which could 
be used in MAS for VNN resistance in the breeding program of Asian seabass. In addition, we characterized a 
possible candidate gene, Pcdhαc2, underlying qNNV-Re_20.1 and qNNV-Su_20.1, which could provide foun-
dation for further analysis of its function in Asian seabass – NNV interaction. Certainly, other predicated genes 
in this QTL region should not be neglected. Further fine mapping in a large population may lead to identify the 
causative polymorphism for VNN resistance.

Methods
Ethics Statement. All handling of fish followed the instructions set up by the Institutional Animal Care and 
Use Committee (IACUC) of the Temasek Life Sciences Laboratory (TLL), Singapore, and the project was approved 
under the title “Breeding of Asian seabass resistance to viral diseases” (approval number TLL (F)-13-003)  
by TLL’s IACUC.

Mapping population and DNA isolation. The mapping population used in this study was originally from 
a population challenged with NNV as described in details in our previous study25. Briefly, about 700 fingerlings 
(37 days post hatching with an average body weight of 1.00 ±  0.20 g) from a backcross were immersed in seawater 
containing 9 ×  106 TCID50/ml of NNV for two hours, before being transferred to clean seawater, and designated 
as challenged group. A similar procedure was applied to the mock group of Asian seabass, but adding an equiva-
lent volume of used L-15 medium instead of NNV-containing cell culture. The two groups were under close mon-
itoring during the whole experimental period. Dead fish were collected two times every day, kept in pure ethanol 
and stored at − 80 °C for subsequent analysis. Massive mortality (more than four mortalities every day) in the 
challenged group began at 10 days post challenging (dpc) and diminished to the baseline (less than three mortal-
ities for two consecutive days) at 24 dpc. Subsequently, the whole experiment was terminated when the mortality 
rate reached approximately 50%. There was no mass mortality observed in the mock group. Examination of NNV 

Figure 3. Association between genotypes of Pcdhαc2 and phenotype in the current mapping population of 
Asians seabass. 

Figure 4. Expression pattern of Pcdhαc2 gene in ten tissues and organs at 5 dpc in mock and NNV-
challenged Asian seabass. 
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by PCR method showed that the Asian seabass fingerlings in the challenged group were dead from NNV infec-
tion. The first 94 dead and 94 survived fish plus two parents were selected to form a panel for the downstream 
analysis. The genomic DNA of the panel was isolated using the salt precipitation method described in ref. 55 and 
stored at − 80 °C until library construction.

Sequencing library preparation and next generation sequencing. The concentrations of genomic 
DNA were determined by plate reader of Infinite®  M1000 PRO (Tecan, Männedorf, Switzerland) using Qubit®  
dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA) following the manufacturer’s instructions. The 
sequencing RAD libraries were prepared using double digestion RAD-seq method with some modifications56 as 
described in our previous paper12. In brief, 200 ng of each DNA was digested with 20 units of restriction enzyme 
of PstI-HF and MspI (New England Biolabs, Ipswich, MA, USA) at 37 °C for 2.5 hours. The DNA fragments were 
examined by electrophoresis on a 2% agarose gel before ligation with barcoded adaptors56. The ligation products 
were pooled, followed by the size selection of 350 to 600 bp using Pippin Prep (Sage Science, Beverly, MA, USA), 
and then a cleanup using QIAquick PCR Purification Kit (Qiagen, Hilden, Germany). The total fragments were 
PCR amplified using Phusion®  High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA), fol-
lowed by a second clean up using QIAquick PCR Purification Kit (Qiagen, Hilden, Germany). Quantification of 
the libraries was determined using KAPA Library Quantification Kits (Kapa Biosystems, Wilmington, MA, USA) 
by qPCR in the MyiQ Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA). The libraries were sequence 
on NextSeq 500 platform (Illumina, San Diego, CA, USA) to generate raw sequencing single-end reads of 151 bp.

Processing of NGS reads, identifying and genotyping of SNPs. The raw sequencing reads were 
processed by the program process_radtags implemented in Stacks package (version 1.21)57 to remove low quality 
reads and any uncalled base. In order to reduce the sequencing errors at the end of each read, all the clean reads 
were trimmed to 95 bp, following a final step of de-multiplexing bioinformatically and assigning clean reads to 
each sample. All the downstream analysis of stack assembly, sequence mapping, SNP calling and genotyping 
were performed by the Stacks platform57 with parameters described in ref. 12. For the two parents, the stacks 
and catalogue loci were constructed with a minimum of 20 times coverage57. For the offspring, a minimum of 
five times coverage was applied to assemble the stacks. SNP calling and genotyping were conducted by sstacks 
and genotypes57, respectively. Any SNP with more than 20% missing data in both genotype and individual were 
removed from further analysis.

Construction of a linkage map. All the SNP markers and SSR markers from our previous study were 
submitted to JoinMap 4.132 to construct a genetic map. The Mendelian segregation distortion of each marker 
was examined using Chi-square test in JoinMap 4.132 and distorted markers were excluded from further analysis. 
Linkage relations between markers were analyzed in JoinMap 4.132. Marker orders and positions in the genetic 
map were determined using maximum likelihood in Kosambi’s model with a minimum logarithm of odds (LOD) 
of three32. The genetic map was visualized using Mapchart (Version 2.2)58.

Mapping QTL for resistance to VNN disease. After linkage analysis, identification and mapping of 
QTL were carried out by MapQTL 659 using a maximum likelihood (ML) through interval mapping (IM). The 
confidence intervals were estimated by bootstrapping methods to define the smallest chromosome segment 
with 95% of the most likely QTL position60. The association between marker and QTL was determined by the 
Kruskal-Wallis analysis59. To determine the statistical significance of the QTL signal, the significant threshold of 
LOD was determined through a simulation with a permutation test of 1000 times for each LG and trait under 
the null hypothesis of no QTL at a given map position61. QTL with LOD scores greater than threshold scores at 
P <  0.05 level at chromosome-wide were considered as suggestive, while greater than threshold scores at P <  0.05 
and P <  0.01 at genome-wide were considered as significant and very significant, respectively.

To determine expression levels of candidate genes underlying the identified QTL in Asian seabass by 
qRT-PCR, three-month old Asian seabass were transferred from the Marine Aquaculture Center (MAC), 
Agri-food and Veterinary Authority Singapore (AVA) in St. John Island, to Temasek Life Sciences Laboratory. 
Prior to challenging, fish were acclimatized in two tanks with 25 liters of circulated seawater (30 °C, salinity 30 
ppt, pH 7.6) and saturated oxygen for 5 days. In the whole period of experiment, fish were fed with a commer-
cial feeder (Marubeni Corporation, Tokyo, Japan) twice a day, and half of the seawater was replaced with fresh 
seawater every two days. At the day of challenge, three fish were randomly selected and weighed with an average 
body weight was 16.36 ±  3.04 g. During the challenge, one group of fish was each intraperitoneally injected with 
0.1 ml of NNV stock with a concentration of 3.75 ×  108 TCID50, and designed as the NNV-challenged group. 
The mock group was each intraperitoneally injected with an equivalent amount of 0.1 ml of used L-15 medium. 
All the fish were closely monitored in the whole experimental period. At 5 dpc, three fish from each of the two 
groups (NNV-challenged and mock) were scarified, before collection of ten tissues and organs: brain, eye, fin, 
heart, intestine, kidney, liver, muscle, skin and spleen. Total RNA was isolated from these tissues and organs using 
TRIzol (Life Technologies, Carlsbad, USA) following the manufacturer’s instruction.

Expression pattern of a candidate gene located in QTL qNNV-Re_20.1 and qNNV-Su_20.1 in 
tissues and organs. Following the identification of QTL for resistance to VNN, the nearest marker to the 
peak of QTL was determined and the sequence harboring the SNP or SSR was retrieved. The obtained sequence 
was used as seed to retrieve 300 kb sequences from the Asian seabass genome, followed by blasting the Asian sea-
bass transcriptome against those sequences by GMAP52 with default parameters to identify genes in these QTL. 
Candidate genes were determined with criteria that genes with the highest score and longest matching length 
were selected.
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To determine the expression pattern of the candidate gene after NNV infection, qRT-PCR was conducted on 
the RNAs extracted from ten organs and tissues at 5 dpc in the mock and NNV challenged groups. Primer pairs 
were designed by DNASTAR Lasergene 11 (DNASTAR, Madison, USA) based on the ORF of candidate genes. 
In this study, Pcdhαc2 was the possible candidate gene for QTL qVNN-Re_20.1 and qVNN-Su_20.1 and primer 
pairs of 5′ -GCTTATGCCCTGCGAGCCTTTGA-3′  and 5′ -CATTGCCGGGAGGGTTGACTATCAG-3′  were 
obtained. Before qRT-PCR, total RNA of each sample was treated with DNase I recombinant RNase-free (Roche, 
Basel, Swissland) following the manufacturer’s instructions, to remove the potential genomic DNA contamina-
tion. A total of two μ g of total RNA was used to synthesis cDNA by M-MLV Reverse Transcriptase (Promega, 
Madison, USA) and 0.5 μ g of random hexamer primer. qPCR reactions were performed on Applied Biosystems 
7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, USA), using SYBR Green as fluorescent 
dye. A 10 μ l qPCR reaction contained 1.6 water, 3 μ l (15 ng) of 10x diluted cDNA, 0.2 μ l (2 μ M) of each primer 
and 5 μ l of 2x master mix from KAPA SYBR®  FAST qPCR Kits (Life Technologies, Carlsbad, USA). The qPCR 
followed the conditions of 95 °C for 3 min, 40 cycles of 95 °C for 10 s and 58 °C for 30 s. Each reaction had three 
repeats. ∆ ∆ Ct method62 was used to analyze the relative quantifications and fold change of each gene using the 
elongation factor 1-alpha 1 (EF1α1) as a reference gene20.

Association study of Pcdhαc2 in multiple families. To verify the Pcdhαc2 as a candidate gene under-
lying the QTL, we performed an association study in multiple families of Asian seabass. Primer pairs of Forward  
5′ -CCGTGCCATGCTGTGAGTGC-3′  and Reverse 5′ -GATGCCGGAGCTGTGTTCTGTTA-3′  targeting the 
6bp InDel were designed. Forward primer was labeled with fluorescence FAM (Sigma-Aldrich, Missouri, USA) at 
its 5′  end. An association population of 1127 individuals (476 survival and 651 mortalities) was developed from 
43 families, which were produced by a mass cross between 15 brooders. The number of families in this population 
was estimated using molecular parentage assignment with a multiplex PCR set consisting of 10 primer pairs, 
which was developed by our lab for parentage assignment. The parentage assignment was conducted as described 
in ref. 63. The challenge experiment and DNA isolation for the association population was followed the same 
procedure as described in this section of ‘Mapping population and DNA isolation’. The association population 
was genotyped by PCR as described in ref. 25. Briefly, a 25 μ l of PCR reaction included 1 × PCR buffer, 500 μ M of  
each dNTP, 2 μ M of each primer, 2.5 units of Taq polymerase and 30 ng of genomic DNA. The thermal cycling 
conditions were as follows: 94 °C for 3 min, followed by 36 cycles of 94 °C for 30 s, 58 °C for 30 s and 72 °C for 
45 s, with a final extension at 72 °C for 10 min. PCR products were detected using capillary electrophoresis by a 
3730xl DNA analyzer (Applied Biosystems, California, USA) and allele sizes were determined by comparison 
with size standard GS-ROX-500 (Applied Biosystems, California, USA) using the software Genemapper (Applied 
Biosystems, California, USA).

Data deposition. All the raw reads were submitted to the sequence reads archive (SRA), NCBI database with 
an accession number of SRP073060.
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