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Time-resolved, single-cell analysis 
of induced and programmed cell 
death via non-invasive propidium 
iodide and counterstain perfusion
Christina E. M. Krämer, Wolfgang Wiechert & Dietrich Kohlheyer

Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, 
potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method 
has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during 
perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective 
live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or 
indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance 
of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic 
calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight 
into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing 
evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI 
staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces 
cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or 
green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-
cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved 
observations that deliver new insights into the dynamics of cellular behaviour.

“Alive or dead?”, “How dead is dead?” or “How red is dead?” are pivotal questions posed during cellular live/dead 
determination, particularly when in vivo staining is performed with propidium iodide (PI). Although PI is a 
common cell death indicator, a gold standard protocol for its use does not exist, and inconsistent staining results 
and pitfalls have been reported in the literature1–6.

PI is a versatile indicator dye for dead cells that acts by intercalating with cellular DNA and emitting red fluorescence.  
Vital staining with PI is dependent on the impermeability of an intact cell membrane to this molecule. Live/dead 
staining with PI is commonly implemented to evaluate the viability of bacteria sampled from food products, 
clinical samples, and environmental or fermentation processes and to characterize vitality in eukaryotic cells1,7,8. 
This staining procedure has been employed for bacteria2,3, biofilms9, yeasts1, and a variety of mammalian cells10. 
However, the toxicities of fluorescence indicators or certain concentrations are rarely considered.

Microscopic imaging approaches employing microfluidic devices containing cells prestained with PI and 
cell-wall permeant SYTO 9 have been reported for the live/dead quantification of bacterial cells11–13, sperm 
cells14, and yeast15 and are, in principle, comparable to studies using fluorescence activated cell sorting (FACS). 
Conventional staining protocols using PI concentrations higher than 1 μ M intended for sorting4,14, confirmation 
of cell lysis16, or cellular analytics17–20 have been described for prokaryotes and eukaryotes. PI staining is generally 
performed as an endpoint measurement, frequently after cell fixation17,19,21.

PI is often, but not exclusively, used in combination with SYTO 9 as a counterstain2,4,5,22. PI is also com-
bined with other cell-permeable DNA dyes, such as other SYTO dyes (e.g., SYTO 15 and SYTO 13)17,23, acridine 
orange19,24, SYBR green6 and SYTOX dyes (e.g., SYTOX Red and SYTOX Green)20,25 to facilitate total cell staining. 
Alternatively, prokaryotic viability can be assessed via bacterial GFP expression prior to PI staining in lieu of a 
total cell stain2,9,17. Furthermore, PI is used in combination with the monomeric cyanine dyes PO-PRO-1 and 
YO-PRO-120, the green fluorogenic esterase substrate calcein-acetoxymethyl ester (CgAM)8,18,21,26, a fluorescent 
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caspase inhibitor27, annexin V28, or specific overall stains (e.g., ConA-Alexa Fluor 48829, FITC-dextran10, and Cell 
Tracker Green21). In addition, cancer cells have been continuously perfused with PI to demonstrate the efficiency 
of live cell trapping in a media stream or to indicate the need for cytotoxicity testing with microfluidic devices20,30.

We present a dynamic and non-invasive cell viability staining method employing a low PI concentration in 
combination with non-toxic counterstains, provided continuously to bacteria or yeast in a microfluidic growth 
chamber array. Staining experiments utilized a microfluidic PDMS-glass device designed for single-cell studies of 
Corynebacterium glutamicum and Escherichia coli31–33. This cultivation approach, in combination with time-lapse 
fluorescence microscopy, confers spatiotemporal insight into the phenotypic variations and dynamics of cellular 
death at the single-cell level. In particular, the dynamic heterogeneity of cell phenotypes, such as differences in tol-
erance, resistance, or epigenetic predisposition among isogenic cultures, can be analysed during well-controlled 
perturbation studies. Exogenous and endogenous cell death triggers were applied to test our ability to perform 
temporally resolved cell death analysis of C. glutamicum, E. coli and Saccharomyces cerevisiae, emphasizing the 
generic analytical approach. PI invasion of fungal and bacterial cells in combination with non-toxic counterstains 
(violet fluorogenic calcein acetoxymethyl ester (CvAM), CgAM, and PO-PRO-1) is indicative of both sudden and 
prolonged cell death. Thus, the immediately apparent fluorescence responses of this novel and dynamic staining 
approach facilitate the elucidation of survival strategies in small cell populations, such as antibiotic tolerance, 
temporal resistance, resuscitation after membrane potential loss, or the formation of membrane permeability 
transition pores (MPTPs). The technical approach presented here permits the temporally resolved observation 
of phenotypic variations at the single-cell level. The spatial resolution of intracellular fluorescence distribution 
enables the visualization of specific details regarding cell death, such as the partial death of cell poles after anti-
biotic contact.

Results
PI concentration optimization. In the present study, the conventional viability assay employing PI and 
SYTO 9, a multi-step method22, was transformed into a single-cell, one-step method resolved in real time with 
microbial cultivation occurring inside a microfluidic device. This microfluidic perfusion system ensures the 
continuous presence of extracellular PI at a specific concentration for all cells during experiments. For a more 
detailed description of the constant microfluidic perfusion environment, the interested reader is referred to the 
Supplementary Information and Fig. S1.

The Gram-positive bacterium C. glutamicum was cultivated with minimal medium (CGXII +  4% glucose 
(w/v) without PI) and used as the reference for three different PI concentrations (0.1 μ M, 1 μ M, and 10 μ M). C. 
glutamicum growth was impaired by 10 μ M PI. PI permeated and slightly stained intact cells, but these bacteria 
continued to grow, although at a reduced rate. Bacterial growth was unimpaired by concentrations of 0.1 or 1 μ M  
PI (Fig. 1a). However, positively stained cells (PI+) were observed at frequencies of < 0.01% for all three PI con-
centrations due to spontaneous single cell death.

Based on these data, a PI concentration of 0.1 μ M was employed for our microfluidic analyses and validated by 
the addition of phenol during C. glutamicum cultivation (see Supplementary Information Fig. S2). Furthermore, 
0.1 μ M PI was found to be non-toxic and universally applicable, as revealed by testing a wide range of microor-
ganisms cultivated in different complex media, including Micrococcus luteus (1.78% PI+), Bacillus subtilis (0.09% 
PI+), E. coli (< 0.01% PI+), Vibrio harveyi (< 0.01% PI+) and the yeast S. cerevisiae (2.72% PI+) (Fig. 1b). A pos-
itive control involving additional PO-PRO-1 staining during cyanide intoxication confirmed PI as rapid and 
precise cell death detection system during cultivation (see Fig. S4, Supplementary Information).

The tested microbes were selected for their diverse cell-wall structures and taxonomic variations. Independent 
of cell-wall structure, membrane disintegration was instantaneously observable during cultivation. Compared to 
reference cultures, microorganismal growth was not influenced by the addition of 0.1 μ M PI. However, a negli-
gible fraction of cells was PI+ directly following inoculation and at the end of cultivation when the cultivation 
chambers were was nearly or completely filled with cells (Fig. 1c–i). Classification criteria based on fluorescence 
signals are described in detail in the Material and Methods section.

An M. luteus tetrad with a dead coccus and a dead E. coli cell obtained pre-culture directly after seeding are 
shown in Fig. 1e,g, respectively. PI+ cells randomly distributed in culture at the end of cultivation are shown for 
C. glutamicum (Fig. 1c), M. luteus (Fig. 1d), B. subtilis (Fig. 1f), V. harveyi (Fig. 1h), and S. cerevisiae (Fig. 1i).

Prokaryotic cell death and apparent antibiotic tolerance following the addition of antibiotics.  
On-line viability monitoring with PI was performed for the non-pathogenic organism C. glutamicum, which 
is related to various human pathogens (e.g., Mycobacterium tuberculosis and Corynebacterium diphtheriae)34, 
in the continuous presence of environmental antibiotic concentrations. Dynamic PI staining was validated by 
the addition of CvAM as a non-invasive counterstain, which is converted intracellularly to violet fluorescent 
calcein (CALv), as described recently32. Viable cells exhibited moderate CALv fluorescence, whereas apparent 
tolerant cells with reduced metabolism were intensely fluorescent32. Dual staining had no impact on growth 
(Supplementary Information, Fig. S4), and additional excitation during multiplexed fluorescent time-lapse imag-
ing was tested and shown to be non-phototoxic (Fig. S5).

C. glutamicum was cultivated during the perfusion of constant concentrations of ethambutol (EMB), ampi-
cillin (AMP), kanamycin (KAN), streptomycin (STR), and chloramphenicol (CHL). These antimicrobials are 
categorized as bactericidal inhibitors of cell-wall synthesis (EMB and AMP), bactericidal aminoglycoside anti-
biotics causing mRNA misreading and inhibit protein biosynthesis (KAN, STR), and a bacteriostatic protein 
synthesis inhibitor (CHL)35. Heterogeneous fluorescence distribution attributable to concentration gradients was 
not observed (data not shown).
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Figure 1. Determination of optimal propidium iodide concentration. (a) The model organism 
Corynebacterium glutamicum was stained continuously with 0.1 μ M PI, 1 μ M PI, and 10 μ M PI, and bacterial 
growth was normalized to the growth rate without PI addition. Total cell numbers are indicated with N. PI+ 
dead cells are marked by white arrows. (b) A PI concentration of 0.1 μ M was used with Gram-positive bacteria 
(C. glutamicum ATCC 13032, Micrococcus luteus DSMZ 14234 and Bacillus subtilis 168), Gram-negative 
bacteria (Escherichia coli MG1655 and Vibrio harveyi ATCC 33867), and a small eukaryote (Saccharomyces 
cerevisiae). The growth rates of all microorganisms cultivated with 0.1 μ M PI were normalized and compared to 
reference colonies grown without PI. Total cell numbers are given by N. (c) C. glutamicum ATCC 13032 colony 
with a single PI+ cell. (d) M. luteus DSMZ 14234 colony in the late exponential phase with distributed PI+ cocci. 
(e) M. luteus DSMZ 14234 tetrad with the early appearance of a PI+ cell. (f) Densely grown B. subtilis 168 cell 
colony with the late appearance of a PI+ cell. (g) Early appearance of a PI+ E. coli MG1655 cell. (h) Segmented V. 
harveyi ATCC 33867 PI+ phenotype in a cell-packed region. (i) Dense S. cerevisiae colony with PI+ yeast cells.
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The cells continued asymmetric division for more than 9 hours with 25 mg/mL EMB, whereas division halted after 
the second filial generation with 25 μ g/mL AMP and after the first cell division with 25 μ g/mL KAN and 50 μ g/mL  
STR. Cell division ceased after initial antibiotic contact with 50 μ g/mL KAN and 50 μ g/mL CHL (Video S1).

Cell growth was impaired via different mechanisms, resulting in phenotypic variation, as shown in Figs 2 
and 3 and described in the Supplementary Information. The status of antibiotic-treated cells was altered, as indi-
cated by intracellular fluorescence. In contrast to untreated cells (Fig. 2, no antibiotics), the addition of anti-
biotics resulted in formation of a subpopulation of highly CALv-fluorescent non-growing cells (PI−/CALv++) 
that were considered apparent antibiotic tolerant as well as subpopulations of dead PI+ cells (PI+/CALv−) and 
non-fluorescent cells (PI−/CALv−) that lost their intracellular content following lysis. Fractions of dead and lysed 
cells differed according to the antibiotic applied (cell wall synthesis or translational processes); see Fig. 2.

Mean colony fluorescence with a high standard deviation confirmed changes in individual fluorescence pro-
files based on antibiotic treatment (see Fig. 3, Fig. S7 and Supplementary Information). Bacteria with injured cell 
walls lost intracellular CALv fluorescence while PI intruded and underwent DNA intercalation (Fig. S8). The 
mean single-cell PI fluorescence equilibrium differed according to the antibiotic. Cell wall-impairing antibiot-
ics (EMB and AMP) resulted, by far, in the lowest mean single-cell PI fluorescence values (Fig. 3 and Fig. S7). 
Heterogeneous PI+ cells were observed with 50 μ g/mL KAN (Fig. 3d, cells marked with *).

Bacterial growth arrest was not a specific indicator of cell death, as several cells remained unstained by PI 
(PI−) even after growth halted. Residual CALv fluorescence revealed bacterial survival among cells subjected to 
treatment with all six antibiotics, even after 16 hours (apparent antibiotic tolerance). Thus, PI fluorescence indi-
cates bacteria that are permeabilized by an antibiotic. Cell membrane disintegration and a concurrent increase in 
PI fluorescence differed among single cells by antibiotic (Fig. 3).

PI+ cells exhibited increased maximum mean single-cell fluorescence values of 1000–1500 AU. PI + cells con-
tinuously cultivated at 25 μ g/mL AMP (Fig. 3b, *), 50 μ g/mL STR (Fig. 3e, *) or 50 μ g/mL CHL (Fig. 3f, *) showed 
subtle decreases in mean single-cell fluorescence over time. Although the fluorescence profiles of these cells 
resembled a Bateman function, fluorescence loss was more rapid than that induced by photo bleaching, which 
accounted for 1% to 3% of the total mean single-cell PI fluorescence across all imaging frames (Fig. S4).

Lysed cells that retained their cell shape as visible ghost cells demonstrated rapid reductions in intracellular PI 
and CALv fluorescence due to DNA loss and cell membrane destruction (Fig. 3e, cell marked with *, Fig. S8). In 
contrast, the PI fluorescence values of dead bacteria rapidly reached high and stable plateaus (Fig. 3e, cell marked 
with **). Reduced PI fluorescence in these cells correlated with decreased DAPI signals as determined by addi-
tional end-point staining of total DNA (Fig. S8), indicating possible DNA decay or fractional DNA loss.

Furthermore, the apparent fractional tolerance of segmented cells exhibited two different viable states. In 
addition to fully living cells, segmented cells with dead cell poles that were PI + and cell poles that retained cell 
wall integrity were observed in the presence of 50 μ g/mL CHL (Fig. 3c,f, cells marked with * and **, respectively).

However, a fraction of the bacteria remained PI− while demonstrating remarkably increased CALv flu-
orescence (CALv +  + ). These cells did not stain red or lyse and tolerated continuous antibiotic treatment in a 
non-growing but metabolically active state during the observed time frame (Fig. 3a,b, cells and single-cell fluo-
rescence traces marked with *).

Figure 2. Fractions of different cell states following continuous antibiotic treatment of C. glutamicum 
ATCC 13032 cells at 25 μg/mL for 12 h and at 50 μg/mL for 16.6 h. Dead cells are identified by a significant 
increase in PI fluorescence (PI+/CALv−), antibiotic-tolerant cells are identified by the conversion of CvAM to 
CALv and its retention (PI−/CALv+), lysed cells are non-fluorescent and pale in phase contrast images (PI−/
CALv−), segmented cells are bipolar with a dead pole and a tolerant pole (PI+/CALv−/PI−/CALv+). Growing 
cells were defined as non-inhibited with respect to cell elongation for C. glutamicum, whose cells typically 
undergo snapping cell division. The bactericidal antibiotics EMB and AMP are inhibitors of cell wall synthesis. 
The bacteriostatic mRNA inhibitor KAN was tested at 25 μ g/mL and 50 μ g/mL. STR and the bacteriostatic CHL 
inhibit protein biosynthesis.
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Figure 3. Antibiotic-induced cell death and antibiotic tolerance of wild-type C. glutamicum ATCC 13032. 
Mean single-cell fluorescence traces are shown for single cells from one representative growth chamber stained 
continuously with the cell death indicator PI (right) and the metabolic activity indicator CALv (middle). The 
micrographs (right) show representative cells from the final time-lapse images. Dead (PI+/CALv−), lysed (PI−/
CALv−), antibiotic-tolerant (PI−/CALv+), or segmented cells with a dead cell pole and a surviving cell pole (PI+/
CALv−/PI−/CALv+) can be distinguished. Cells were continuously treated with (a) 25 μ g/mL EMB (a deformed 
cell that retained cell wall integrity is marked with *), (b) 25 μ g/mL AMP (a deformed cell that partially retained 
CALv fluorescence is marked with *), (c) 25 μ g/mL KAN (a segmented cell with a cell pole that is PI+ and a 
PI− cell pole with CALv fluorescence is marked with *), (d) 50 μ g/mL KAN (heterogeneous PI+ cells with bright 
PI fluorescence (*) and pale PI fluorescence (**) are marked), (e) 50 μ g/mL STR (dead, lysed cells with rapid PI 
fluorescence loss (*) and dead cells with constant PI fluorescence (**) are compared), (f) and 50 μ g/mL CHL 
(segmented cells with halted growth and independently stained cell poles; two cells are marked, one with a PI+ 
pole and a blue fluorescent PI− pole (*) and another with two cell poles exhibiting CALv fluorescence (**)).
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Programmed cell death (PCD) of E. coli. Toxin-antitoxin modules are present in a wide range of bacteria. 
Their functions and triggers are currently under intensive investigation to determine their potential antimicro-
bial use. In the present study, we performed dynamic PI staining and undertook the time-resolved observation 
of a pneumococcal zeta toxin (PezT) described by Mutschler et al.36. E. coli BL21CodonPlus(DE3)-RIL bearing 
pET28b(pezTΔC242) (Fig. 4a), pET28b(pezA/pezT) (Fig. 4b), or pET28b(pezTΔC242(D66T)) (Fig. 4c) expressed 
an inactivated toxin, the C-terminal truncated toxin or the antitoxin-toxin complex, respectively, after induction 
with 100 μ M IPTG after 2.6 h of cultivation (Video S2).

Cells underwent lysis after expressing the truncated toxin, which impairs cell wall synthesis. Extracellular 
DNA was stained immediately and exhibited red fluorescence. Non-lysed PI + cells were observed when 
toxin-producing mutants were cultivated but were rarely observed (at a frequency of 1.4%) during cultivation of 
the strain expressing the antitoxin-toxin complex (Fig. 4e,f, yellow arrow, and Video S2). Thus, cell death occurred 
independent of induced toxin production. Rare cells containing the truncated toxin-bearing plasmid remained 
in a non-replicating PI− state at a frequency of 1.5% (Fig. 4f). These resistant cells did not die and were not lysed 
during 5.6 h of IPTG treatment (Fig. 4f, white arrow). Recovery was not achieved by reverting to an LB medium 
without the inducer more than 4 h after IPTG induction. Resuscitation was attempted until all resistant cells 
became PI + (data not shown).

Figure 4. PI to determine the bacterial survival rate following toxin-antitoxin module expression in E. 
coli BL21CodonPlus(DE3)-RIL. Strains harbouring the plasmids pET28b(pezTΔC242(D66T)), pET28b(pezA/
pezT), or pET28b(pezTΔC242) produced (a) an inactivated toxin, (b) the antitoxin-toxin complex or (c) the 
C-terminal truncated toxin. Micrographs showing an E. coli colony with (d) inactivated toxin expression, (e) 
a colony of cells before and after expression of the antitoxin-toxin module, and (f) a colony expressing the 
truncated toxin, which caused cell lysis, are presented. Cells stained prior to IPTG induction (2.6 h) or prior to 
lysis are indicated with a yellow arrow. A white arrow indicates a cell that resisted toxin expression but did not 
resuscitate following a backshift to growth medium.
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Continuous PI fluorescent time-lapse imaging enabled us to distinguish between toxin-induced lytic cell 
death, incidental non-lytic cell death and toxin resistance. Prior to the induction of toxin expression, single 
cells exhibited PI fluorescence and were overgrown by non-fluorescent bacteria until toxin production began 
(Fig. 4c). Therefore, the percentage of live cells increased to almost 100% and then decreased subsequent to toxin 
production.

Temporally resolved PCD in yeast. Baker’s yeast is a simple model organism used to study apoptotic 
phenotypes and lethal cell differentiation. Given that starvation induces cell death and PCD in S. cerevisiae37, we 
analysed yeast cells during microfluidic cultivation with a fresh supply of YPD medium combined with dynamic 
dual staining using PI/CgAM or PI/PO-PRO-1 after pre-cultivation in a shaking flask under famine conditions. 
Famine conditions were initiated by (i) medium replacement with 0.9% NaCl (w/v) (starvation conditions) and 
(ii) prolonged pre-cultivation in YPD (nutrient limitation conditions).

In contrast to the rapid necrosis that occurred among yeast cells in-between the 30-min imaging period, 
which was also observed in reference experiments, apoptotic phenotypes exhibited death rates that were relatively 
prolonged, as described below. Yeast PCD involves a complex functional network38, and interactions between 
PCD and cell ageing, mating, and autophagy pathways, as well as the epigenetics of PCD, have been recently 
reviewed39–43. In contrast to apoptotic PCD, which is characterized by genetic regulation and energy dependence, 
necrosis occurs in an uncontrolled manner after the swelling of cells or organelles, sudden loss of plasma mem-
brane integrity, or the occurrence of cellular dysfunction44.

Nutrient stress during pre-cultivation promotes chronological ageing, triggering PCD40. We observed a variety 
of single-cell death phenotypes in yeast that were temporally resolved by fluorescent time-lapse imaging with dual 
staining using either PI/PO-PRO-1 or PI/CgAM (Supplementary Information, Fig. S8, S9 and Videos S3–S6).

Given that PO-PRO-1 stains dsDNA via intercalation comparable to PI, time-resolved, single-cell, 
dual-fluorescence imaging permitted us to distinguish necrosis (a sudden change from PO-PRO-1−/PI− to 
PO-PRO-1 + /PI + ) and apoptosis (PO-PRO-1 + /PI− to PO-PRO-1 + /PI + ) over time, as shown in the schematic 
diagram in Fig. S9. The competing adsorption of both dsDNA dyes was not observed, although PO-PRO-1 dif-
fusion is assumed to be higher due to its smaller molecular size compared to PI6,45. PO-PRO-1 is not considered 
problematic for use in single-cell studies, as shown by Wlodkovic et al. or for use at higher concentrations with 
mammalian cells20 and has been tested in B. subtilis (Fig. S3).

The other non-invasive counterstain method presented here for single-cell-death studies employed non-toxic 
fluorogenic esterase substrates (Fig. S3). CgAM is taken up as an esterase substrate into the cytosol and secreted 
by active efflux pumps or sequestered in either vacuoles or in the cytosol if ATP is depleted46,47. Aged cells seques-
tering calcein green (CALg) in their vacuoles were assumed to have lost their V-ATPase activity prior to achiev-
ing a PI + state due to the loss of organelle function. As with PO-PRO-1, apoptotic-like phenotypes appeared as 
CALg + before presenting as CALg + /PI + (Fig. S8).

We distinguished between necrotic-like phenotypes by employing non-toxic dual staining (Fig. S8 and S9) to 
observe cells exhibiting the hallmarks of ageing (Fig. S8 and S9) or undergoing lethal autophagy (Fig. S8 and S9),  
the apoptosis of budding mother or zygote cells (Fig. S9), and shmoo mating with aged cells (Fig. S9). PCD 
induction was primarily observed in the budding descendants of progenitor yeast cells derived from stationary, 
nutrient-deprived pre-cultures. However, dynamic live-cell analysis with PI and PO-PRO-1 permits hours of 
time-resolved monitoring of yeast fission and the subsequent loss of membrane potential indicated by PO-PRO-1 
loading prior to PI uptake, as shown in Fig. 5a,b. The spatial resolution of PI fluorescence revealed injury close to 
the budding neck (Fig. 5a,c, marked with red arrows), where the replicated DNA from the mother is passed to the 
daughter cell. The mother and daughter cells were still connected and shared the same fate: the initiation of death.

In contrast, the absence of PI fluorescence in a PO-PRO-1 + cell and the loss of PO-PRO-1 fluorescence are 
indicative of pre-apoptotic cells able to undergo growth recovery (Fig. 5d,e, Video S7) among rapidly growing 
cells. PO-PRO-1 is a very selective indicator of double-stranded DNA that is not sequestered in a manner con-
sistent with other cell components45. PO-PRO-1 fluorescence decreased between two imaging time points, which 
cannot be explained by bleaching, and this property was passed on to emerging daughter cells during meiosis 
(Fig. 5e).

Cells seeded after famine conditioning in a pre-culture shaking flask were partly growth-inhibited but were 
not PI + . Based on PO-PRO-1 staining, these growth-inhibited yeast cells formed small circular blue fluorescent 
patches localized close to the cell membrane. Extrachromosomal ribosomal DNA circles (ERC) are indicative of 
the replicative ageing of yeast cells48. Interestingly, not all cells were stained, similar to early apoptotic cells under-
going DNA fragmentation.

PO-PRO-1 is a much smaller molecule than PI and enters the cells due to perturbations in mitochondrial per-
meability. Mitochondrial permeability transition plays a role in MPTP formation, leading to necrosis (Fig. 6c) or 
apoptosis (Fig. 6d)49. Mitochondrial permeability transition is the reversible differentiation of mitochondria result-
ing in increased permeability to solutes smaller than 1500 Da, depolarization, swelling, and ATP production49.  
Cells are able to recover via the microautophagy of dysfunctional mitochondria (Fig. 6e)50. We observed 
three phenotypes distinguishable based on their PO-PRO-1 fluorescent traces: a necrotic-like phenotype, an 
apoptotic-like phenotype, and a resuscitative phenotype (Fig. 6).

Discussion
We demonstrated a one-step, non-invasive, dynamic PI staining method inside a microfluidic cultivation 
device that supported the real-time observation of cell death events among prokaryotic and eukaryotic cells. 
Non-toxic counterstains (CALv, CALg, and PO-PRO-1) were selected to facilitate real-time testing for survivor 
cells or to obtain additional information regarding cell status. The continuous supply of fluorochromes in media 
ensured optimal distribution in dense cell cultures over the experimental period. Thus, optimal fluorochrome 
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Figure 5. Budding and cell death. (a) A budding yeast cell was injured at the budding neck (marked with 
red arrow) and subsequently died. (b) Schematic drawing of an apoptotic mother cell that lost its membrane 
potential at the same time as its bud cell, which was injured near the budding neck. Both cells were PO-PRO-1+/
PI+. (c) The pictures indicate that spatiotemporally resolved PI fluorescence diverges from the merged images 
in (a). (d) Schematic drawing of cell recovery due to cell budding. The cell became PO-PRO-1+ after membrane 
potential loss. The cell eventually initiated PCD while undergoing replication and proceeded with budding and 
actin-assisted DNA distribution (AT-rich regions appear fluorescent blue). (e) A cell exhibiting apoptotic-like 
behaviour followed by recovery due to budding is marked with white arrows. PO-PRO-1 fluorescence increased 
and was maintained for one hour before budding was initiated. DNA passage into the daughter cell was 
observable due to the presence of the DNA indicator PO-PRO-1. Mother and daughter yeast cells proceeded to 
budding followed by the dilution of fluorescence in the next filial generation.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:32104 | DOI: 10.1038/srep32104

Figure 6. Stress-triggered cell rescue via membrane permeability transmission pore formation. (a) PI and 
PO-PRO-1 fluorescent traces in cells that initially demonstrated local PO-PRO-1 staining at the cell membrane 
due to mitochondrial permeability transition pore (MPTP) formation are shown. Spatiotemporal resolution 
of the intracellular fluorescence revealed a necrotic-like phenotype, an apoptotic-like phenotype, and cell 
resuscitation as explained in (b) and depicted in (c–e). (b) After exposure to nutrient starvation conditions, 
single cells were observed to be permeable, to a certain extent, to dye loading with PO-PRO-1 due to its small 
molecular size. Blue fluorescent patches near the cell membrane were assumed to indicate extrachromosomal 
rDNA circles (ERC), which are thought to influence the life span and chronological ageing of yeast. This leads 
to apoptosis (PI−/PO-PRO-1+) and necrotic-like apoptosis (PI+/PO-PRO-1+). Apoptotic-like cells were 
capable of recovery and division. (c) An aged cell with an enlarged vacuole (white arrow) exhibited initial 
partial membrane permeability to PO-PRO-1 due to MPTP formation. This was followed by loss of membrane 
potential. The necrotic-like phenotype was characterized by decreased size, PI+ staining, and the induction of 
death over several hours. Size reduction and a reduced death period are characteristic of necrotic-like apoptosis. 
(d) Cells that were partially permeable to PO-PRO-1 likely formed MPTPs and lost their membrane potential. 
The fluorescence exhibited by this apoptotic-like phenotype increased over time. (e) Cells that undergo MPTP 
formation are capable of recovery, as shown here. The cell internalized PO-PRO-1 and remained fluorescent 
for more than 8 h before the fluorescence disappeared from the majority of intracellular areas. This reduction in 
fluorescence was followed by budding and cell division.
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concentrations could be realized in the μ M or smaller range, avoiding non-specific cell staining that occurs due 
to fluorochrome uptake at high concentrations. Furthermore, no experimental disruptions due to sampling were 
necessary. Cellular-triggered differentiation and subsequent death were observed in real time for selected cells 
and colonies under specific cultivation conditions of interest. This permitted observation of the development of 
rapid cell death phenotypes (e.g., lysis) or more complex PCD occurring over time under low ATP consumption 
conditions.

PI staining is among the most widely used methods to detect cellular death. However, this staining method is 
discussed very inconsistently in the literature1–6. Some researchers have described contradictory staining results, 
and the conventional staining protocol is prone to error during certain steps and using parameters, such as the 
dye incubation time, wash buffers, and dye concentration3. The often-mentioned occurrence of false PI + cells 
may be attributable to the use of dye concentrations that are too high. Although considered impermeable, viable 
cells may be stained by diffusion-driven uptake if the concentration gradient at the outer cell wall boundary is 
sufficiently large.

Although a longer staining duration increases PI + cell numbers1, low-level, optimized PI perfusion is 
non-toxic for use with microfluidic cultivation. The effects of longer staining duration may be explained by the 
on-going death of moribund cells during endpoint sample staining due to the bactericidal impacts of storage, 
nutrient deprivation, osmotic shock, counterstain toxicity, or high PI concentrations, given that the toxicity of 
assay conditions is generally not taken into account. However, viable cell numbers have also been overestimated 
due to the stronger binding of SYTO 9 to DNA binding sites in comparison to PI2,6.

We determined that a constant PI concentration of 0.1 μ M was sufficient for bacteria and yeast. A concen-
tration of 10 μ M PI, which corresponds to 6.7 μ g/mL, results in a concentration gradient between the inside 
and outside of viable Gram-positive cells that facilitates partial PI intrusion. However, yeast staining using  
6 μ g/mL PI have been reported to provide inconsistent staining results1. Previous studies have employed batch 
staining approaches with PI concentrations ranging from 4 μ M to 500 μ M for Gram-negative E. coli11,23, 3 μ M 
for Gram-positive Mycobacterium smegmatis17, and 30 μ M to 149.6 μ M for S. cerevisiae29,51. Continuous PI con-
tact with cancer cells has been achieved with concentrations ranging from 0.37 μ M to 3 μ M PI in microfluidic 
devices20,30.

Furthermore, we demonstrated the presence of segmented cells with a PI + dead cell pole and an 
antibiotic-tolerant, metabolically active cell pole attributable to the incomplete cell division of stressed cells 
caused by the addition of antibiotics. Extrinsic growth perturbation (as shown in this study for C. glutamicum uti-
lizing bacteriostatic antibiotics) as well as intrinsic stress52 lead to growth arrest and the inhibition of cell division. 
In contrast to microscope-based analytical systems, FACS analysis possesses the disadvantage that aggregated 
PI− and PI + cells are considered PI-stained cells1. Thus, if a surviving PI− cell is attached to a PI + cell or the cell 
pole is recovered, misinterpretations are possible.

The continuous addition of counterstains together with PI is challenging if toxicity and growth impairment 
must be avoided. We found CAM derivatives and the membrane potential-indicating stain PO-PRO-1 to be 
suitable for non-toxic counterstaining in combination with PI. These stains are appropriate for live-cell imaging 
applications32,45,53 and permit the indication of residual cell functionality in survivor cells or cells in the early 
stages of PCD. In particular, the temporal resolution of single-cell dye uptake is crucial for cell death analyses.

The use of a microfluidic device allows for an integrated approach involving non-toxic dynamic PI staining 
during cell cultivation. Detailed examination of cellular PI uptake as well as time-resolved observation of pheno-
typic differentiation in dying single cells were possible in treated cells, in contrast to the reference cells that pro-
ceeded growth. Here, we present the novel use of a microfluidic cultivation device for the time-resolved analysis 
of cellular survival and studies of PCD employing fluorescent dyes to detect intracellular changes.

The dynamic analysis of single-cell viability comprises more than the differentiation of dead and alive cells. 
Temporal differentiation permitted intermediate states and intermediate changes in cell status to be distinguished 
(alive to dead or lysed, moribund to resuscitated, alive to autolysed, dead to lytic decay). Our single-cell fluores-
cence analysis is particularly relevant for studies examining phenotypically heterogeneous and spontaneously 
occurring cell survival or lethal cell differentiation. Thus, our method has the potential to contribute to studies of 
autolysis, autophagy, antibiotic tolerance, spontaneous resistance, epigenetic triggered cell differentiation, mem-
brane integrity, drug testing, medical care and many other areas of research. Its broad applicability is not only 
limited to typal specifications and may also inspire applications involving biofilms, mammalian cells or thin tissue 
layers. Our dynamic live/dead staining method can be adapted to other existing media-perfused microfluidic 
cultivation devices for single-cell fluorescence imaging if the duration of cellular death or survival is of interest. 
Such analyses will allow lingering questions to be answered during molecular biological studies. Additionally, our 
approach can be integrated into fluorophore expression studies through the use of multiplexed imaging.

Materials and Methods
Bacterial cultivation and media. The materials for media preparation were provided by Carl Roth, 
Karlsruhe, Germany, unless otherwise stated. C. glutamicum ATCC 13032 wild-type cultures were pre-cultured 
with brain heart infusion medium (BHI, BD, Heidelberg, Germany) at 30 °C overnight. Then, the primary shak-
ing culture was inoculated in BHI medium, or additional pre-culture was performed using minimal medium 
(CGXII containing 4% glucose (w/v), described by Keilhauer et al.) to inoculate the primary shaking culture 
with the same minimal medium54. Cells from the primary culture were injected into the microfluidic device 
for single-cell cultivation and perfused with medium as indicated. B. subtilis 168 was cultivated in BHI at 37 °C 
in shaking flasks and in the microfluidic device. V. harveyi DSMZ 6904 was grown in marine broth 2216 (BD, 
Heidelberg, Germany) at 30 °C (shaking cultures) and 28 °C (microfluidic cultivation). M. luteus DSMZ 14234 
shaking cultures were grown in a nutrient solution consisting of 5 g/L peptone and 3 g/L meat extract, adjusted to 
pH 7, and incubated at 30 °C before cultivation at 28 °C in the microfluidic device. E. coli MG1655 was cultivated 
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in lysogeny broth (LB) containing 5 g/L yeast extract, 10 g/L peptone, and 10 g/L NaCl at 37 °C in shaking cultures 
and during microfluidic cultivation. Chemically competent E. coli BL21CodonPlus(DE3)-RIL cells were trans-
formed with pET28b(pezTΔC242), pET28b(pezTΔC242(D66T)), or pET28b(pezA/pezT) (kindly provided by 
A. Rocker and A. Meinhart, MPI Heidelberg, Germany). E. coli BL21CodonPlus(DE3)-RIL shares high genomic 
similarity with E. coli MG1655 and was used in lieu of MG1655 due to its improved codon usage and induction 
properties for heterologous protein expression55. After transformation, mutants were cultivated at 37 °C overnight 
on LB media agar plates with 50 μ g/mL kanamycin and 34 μ g/mL chloramphenicol. The next day, single colonies 
were selected and transferred to LB medium containing 50 μ g/mL kanamycin and 34 μ g/mL chloramphenicol. 
Before cell seeding in the microfluidic device, shaking cultures were incubated at 37 °C until an optical density 
higher than 0.1 was reached. Protein expression during microfluidic cultivation was induced by changing the LB 
perfusion medium containing 50 μ g/mL kanamycin and 34 μ g/mL chloramphenicol to an LB medium containing 
100 μ M IPTG in addition to both antibiotics36. Commercially available compressed baker’s yeast (S. cerevisiae) 
(UNIFERM GmbH & Co.KG, Werne, Germany) from the supermarket was dissolved in YPD medium (20 g/L 
peptone, 10 g/L yeast extract, and 20 g/L glucose) and pre-cultivated 48 h prior to the primary cultivation for 
microfluidic device inoculation. Starved cells were cultivated prior to microfluidic cultivation with fresh YPD 
medium for 48 h in YPD medium or 0.9% NaCl solution (w/v).

Dynamic staining. PI (Carl Roth, Karlsruhe, Germany) stock solution (20 mM) was prepared and dissolved 
in sterile water. PI was added to the media perfused through the microfluidic device. An end concentration of 
0.1 μ M was used for dynamic viability staining in the microfluidic device unless otherwise stated. Counterstaining 
with CvAM (Life Technologies GmbH, Darmstadt, Germany) was performed for C. glutamicum as described in 
detail elsewhere32. CgAM (Life Technologies GmbH, Darmstadt, Germany) and calcein blue acetoxymethyl ester 
(CbAM, Life Technologies GmbH, Darmstadt, Germany) were used as sequestering agents for the dynamic stain-
ing of S. cerevisiae cells. All calcein acetoxymethyl esters (CAMs) were prepared as fresh 2.5 mg/mL stock solu-
tions in water-free DMSO (Carl Roth, Karlsruhe, Germany) directly before use. In addition to 0.1 μ M PI, 46 μ M  
CvAM, 60 μ M CbAM, or 28 μ M CgAM was dissolved in the indicated perfusion media. Alternatively, 2 μ M 
PO-PRO1 (Life Technologies GmbH, Darmstadt, Germany) was added to the PI-containing perfusion medium 
to indicate cells without membrane potential. Radical oxygen species (ROS) formation is an indicator of pho-
totoxicity56. Reduced dihydroxycalcein-acetoxymethyl ester (DHCAM, Life Technologies GmbH, Darmstadt, 
Germany) was used to detect ROS. Dye adsorption or absorption by PDMS was not observed as determined by 
LogP values and molecular size.

Microfluidic device and time-lapse imaging. A microfluidic device platform was used for micro-
bial cultivation and single-cell analysis. This device is described in detail by Kohlheyer and co-workers31. The 
microfluidic device harbours microstructures with dimensions to ensure the growth of several hundred cells in 
a monolayer in the perfusion culture. Different media used were infused with a high-precision syringe pump 
(neMESYS, Cetoni GmbH, Korbussen, Germany) at a rate of 300 nL/min. A constant cultivation temperature was 
ensured by an incubation chamber (PeCon GmbH, Erbach, Germany).

The microfluidic device was installed on an inverted epifluorescence microscope (TI-Eclipse, Nikon GmbH, 
Düsseldorf, Germany), which was equipped with a motorized stage (Nikon GmbH, Düsseldorf, Germany), 
high-speed charge-coupled device (CCD) cameras (Clara DR-3041 and Neo sCMOS, Andor Technology Plc., 
Belfast, United Kingdom), the Nikon Perfect Focus System (PFS, Nikon GmbH, Düsseldorf, Germany) for ther-
mal drift compensation, and a Plan Apo 100 Oil Ph3 DM objective (Nikon GmbH, Düsseldorf, Germany). For 
phase contrast images, a cooled LED light source (at 3–8% of total intensity) was used. Epifluorescence illumi-
nation was performed with a mercury light source (Intensilight, Nikon GmbH, Düsseldorf, Germany, set to 1/32 
of total intensity and additionally reduced 1/8 by filter settings). Fluorescent time-lapse imaging was carried out 
based on the growth rate and photosensitivity of the species, described as follows: every 8 min for C. glutamicum,  
every 5 min for E. coli, B. subtilis, and V. harveyi, every 30 min for S. cerevisiae, and every 60 min for M. luteus. 
A TRITC filter (EX 540/25 nm, DM 565 nm, BA 605/55 nm, Nikon GmbH, Düsseldorf, Germany) and a Texas 
Red filter (EX 540–580 nm, DM 595 nm, BA 600–660 nm, AHF Analysentechnik AG, Tübingen, Germany) 
were employed for PI signal imaging. CvAM and CbAM were analysed with a DAPI filter (EX 540–380 nm, DM 
400 nm, BA 435–485 nm, Nikon GmbH, Düsseldorf, Germany). CgAM was excited with a FITC filter (EX 465–
495 nm, DM 505 nm, BA 515–555 nm, Nikon GmbH, Düsseldorf, Germany). A CFP HC filter set (EX 438/24 nm, 
DM 458 nm, BA 483/32 nm, Nikon GmbH, Düsseldorf, Germany) was used for the PO-PRO1 dye.

Data analysis. Time-lapse imaging data from antimicrobial-treated C. glutamicum cells (Fig. 2 and Fig. S2), 
yeast cells (Fig. 1), and E. coli BL21(DE3) CodonPlus(DE3)-RIL cells transformed with pET28b(pezTΔC242), 
pET28b(pezTΔC242(D66T), or pET28b(pezA/pezT) (Fig. 4) were analysed using the counting option of the 
NIS-Elements software program to enumerate total cell numbers and PI+ cells with identical LUT settings. The 
analysis of prokaryotic imaging data, shown in Figs 1 and 3, and Fig. S3–S7, was facilitated by a user-specialized 
workflow run constructed as an ImageJ/Fiji plugin57. Cell identification was performed using a segmentation 
procedure tailored to detect individual bacterial cells in crowded populations. All frames were checked manually 
to remove artefacts as well as to identify segmentation and cell identification failures. Yeast cells were segmented 
manually using ImageJ. Identified cells were subsequently linked throughout image sequences by implementing 
an adapted single-particle tracking approach with TrackMate58. Image analysis permitted the extraction of meas-
urable quantities of individual cells, (i.e., mean fluorescence) as shown in Figs 3 and 6, and Fig. S4. Finally, data 
sets derived from C. glutamicum treated with antibiotics were processed to generate individual single-cell traces 
over time using the analysis and visualization software Vizardous, as recently described in detail59.
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Cell classification criteria. PI intrusion of cell wall-compromised cells was indicated by red fluorescence. 
PI+ cells were considered dead. Cells were defined as PI+ if the PI fluorescence increased drastically between two 
frames or if the initial basal fluorescence signal was increased by more than 5% and demonstrated an increasing 
trend in subsequent time-lapse images until equilibrium was achieved. CAM conversion to fluorescent CAL 
indicated enzymatic activity in cells or cell organelles (yeast). Uninhibited growing C. glutamicum cells exhibited 
moderate fluorescence (CAL+) due to the partial efflux of CAL, whereas cells with reduced metabolic activity 
exhibited increased CAL fluorescence (CAL++) in comparison to CAL+ cells32. Yeast cells with reduced vATPase 
activity retained CAL in their vacuoles. A reduction in cellular enzymatic activity was a criterion for reduced 
cell activity and cell survival. Cells that lost their membrane potential or had cell membrane injuries under-
went PO-PRO-1 intrusion, indicated by blue fluorescence. PO-PRO-1+ cells were considered dying or dead, but 
recovery was observed for yeast cells. Cells were defined as PO-PRO-1+ if the PO-PRO-1 fluorescence increased 
drastically between two frames. Lysed cells were non-fluorescent due to the loss of molecule retention, observed 
as pale cells in phase contrast images, or cell debris disintegration.
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