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Clinically used selective estrogen 
receptor modulators affect 
different steps of macrophage-
specific reverse cholesterol 
transport
María E. Fernández-Suárez1,2, Joan C. Escolà-Gil3,4,5, Oscar Pastor2,6, Alberto Dávalos7, 
Francisco Blanco-Vaca3,4,5, Miguel A. Lasunción1,2, Javier Martínez-Botas1,2 &  
Diego Gómez-Coronado1,2

Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and 
whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-
specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of 
human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation 
of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux 
to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not 
altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of 
mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-
cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice 
intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and 
feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced 
the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than 
raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from 
macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable 
to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from 
macrophages.

Reverse cholesterol transport (RCT) is the process by which high-density lipoproteins (HDL) convey cholesterol 
from peripheral cells to the liver for excretion into bile and feces1. Promotion of RCT from cholesterol-laden 
macrophages (M-RCT) present in the arterial wall is considered a major anti-atherogenic function of HDL2,3. The 
removal of excessive cholesterol from cells by HDL or lipid-poor apolipoprotein (apo) A-I constitutes the first step 
in RCT1. Cholesterol efflux is mainly mediated by ATP-binding cassette transporter (ABC) A1 and ABCG1, with 
lipid-poor apoA-I and mature HDL particles, respectively, serving as acceptors. Additionally, scavenger receptor 
class B type I (SR-BI) can also promote cholesterol export to mature HDL. In the liver, SR-BI mediates the selec-
tive uptake of HDL cholesterol. Subsequently, cholesterol can be converted to bile acids or be directly excreted 
to the bile through the heterodimeric transporter formed by ABCG5 and ABCG8 (ABCG5/G8). These four 
ABC proteins are transcriptionally upregulated by the liver X receptor (LXR), which is activated by oxysterols  
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generated in response to increased cellular cholesterol content4. Macrophages can take up chemically modified 
low-density lipoproteins (LDL), such as oxidized LDL and acetylated LDL (AcLDL), a model of modified LDL 
used in vitro, through scavenger receptors, which are not regulated by cellular cholesterol content. This leads to 
the formation of cholesterol-laden macrophages, similar to those present in atherosclerotic lesions, by deposition 
of cholesteryl ester droplets5. Intracellular cholesterol trafficking plays a key role in cholesterol homeostasis6. 
Receptor-bound lipoproteins are transported to late endosomes/lysosomes (LE/L) where cholesteryl esters are 
hydrolyzed to free cholesterol. The subsequent egress of cholesterol from this compartment makes it available 
to other intracellular organelles, thus allowing cholesterol re-esterification by acyl-coenzyme A:cholesterol acyl-
transferase (ACAT) and the generation of LXR-activating oxysterols. Free cholesterol released from LE/L and 
from rehydrolyzed cholesteryl ester droplets can also move to the plasma membrane and thus be available for 
efflux out of the cell. Moreover, cholesterol can inhibit cholesterol biosynthesis and LDL receptor expression by 
suppressing the sterol regulatory element-binding protein (SREBP)-2 pathway7.

Selective estrogen receptor modulators (SERMs) are non-steroidal molecules that bind to estrogen recep-
tors (ERs) and which are widely prescribed for the treatment and prevention of breast cancer, osteoporosis and 
ovulatory dysfunction8. SERMs display an estrogen-agonist or estrogen-antagonist effect depending on the 
tissue targeted, although different ER-independent effects have also been reported9–11. Tamoxifen (TAM) and 
toremifene (TOR), which are triphenylethylene derivatives differing only by the presence of a chlorine atom in 
the ethyl chain of TOR, are used to treat breast cancer. Raloxifene (RAL) is a benzothiophene derivative indicated 
for the treatment and prevention of osteoporosis in postmenopausal women8. In addition to their therapeutic 
effects, SERMs cause profound alterations in cellular and whole-body cholesterol homeostasis. These drugs con-
sistently decrease total and LDL-cholesterol concentrations12, an effect that may be mediated by both the inhi-
bition of cholesterol biosynthesis13–15 and the increase of LDL receptor activity11,15,16. Moreover, SERMs inhibit 
ACAT-mediated cholesterol esterification11,17. However, whether or not SERMs are cardioprotective in humans is 
subject to debate8,18,19, although it has been reported in different mouse models that TAM reduces atherosclerosis 
concurrent with a decrease of HDL-cholesterol20–22. Such an atheroprotective effect in mouse has been linked to 
the upregulation of transforming growth factor-β  in the artery wall20–22. However, the effects of SERMs on the 
RCT pathway are unknown.

In human cell lines and primary lymphocytes we have demonstrated that TAM, RAL and TOR increase LDL 
receptor expression by impairing the egress of LDL-derived cholesterol from LE/L, thus blocking the transport of 
cholesterol to the endoplasmic reticulum and the subsequent inhibition of the SREBP-2 pathway11,15. These effects 
were independent of ERs11. We hypothesized that the SERM-mediated interference with cholesterol trafficking in 
macrophages may limit cholesterol efflux from these cells, thus hampering the macrophage-to-feces cholesterol 
transport in vivo. Therefore, we assessed the effect of clinically used SERMs on macrophage cholesterol trafficking 
and efflux and on the whole M-RCT pathway in vivo.

Results
SERMs impaired intracellular AcLDL-derived cholesterol trafficking and cholesterol efflux in 
macrophages. We first determined the effect of TAM, RAL and TOR on the cholesterol content of THP-1 
macrophages exposed to AcLDL for 24 h. AcLDL increased total, free and esterified cholesterol content, but 
these were not altered by treatment with any of the SERMs (Supplementary Fig. S1a). The distribution of free 
cholesterol in THP-1 macrophages was analyzed by addition of 1,1′ -dioctadecyl-3,3,3,3′ -tetramethylindocar-
bocyanineperchlorate (DiI)-labeled AcLDL and filipin staining. As shown in Fig. 1a, in the control condition 
filipin-positive structures displayed a diffuse distribution in the cytoplasm, with distinguishable small vesicles. 
The addition of the SERMs caused the appearance of abundant and larger cytoplasmic, filipin-positive vesicles, 
indicative of the accumulation of free cholesterol. These vesicles co-localized with DiI, suggesting that the accu-
mulated cytoplasmic free cholesterol derives from internalized AcLDL and is retained in LE/L (Supplementary 
Fig. S2). When nonpolar lipids were stained with Bodipy and analyzed by confocal microscopy, it was observed 
that SERM treatment decreased the number of Bodipy-positive droplets (Fig. 1b). Given this effect on nonpolar 
lipids in the absence of changes in esterified cholesterol mass, triacylglycerols were measured. AcLDL increased 
triacylglycerol mass relative to lipoprotein-deficient serum (LPDS) alone, whereas any of the SERMs abrogated 
such an increase (Supplementary Fig. S1c). Therefore, the reduction of nonpolar lipids after a 24-h treatment 
with SERMs correlates with the decrease of the mass of triacylglycerols, but not with that of esterified cholesterol.

The enzyme responsible for re-esterification of lipoprotein-derived cholesterol is ACAT and resides in the 
endoplasmic reticulum. When cholesterol exits the lysosomes, the cellular cholesterol pool expands and ACAT 
is activated. Thus, the effect of SERMs on ACAT activity was determined. As shown in Supplementary Fig. S1d, 
the three SERMs, but more intensely RAL and TOR, effectively opposed the AcLDL-mediated stimulation of 
cholesterol esterification. This contrasts with the lack of effect of SERMs on esterified cholesterol mass. We, then, 
hypothesized that 24 h of SERM treatment is not sufficient to alter the cellular content of esterified cholesterol, nor 
that of free cholesterol. To test this hypothesis, the treatment time was prolonged to 48 h (Supplementary Fig. S1b).  
While LPDS treatment markedly reduced free and esterified cholesterol mass, macrophages loaded with AcLDL 
showed increased total cholesterol mass as compared with those loaded for 24 h, which was accounted by an 
elevation of the esterified cholesterol mass (compare Supplementary Fig. S1a,b). SERMs opposed this increase 
of esterified cholesterol, RAL and TOR, the most active at inhibiting ACAT activity, being especially effective. 
Simultaneously, SERMs tended to increase the free cholesterol content as compared with the treatment with 
AcLDL alone (control), the effect of RAL being statistically significant (Supplementary Fig. S1b). As a conse-
quence of the opposite effects of SERMs on free and esterified cholesterol, the mass of total cholesterol remained 
similar to that of control cells.

Next we analyzed the effect of the SERMs on AcLDL-derived cholesterol efflux from THP-1 macrophages, for 
which cells were loaded with [3H]cholesterol-labeled AcLDL in the presence of the SERMs. This treatment did 
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not affect macrophage labeling with [3H]cholesterol-AcLDL (Supplementary Fig. S3). First, we tested the effect of 
different concentrations of TAM. This drug decreased apoA-I-mediated cholesterol export in a dose-dependent 
manner (Fig. 2a). HDL-mediated cholesterol efflux was also reduced (Fig. 2b), although to a lower extent than in 
the presence of apoA-I. It has been reported that the LXR agonist T0901317 stimulates the trafficking from LE/L 
to the plasma membrane and subsequent efflux of AcLDL-derived cholesterol23. Therefore, we tested the effect 
of T0901317 on TAM-mediated decrease of cholesterol efflux from THP-1 macrophages. T0901317 modestly 
increased cholesterol efflux to both apoA-I and HDL, but the reduction by TAM persisted (Fig. 2a,b). Then, the 
effect of RAL and TOR at a 10 μ M concentration was also examined. Like TAM, those SERMs lowered choles-
terol efflux to apo-A-I (Fig. 2c) and, more weakly, to HDL (Fig. 2d), and these effects essentially persisted in the 
presence of T0901317. As a whole, these results suggest that the SERMs interfere with AcLDL-derived cholesterol 
intracellular trafficking and subsequent export from macrophages.

To get a deeper insight into the mechanism underlying the decrease of cholesterol efflux by SERMs, the expres-
sion of ABCA1, ABCG1 and SR-BI was determined. As expected, AcLDL markedly increased the protein levels 
of ABCA1 and ABCG1. TAM dose-dependently opposed the effects of AcLDL (Fig. 3a). These effects paralleled 
those on the respective mRNA levels (Supplementary Fig. S4). RAL and TOR, tested at 10 μ M, also decreased 
ABCA1 and ABCG1 protein levels (Fig. 3b). In contrast, the three SERMs slightly increased SR-BI expression 
(Fig. 3a,b). On the other hand, the T0901317-induced stimulation of ABCA1 and ABCG1 expression was only 
partially prevented by the SERMs (Fig. 3b).

The SERM-mediated suppression of ABCA1 and ABCG1 expression may contribute, by itself, to the low-
ering of AcLDL-derived cholesterol efflux. To test this possibility, THP-1 macrophages were labeled with [3H]
cholesterol added in ethanol, which preferentially labels cellular pools other than LE/L24. Subsequently, cells 
were treated with AcLDL plus TAM or vehicle and, finally, cholesterol efflux was measured as above. By this 
procedure, the effect of TAM on [3H]cholesterol efflux is independent of its effect on intracellular trafficking 
of AcLDL-derived cholesterol. TAM dose-dependently inhibited both apoA-I-mediated and, less effectively, 
HDL-mediated cholesterol efflux (Supplementary Fig. S5). This suggests that SERMs decrease cholesterol export 
from THP-1 macrophages not only by lowering the availability of lipoprotein cholesterol, but also by impairing 
the AcLDL-mediated induction of ABCA1 and ABCG1.

To confirm the effects of SERMs on human primary macrophages, human monocyte-derived macrophages 
were treated as described above. The three SERMs also caused the accumulation of cytoplasmic free cholesterol 
and the reduction of nonpolar lipids (Supplementary Fig. S6). Simultaneously, the SERMs suppressed the expres-
sion of ABCA1 and ABCG1, an effect that was abrogated by T0901317, whereas they increased SR-BI expression 
independently of the presence of T0901317 (Supplementary Fig. S7). The expression of CD36 and NPC1 was 
not appreciably altered (Supplementary Fig. S7). Preliminary studies showed that apoA-I- and HDL-mediated 
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Figure 1. Effect of SERMs on free cholesterol and nonpolar lipid distribution in THP-1 macrophages. Cells 
were treated with AcLDL and vehicle (Control) or 10 μ M tamoxifen (TAM), raloxifene (RAL) or toremifene 
(TOR). (a) Fluorescence microscopy of stainings with filipin for free cholesterol. (b) Confocal microscopy of 
costainings with filipin (blue) and Bodipy (green) for nonpolar lipids. Photographs are representative examples 
from three independent experiments.
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cholesterol efflux from [3H]cholesterol-AcLDL-labeled primary macrophages was less efficient than from THP-1 
macrophages (results not shown), for which reason the efflux phase was prolonged up to 24 h, throughout which 
the SERMs were kept in the media. Again, the SERMs decreased AcLDL-derived cholesterol efflux to apoA-I and, 
to a lower extent, HDL, which was at least partially prevented by the addition of T0901317 (Supplementary Fig. S8).

We evaluated whether ERs were involved in the effects of the SERMs. The expression of both ESR1 and ESR2 
in THP-1 macrophages was undetectable (Ct > 39 cycles) and SERM treatment did not change this expression, 
suggesting that the effects of SERMs were independent of ERs. This issue was further explored in mouse perito-
neal macrophages. As shown in Supplementary Fig. S9, when these cells were treated with the SERMs, as indi-
cated for human macrophages, all three drugs induced the accumulation of free cholesterol-rich vesicles and 
markedly reduced the number of nonpolar lipid droplets. On the other hand, the SERMs inhibited cholesterol 
efflux from mouse macrophages to both apoA-I and HDL (Fig. 4). The simultaneous addition of ICI 182,780, a 
selective ER down-regulator, did not alter the effect of any SERM on cytoplasmic free cholesterol and nonpo-
lar lipid accumulation (Supplementary Fig. S9) or on cholesterol efflux (Fig. 4). Consistently, 17β -estradiol, the 
natural ligand of ERs, was unable to influence intracellular cholesterol distribution (Supplementary Fig. S9) and 
cholesterol efflux to apoA-I or HDL (Fig. 4) when compared with untreated macrophages.

TAM and RAL decreased HDL-cholesterol concentrations, but only TAM reduced macrophage- 
specific RCT. Next we assessed the impact of SERMs on M-RCT in mice. The effects of TAM, as a representative 
of the two triphenylethylene derivatives used herein, and RAL were studied. Mouse peritoneal macrophages were 
radiolabeled with [3H]cholesterol, loaded with AcLDL and treated with TAM, RAL or vehicle as described above. 
Mice given a Western-type diet were treated with TAM, RAL or vehicle by oral gavage for 10 days. Forty-eight hours 
before sacrifice, they received an intraperitoneal injection of radiolabeled macrophages previously treated ex vivo 
with the same SERM or vehicle, respectively. Both TAM and RAL reduced serum and HDL-cholesterol levels as 
compared with control mice, whereas TAM increased serum triacylglycerol concentrations relative to RAL (Fig. 5a). 

Figure 2. Effect of SERMs on AcLDL-derived cholesterol efflux from THP-1 macrophages. (a,b) Cells were 
treated with [3H]cholesterol-AcLDL and vehicle (Con, control) or the indicated concentrations of tamoxifen 
(TAM) and in the absence or presence of T0901317 (1 μ M). The cells were washed and cholesterol efflux was 
measured in the presence of apoA-I (a) or HDL (b) at 8 h. (c,d) Cells were treated with [3H]cholesterol-AcLDL 
and vehicle (Con, control) or tamoxifen (TAM), raloxifene (RAL) or toremifene (TOR) (10 μ M) and in the 
absence or presence of T0901317 (1 μ M). Then, cells were washed and cholesterol efflux was measured in the 
presence of apoA-I (c) or HDL (d) at 8 h. Data are mean ±  SEM of 3 or 4 independent experiments. *P <  0.05, 
**P <  0.01, ***P <  0.001; • P <  0.05, • • P <  0.01 between conditions only differing in the presence of T0901317.
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Figure 3. Effect of SERMs on ABCA1, ABCG1 and SR-BI protein expression in THP-1 macrophages.  
(a) Cells were incubated in the absence or presence of AcLDL and the indicated concentrations of tamoxifen 
(TAM) or T0901317 (T0, 1 μ M). (b) Cells were treated with AcLDL and vehicle (Con, control) or tamoxifen 
(TAM), raloxifene (RAL) or toremifene (TOR) (10 μ M) and in the absence or presence of T0901317 (1 μ M).
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Figure 4. Effect of SERMs, ICI 182,780 and 17β-estradiol on cholesterol efflux from mouse peritoneal 
macrophages. Cells were labelled with [3H]cholesterol added in ethanol and then treated with AcLDL and 
vehicle (Con, control) or tamoxifen (TAM), raloxifene (RAL) or toremifene (TOR) (10 μ M), or the indicated 
concentrations of 17β -estradiol (E2) and in the absence or presence of ICI 182,780 (1 μ M). Subsequently 
cholesterol efflux was measured in the absence or presence of apoA-I (a) or HDL (b) at 8 h. Data are mean ±  SEM 
of macrophages from 4 or 5 mice. Bars with different letters are statistically different (P <  0.05).
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There were no significant differences in hepatic cholesterol and triacylglycerol contents between the treatments 
(Fig. 5b). Consistently, Oil Red O staining of liver sections showed abundant neutral lipid droplets with all the treat-
ments (Fig. 5c). However, filipin staining did not result in sufficiently well-resolved images to enable the distribution 
of free cholesterol in the hepatocytes to be discerned (Supplementary Fig. S10).

TAM treatment reduced serum [3H]tracer radioactivity at 48 h after macrophage injection, which was mostly 
attributable to reduced [3H]tracer in HDL (Fig. 6a). RAL, on the other hand, produced no significant changes 
versus control mice. Similarly, TAM, but not RAL, lowered hepatic [3H]tracer values (Fig. 6b). Fecal [3H]tracer 
excretion over 48 h was also reduced by TAM, RAL again producing no effect (Fig. 6b). Therefore, although both 
TAM and RAL decreased concentrations of HDL-cholesterol, only TAM impaired M-RCT. The lower recovery 
of [3H]tracer in serum, liver and feces of TAM-treated mice suggested a lower [3H]cholesterol mobilization from 
macrophages. To test this possibility, the amount of [3H]cholesterol in serum was measured at early time points 
after injection of labeled macrophages. The rate of appearance of [3H]cholesterol in serum was reduced by TAM 
and, to a much lower extent, RAL treatment (Fig. 6c). TAM significantly decreased serum [3H]cholesterol at 3 and 
6 h versus vehicle and RAL, whereas RAL did not cause a significant effect at any time point.

TAM and RAL altered HDL composition, cholesterol efflux capacity and catabolism to differ-
ent degrees. We characterized HDL composition and ex vivo cholesterol efflux capacity, for which plasma 
HDL was isolated from mice treated as indicated above. As shown in Fig. 7a, TAM decreased the percentage of 
phospholipids and esterified cholesterol and increased those of triacylglycerols and total protein, whereas RAL 
only changed the content of neutral lipids. HDL from SERM-treated animals was less effective in promoting 
cholesterol efflux from mouse peritoneal macrophages than that from vehicle-treated animals, TAM displaying a 
slightly but significantly greater effect than RAL (Fig. 7b). When the efflux to whole plasma was examined, it was 
found that TAM, but not RAL, reduced the capacity of plasma to promote cholesterol efflux (Fig. 7c).

To assess the effect of these SERMs on the catabolism and fate of cholesterol from the HDL core, each mouse 
was injected intravenously with HDL isolated from donor mice of the same treatment group and labeled with 
[3H]cholesteryl oleate. The SERMs accelerated the clearance of HDL-[3H]cholesteryl oleate from serum, TAM 
having the highest effect (Fig. 8a). There were no differences between the treatments in the amount of hepatic  
[3H]tracer (Fig.  8b). Moreover, fecal excretion of HDL-derived [3H]cholesterol showed a downward, 
non-significant trend in TAM-treated mice (Fig. 8b).
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Figure 5. Effect of tamoxifen and raloxifene on serum and hepatic lipid concentrations in mice. Mice 
were fed a western-type diet for 4 weeks and were treated with tamoxifen (TAM), raloxifene (RAL) or vehicle 
(Control) for the last 10 days. (a) Cholesterol, HDL-cholesterol and triacylglycerol (TG) serum concentrations. 
(b) Hepatic free cholesterol (FC), cholesteryl ester (CE) and triacylglycerol concentrations. Data are 
mean ±  SEM of 5 mice per group. *P <  0.05, **P <  0.01. (c) Histological stainings with Oil Red O for nonpolar 
lipids and hematoxylin in liver sections.
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Figure 6. Effects of tamoxifen and raloxifene on macrophage-specific RCT. Mice were fed a western-type 
diet for 4 weeks and treated with tamoxifen (TAM), raloxifene (RAL) or vehicle (Control) for the last 10 days. 
Forty-eight hours before sacrifice, mice were injected intraperitoneally with [3H]cholesterol-labelled, AcLDL-
loaded mouse peritoneal macrophages that had been treated ex vivo with the same drug or vehicle, respectively. 
(a) Serum total and HDL-associated [3H]cholesterol at 48 h. (b) Liver [3H]cholesterol at 48 h and excretion of 
total [3H]tracer, [3H]cholesterol and [3H]bile acids in feces over 48 h. Data are mean ±  SEM of 5 mice per group. 
*P <  0.05, **P <  0.01. (c) Serum [3H]cholesterol at early time points. Data are mean ±  SEM of 5 mice per group. 
***P <  0.001 versus Control; ##P <  0.01, ###P <  0.001 versus RAL.

Figure 7. Effect of tamoxifen and raloxifene on HDL composition and ex vivo cholesterol efflux capacity. 
Plasma HDL was isolated from mice fed a western-type diet for 4 weeks and treated with tamoxifen (TAM), 
raloxifene (RAL) or vehicle (Control) for the last 10 days. (a) Pie chart of the chemical composition of HDL. 
Values are mean percentages of 4 mice per group. Sectors of a given component not sharing a letter are 
statistically different (P <  0.05). P, protein; PL, phospholipids; EC, esterified cholesterol; FC, free cholesterol; 
TG, triacylglycerols. (b,c) [3H]Cholesterol-labelled and AcLDL-loaded mouse peritoneal macrophages were 
incubated in the absence or presence of HDL (40 μ g/mL) (b) or whole plasma (1%) (c) for 8 h to measure 
cholesterol efflux. *P <  0.05, **P <  0.01, ***P <  0.001.
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TAM and RAL produced similar effects on the expression of hepatic cholesterol transporters.  
Next, we determined the expression of genes relevant for cholesterol transport and its conversion to bile acids in 
the liver. As shown in Fig. 9a, RAL did not alter the content of the mRNA for any of the genes studied, whereas 
TAM decreased those of Abcg5 and Abcg8. To ascertain whether these effects translated into changes in protein 
expression, western blot assays were performed. Neither TAM nor RAL altered the expression of ABCA1 or 
ABCG1, but both SERMs increased SR-BI expression (Fig. 9b,d). ABCG5 and ABCG8 were analyzed in liver 
membrane fractions. Several bands appeared for both proteins (Fig. 9c), which have been reported to correspond 
to different glycosylated forms ranging from approximately 65 to 100 kDa25–27. Both TAM and RAL decreased the 
expression of the different forms of ABCG5 and ABCG8 (Fig. 9c,d).

Discussion
In this study we provide evidence that SERMs impair cholesterol efflux from macrophages in vitro and that TAM, 
but not RAL, reduces M-RCT in vivo. SERMs had the ability to alter several steps of RCT, since they decreased 
cholesterol mobilization from macrophages, reduced the capacity of HDL to promote cholesterol efflux, acceler-
ated plasma HDL catabolism and lowered hepatic expression of ABCG5/G8. These effects, many of which were 
common to TAM and RAL, were generally more pronounced in TAM-treated mice and seem to have a differen-
tial impact on M-RCT.

TAM, RAL and TOR inhibited cholesterol efflux from human and mice macrophages in vitro in association 
with an inhibition of the egress of AcLDL-derived cholesterol from LE/L. This trafficking blockade is in full 
agreement with the effect of SERMs on native LDL-derived cholesterol in other cell types11,15. As a consequence, 
lipoprotein-derived cholesterol is unavailable for efflux from the cell and, consistent with previous findings11,17, 
ACAT-mediated cholesterol esterification. These effects were observed at concentrations of TAM and TOR within 
the range of those achieved in the plasma of treated patients28,29, although higher than those achieved with RAL, 
which has poor bioavailability28. We also showed that ERs were not involved in the inhibition of macrophage 
cholesterol efflux by SERMs, which agrees with our previous studies demonstrating that the SERM-mediated 
stimulation of the SREBP pathway and LDL uptake is independent of ERs11,15. On the other hand, SERMs sup-
pressed the lipoprotein cholesterol-induced expression of ABCA1 and ABCG1, suggesting an impaired signalling 
through LXR, a key transcriptional regulator of such transporters. This probably results from a failure to generate 
cholesterol-derived oxysterols required to activate LXR, similar to what occurs in Niemann–Pick disease type C 
fibroblasts30, which are unable to export cholesterol from lysosomes and, consequently, have deficient upregula-
tion of ABCA1 and cholesterol efflux to apoA-I31. The inhibition of the AcLDL-induced increase of triacylglycerol 
mass by SERMs is also consistent with an impairment of LXR activation, given that LXR is an established lipo-
genic factor32. The reason for the higher inhibition of cholesterol efflux to apoA-I than to HDL, as found herein, 
may be due to a compensating effect on the export to HDL exerted by the SERM-mediated increased SR-BI 
expression, although the mechanism whereby SERMs affect SR-BI is unknown.

The results presented here are in line with the reduction of cholesterol efflux from ABCA1- and 
ABCG1-deficient macrophages33. It has been reported that the deficiency of these transporters impairs M-RCT 
in mice and that they have an additive effect33,34. This prompted us to study the effect of TAM and RAL on 
M-RCT. Surprisingly, only TAM inhibited M-RCT, suggesting that factors other than macrophage choles-
terol efflux determine the differential effect of TAM and RAL on M-RCT. However, both drugs reduced serum 

Figure 8. Effect of tamoxifen and raloxifene on the clearance of [3H]cholesteryl oleate-labelled HDL in 
mice. Plasma HDL was isolated from mice fed a western-type diet for 4 weeks and treated with tamoxifen 
(TAM), raloxifene (RAL) or vehicle (Control) for the last 10 days. HDL were labelled with [3H]cholesteryl oleate 
and injected intravenously into mice at day 8 of treatment with the same SERM or vehicle as the HDL donor 
mice. (a) Decay curve of [3H]cholesteryl oleate-labelled HDL in serum. (b) Liver [3H]cholesterol at 48 h and 
excretion of total [3H]tracer, [3H]cholesterol and [3H]bile acids in feces over 48 h. Data are mean ±  SEM of 4 
mice per group. **P <  0.01, ***P <  0.001 versus Control; ##P <  0.01, ###P <  0.001 versus RAL.
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HDL-cholesterol concentrations, which supports the concept that the rate of M-RCT is not necessarily a reflec-
tion of HDL-cholesterol concentrations, as previously found by others2,3. The decrease of HDL-cholesterol by 
SERMs is coincident with an accelerated clearance of HDL-cholesteryl esters and increased hepatic SR-BI expres-
sion, a key determinant of HDL-cholesterol uptake35. Enhanced SR-BI protein expression, but unchanged mRNA 
levels, and reduced HDL-cholesterol has also been found in rats treated with the SERM acolbifene36. Hepatic 
ABCA1 expression, which is essential for HDL biogenesis37, was unaltered. Therefore, the likely mechanism for 
the HDL-cholesterol decrease caused by SERMs is increased catabolism.

In principle, an increased SR-BI-mediated HDL cholesterol uptake by the liver would favor the fecal excretion 
of macrophage-derived cholesterol38, but this was not observed with any drug. Interestingly, both TAM and RAL 
inhibited the expression of hepatic ABCG5 and ABCG8 protein, which form a heterodimer that plays a key role 
in biliary cholesterol excretion39,40. The fact that both SERMs decreased the expression of hepatic ABCG5/G8 
suggests that this transporter does not have a major role in the effect of TAM on M-RCT. The moderate effect of 
TAM on fecal [3H]cholesterol excretion after intravenously injecting HDL-[3H]cholesteryl oleate also supports 
this conclusion. Alternative mechanisms of cholesterol excretion may have compensated for the low expression 
of ABCG5/G8. Previous reports have shown that SR-BI can mediate biliary cholesterol secretion and M-RCT 
independently of ABCG5/G8 in mice41,42. Moreover, an intestinal route for cholesterol excretion and M-RCT has 
been described43,44. These mechanisms may have also contributed to prevent hepatic cholesterol accumulation in 
SERM-treated mice despite increased SR-BI and decreased ABCG5/G8 expression.

The lower fecal excretion of macrophage-derived cholesterol with TAM treatment was associated with reduc-
tions in the rate of appearance of [3H]cholesterol in serum and its recovery in liver at 48 h. In contrast, RAL only 
marginally decreased the rate of appearance of [3H]cholesterol in serum and had no effect on its recovery in liver 
and feces. However, when the transport of [3H]cholesterol to feces was measured after the intravenous injection 
of HDL-[3H]cholesteryl oleate, which introduces the [3H]tracer downstream of macrophage efflux, neither TAM 
nor RAL treatment significantly altered fecal [3H]tracer excretion. Collectively these results suggest that TAM 
and RAL have a differential impact on the capacity to mobilize cholesterol from macrophages and, thereby, its 
subsequent transport to feces. Additionally, we found that HDL from SERM-treated mice had a reduced capac-
ity to promote macrophage cholesterol efflux in vitro, TAM being more active than RAL. Moreover, the efflux 
capacity of plasma was lowered by TAM, but not RAL treatment. Therefore, an impaired activity of HDL as 
acceptor of macrophage cholesterol may contribute to the lower mobilization and macrophage-to-feces trans-
port of cholesterol in TAM-treated mice. In line with this, two reports have indicated that the activity of HDL to 
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Figure 9. Effect of tamoxifen and raloxifene on the hepatic expression of cholesterol transporters. Mice were fed 
a western-type diet for 4 weeks and were treated with tamoxifen (TAM), raloxifene (RAL) or vehicle (Control, Con) 
for the last 10 days. (a) Gene expression analysis by real-time PCR. Data are mean ±  SEM of 5 mice per group and 
are expressed as the relative amount of mRNA compared to the level in the control condition. (b,c) Western blot 
analysis of liver (b) and liver membrane fraction (c) lysates. (d) Scan densitometry quantification of protein levels 
of the blottings shown in (b,c). Data are mean ±  SEM of the ratios between the levels of each protein and those of 
GAPDH or calnexin, respectively. *P <  0.05, **P <  0.01.
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promote macrophage cholesterol efflux plays a principal role in the ability of T0901317 to stimulate M-RCT45,46. 
The lower efflux potential of HDL and plasma from TAM-treated mice may be due to the lower phospholipid 
content of such particles, whose phospholipid/protein ratio decreased by 30% and 20% versus HDL from, respec-
tively, vehicle- and RAL-treated mice. It has been proposed that phospholipids are the HDL component that best 
reflects the serum’s efflux efficiency47–49. The lower phospholipid content may also contribute to the accelerated 
clearance of HDL in vivo, because HDL modification by phospholipases makes HDL cholesteryl esters more sus-
ceptible to SR-BI-mediated selective uptake50.

As mentioned above, the effects of SERMs on intracellular trafficking and efflux of cholesterol are independent 
of ERs. The involvement of ERs in at least some of the effects of SERMs in vivo cannot be ruled out. However, 
the effects produced by estrogen treatment on the hepatic expression of cholesterol transporters in mice51,52 and 
rats53,54 differ from those observed herein. ABCG5 and ABCG8, in particular, do not appear to be regulated by 
estrogen52. These transporters are known LXR targets required for LXR agonist-mediated stimulation of choles-
terol excretion55, the liver ABCG5/G8 heterodimer being a key determinant of the M-RCT stimulation induced 
by LXR agonists and a high-cholesterol diet56,57. By analogy with the effect of SERMs on cultured cells (reported 
here and elsewhere11,15), a disruption of intracellular cholesterol trafficking in hepatocytes may be involved in the 
reduction of ABCG5/G8 expression. However, we were unable to distinguish cytoplasmic deposition of free cho-
lesterol in hepatocytes or alterations in free or esterified cholesterol liver content. Curiously, while both protein 
and mRNA levels of ABCG5 and ABCG8 were reduced at the end of the study in TAM-treated mice, only the pro-
tein levels were diminished by RAL. The reason for such a discrepancy between both SERMs is unknown. Perhaps 
it is due to a more potent transcriptional effect or higher bioavailability of TAM than RAL, thus increasing the 
likelihood of observing changes in mRNA over time. Actually, RAL has been found to have a lower bioavailability 
than TAM in humans28 and rats58,59. In a clinical setting, RAL is administered to patients at higher doses than 
TAM28, so the possibility that higher doses of RAL are able to diminish M-RCT cannot be ruled out.

Although ABCA1 and ABCG1 are also LXR targets, their hepatic expression was not affected by SERMs. 
This is consistent with the known differential regulation of these transporters and ABCG5/G8 by cholesterol in 
the liver. Hepatic ABCA1 expression is known to be regulated by a SREBP-2- and LXR-driven dual promoter 
system60. This may explain why hepatic ABCA1 mRNA is unaffected by feeding cholesterol to mice, whereas 
ABCG5/G8 mRNA levels are markedly induced61. Additionally, hepatic ABCA1 and ABCG1 mRNA expres-
sion is less sensitive to LXR agonists than their extrahepatic expression62,63. On the basis of these observations 
and our own data, we hypothesize that hepatic ABCA1 and ABCG1 expression shows a distinct response to 
SERM-mediated alteration of cholesterol homeostasis.

It should be noted that, although TAM treatment of mouse models of atherosclerosis consistently reduces 
HDL-cholesterol, it also abolishes lesion formation20–22. However, the cardioprotective effect of SERMs in humans 
is the subject of debate8,18,19. Moreover, SERMs do not usually lower HDL concentrations in humans, but consist-
ently decrease LDL concentrations12, the predominant lipoprotein fraction in this species. Mice, in contrast to 
humans, lack the cholesteryl ester transfer protein. This transfers cholesteryl esters from HDL to apoB-containing 
lipoproteins which, through their subsequent liver uptake, contribute to RCT. In fact, it has been reported that 
the bulk of HDL cholesteryl esters is taken up by the liver after transfer to apoB-containing lipoproteins64. This 
fact may limit the impact of SERMs on HDL cholesterol catabolism and, hence, HDL concentrations. However, 
HDL is responsible for the net delivery of free cholesterol to the liver64. Given the differences in lipoprotein 
metabolism between humans and mice, the relevance of the present results for humans is uncertain. In any case, 
the possibility that the macrophage-to-feces cholesterol transport is altered in patients taking TAM, even despite 
unchanged HDL concentrations, cannot be discarded. On the other hand, recent findings enable us to suggest 
that the SERM-induced downregulation of ABCA1 and ABCG1 in macrophages may modulate inflammation65 
and tumor immunity66,67.

In conclusion, the SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages  
in vitro. However, TAM, but not RAL, impairs M-RCT in vivo. This effect is independent of the decrease of HDL 
levels caused by SERMs, but it is primarily attributable to the TAM-mediated reduction of the capacity of HDL 
to promote cholesterol mobilization from macrophages. Our data are suggestive of a negative effect of TAM 
on a major atheroprotective function of HDL that remains to be demonstrated in interventional studies with 
TAM-treated patients.

Materials and Methods
Animals. Wild-type C57BL/6 mice were fed a standard chow diet before the studies. All animal procedures 
were approved by the Institutional Animal Care Committee of the Institut de Recerca de l’Hospital de Sant Pau 
and Comité Ético de Experimentación Animal of the Hospital Universitario Ramón y Cajal and conducted in 
accordance with the approved guidelines.

THP-1 cell culture and macrophage differentiation. THP-1 cells (ATCC TIB-202) were maintained in 
RPMI 1640 containing 10% heat-inactivated FBS, 2 mM glutamine, 100 U/mL penicillin, 100 U/mL streptomycin 
and 10 μ g/mL gentamicin at 37 °C in a humidified atmosphere of 5% CO2. THP-1 monocytes (5 ×  105 cells/mL) 
were differentiated to macrophages with 50 ng/mL PMA for 48 h.

Human monocyte-derived and mouse peritoneal macrophages. Human peripheral blood mono-
cytes were isolated by density gradient centrifugation of buffy coats from male donors obtained from the Centro 
de Transfusiones de la Comunidad de Madrid and as described in Supplementary Methods. Peritoneal mac-
rophages were isolated from male mice by lavage after intraperitoneal injection of thioglycolate as described in 
Supplementary Methods.
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Lipoproteins and LPDS. Human LDL was isolated, acetylated and labeled with the fluorescence probe 
1,1′ -dioctadecyl-3,3,3,3′ -tetramethylindocarbocyanineperchlorate (DiI) as previously described68. Human HDL 
(1.063–1.21 kg/L) was isolated by sequential ultracentrifugation of fasting plasma. LPDS was prepared from fetal 
bovine serum (FBS) or charcoal/dextran-treated FBS (Gibco BRL, Life Technologies) by ultracentrifugation at a 
density of 1.21 kg/L.

In vitro experimental design. Macrophages were pretreated with the corresponding medium supple-
mented with 10% LPDS for 24 h. Subsequently, TAM, RAL (Tocris Bioscience), TOR, E2 (Sigma-Aldrich), ICI 
182,780 (Tocris Bioscience), T0901317 or vehicle (dimethyl sulfoxide, final concentration 0.044%) were added to 
the media as indicated, and 1 h later AcLDL-cholesterol (120 μ g/mL) was added to all the treatments. Twenty four 
hours after the addition of the drugs, E2 or vehicle, the cells were washed and processed to perform the corre-
sponding analysis. To assess the effects of ICI 182,780 and E2 in mouse peritoneal macrophages, DMEM without 
phenol red and supplemented with 10% charcoal/dextran-treated LPDS was used.

Cholesterol efflux experiments. To analyze the efflux of AcLDL-derived cholesterol, [1,2-3H(N)]
cholesterol-labeled AcLDL was prepared by incubating [1,2-3H(N)]cholesterol (Perkin-Elmer), previously dried 
on the tube wall, with AcLDL (1 μ Ci [1,2-3H(N)]cholesterol/120 μ g AcLDL-cholesterol) overnight at room tem-
perature. The different treatments of the macrophages (see above) were carried out in the presence of AcLDL-[3H]
cholesterol (120 μ g/mL). Then, the cells were exhaustively washed with PBS containing 0.1% BSA and equil-
ibrated with RPMI 1640, 0.2% BSA for 1 h. On other occasions, macrophages were labeled with [1,2-3H(N)]
cholesterol (0.5 μ Ci/mL), added in ethanol (final concentration 0.44%), in the medium supplemented with 10% 
LPDS for 24 h and, after being washed and equilibrated, they were treated with the drugs in the presence of 
AcLDL-cholesterol (120 μ g/mL). Subsequently, the cells were incubated in RPMI 1640, 0.2% BSA supplemented 
or not with human apoA-I (Calbiochem) or HDL (50 μ g/mL) for the indicated times. Then, the medium was col-
lected and centrifuged at 10,000 ×  g for 10 min and the cells were lysed with 0.1 M NaOH, 0.1% sodium dodecyl 
sulfate. The radioactivity was determined in the medium and cell lysates. Cholesterol efflux was expressed as the 
percentage of the radioactivity released from the cells into the medium relative to the sum of radioactivity in cells 
and medium. Acceptor-dependent efflux was determined by subtracting the efflux in the absence of acceptor.

ACAT activity. Two h after the addition of the SERMs or vehicle, an emulsion containing 12 μ Ci [9,10-3H]oleic 
acid (50 Ci/mmol, Hartmann Analytic, Braunschweig, Germany) and 1.5 mg/mL BSA was added to the media, 
and 24 h after the addition of the SERMs the cells were processed to determine the incorporation of [3H]oleate 
into cholesteryl esters as described11.

Western blot analysis. Cells were lysed in 20 mM Tris-HCl buffer, pH 8.0, 120 mM KCl, 1 mM dithio-
threitol, 1 mM Na2-EDTA, 2 mM EGTA, 0.1% Triton X-100, 0.5% Nonidet P40, and supplemented with a pro-
tease inhibitor cocktail. The cell lysate was sonicated and centrifuged at 4 °C to collect the supernatant. Liver 
samples were homogenized with a Polytron homogenizer in 10 mM HEPES, pH 7.6, at 4 °C, and the mixture 
was centrifuged at 600 ×  g for 10 min to collect the supernatant. For immunoblotting of ABCG5 and ABCG8, 
liver membranes were isolated by ultracentrifugation of the supernatant at 48,000 ×  g for 30 min at 4 °C in a 
Beckman TL-100 ultracentrifuge. The pellet was resuspended in 50 mM Tris-HCl buffer, pH 7.5, containing a pro-
tease inhibitor cocktail. Equal amounts of protein were subjected to western blot as described in Supplementary 
Methods.

Real-time quantitative RT-PCR. Total RNA was extracted with the TriPure isolation reagent (Roche) 
and reverse transcribed with random hexamers using the PrimeScript RT reagent kit (Takara). Real-time PCR 
amplification was performed on a LightCycler 480 II using the SYBR Green I Master kit (Roche) according to the 
procedure previously described69 and using RPLP0 (coding for ribosomal protein, large, P0) for human samples 
and Cypb (Ppib, coding for peptidylprolyl isomerase B) for mouse samples as invariant controls. Primer sequences 
for the different genes are shown in Supplementary Table S1.

Fluorescence and optical microscopy. Cells were cultured on glass coverslips previously treated with 
poly-D-lysine. After the corresponding treatments, fixed cells were stained with filipin for free cholesterol as 
described previously69 and examined on an Olympus BX51 microscope. On other occasions, cells were costained 
with filipin and Bodipy for neutral lipids or were incubated in the presence of DiI-labeled AcLDL during the 
treatments and, finally, cells were mounted for microscopy and examined on a Nikon D-Eclipse C1 confocal 
microscope.

Liver pieces were fixed in 4% paraformaldehyde, cryoprotected and frozen before sectioning into 5 μ m-thick 
sections on a cryostat. Liver sections were mounted on positively charged slides and stained with filipin. Other 
sections were stained with 0.3% Oil Red O in 60% isopropanol and then processed for hematoxylin counter 
staining.

Macrophage RCT studies, in vivo. Studies of macrophage RCT were performed in vivo in 14-week-old 
male mice fed a western-type diet (Harlan Teklad) ad libitum for 4 weeks. The last 10 days on this diet, mice were 
given 10 mg/kg/day TAM, RAL or vehicle (1% carboxymethylcellulose) by oral gavage. Forty-eight hours before 
the end of the treatment, mice received an intraperitoneal injection of [3H]cholesterol-labeled peritoneal mac-
rophages previously treated ex vivo with the same SERM or vehicle as the receptor mouse. These macrophages 
were prepared from male mice fed a western type diet for 4 weeks. Subsequently, macrophages were labeled with 
5 μ Ci/mL [1,2-3H(N)]cholesterol, loaded with AcLDL-cholesterol (120 μ g/mL) and, simultaneously, treated with 
TAM, RAL (10 μ M) or vehicle in RPMI 1640 supplemented with 10% LPDS for 24 h. [3H]Cholesterol-labeled cells 
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were then washed, equilibrated in RPMI 1640 containing 0.2% BSA for 4 h and injected intraperitoneally into 
recipient mice as previously reported70. Blood samples were taken at the indicated time points and 3H radioactiv-
ity was measured in serum. Unless otherwise specified, mice were killed 48 h after macrophage injection, liver was 
harvested and the total feces produced over the 48 h-RCT study was collected. 3H radioactivity in liver cholesterol 
and fecal cholesterol and bile acids were determined as described70.

HDL kinetic studies. HDL (1.063–1.21 kg/L) was isolated by sequential ultracentrifugation of pooled 
plasma from male mice treated with a western-type diet and TAM, RAL or vehicle as described above and labeled 
with [1,2-3H(N)]cholesteryl oleate (Perkin-Elmer) as reported56,57. [1,2-3H(N)]cholesteryl oleate-labeled HDL 
were injected intravenously into mice (2 ×  106 dpm/mouse) that were being treated with the same SERM or vehi-
cle as the HDL donor mouse (“autologous” HDL). The injection was given at day 8 of these treatments and blood 
samples were collected at the indicated times during the additional two days of treatment to measure 3H counts in 
serum. At the end of the experiment, 3H counts in liver cholesterol and fecal cholesterol and bile acids were also 
determined as described above.

Lipid analyses. HDL-cholesterol levels were measured after precipitation of apoB-containing lipoproteins 
with phosphotungstic acid/MgCl2. To analyze HDL composition, these particles were isolated by ultracentrifu-
gation (1.063–1.21 kg/L). Liver lipids were extracted from 100 mg of liver with isopropyl alcohol-hexane 2:3 (v/v) 
and, after the addition of Na2SO4, the hexane phase was isolated, dried with N2, reconstituted with 0.5% sodium 
cholate and sonicated for 10 min (50 Hz) before lipid measurements. Lipids were measured by enzymatic meth-
ods using a BM/Hitachi 917 autoanalyzer as described57. Protein concentration was measured using the BCA kit 
(Thermo Scientific). To determine the cellular content of total and free cholesterol, lipids were extracted, then 
subjected or not, respectively, to saponification and analyzed by gas chromatography-mass spectrometry as pre-
viously described69. Mass of cholesterol in esterified cholesterol was derived by difference. The cellular triacylglyc-
erol mass was determined in lipid extracts by liquid chromatography with evaporative light scattering detection71.

Statistical analysis. The effects of SERMs were analyzed by one-way ANOVA. For data assessed at various 
doses or time points, main and interactive effects were analyzed by two-way ANOVA. For in vitro experiments, 
one-way or two-way repeated measures ANOVA were used. Post hoc multiple comparisons were performed 
by Student–Newman–Keuls test. The analyses were performed using the SigmaStat 2.0 software. P ≤  0.05 was 
defined as statistically significant.
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