Abstract
In quantum theory, nogo theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the GreenbergerHorneZeilinger (GHZ) theorem serves as a nogo theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite EinsteinPodolskyRosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZlike contradiction for any bipartite pure entangled state, thus proving a nogo theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.
Introduction
In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics under the assumption of locality and reality^{1} that underlie the classical world view. By considering continuousvariable entangled state, EPR proposed a famous thought experiment that involves a dilemma concerning local realism against quantum mechanics. This dilemma is nowadays wellknown as the EPR paradox. For a long time, the EPR argument remained a philosophical problem at the foundation of quantum mechanics. In 1964, Bell made an important step forward^{2} by considering a version based on the entanglement of spin1/2 particles introduced by Bohm. The EPR paradox, according to Bell’s reasoning, could, supposedly, be resolved by supplementing the theory with local hidden variables (LHV), which nevertheless show an incompatibility with quantum predictions via violation of Bell’s inequality. Later, the violation of the socalled ClauseHorneShimonyHolt (CHSH) inequality, was verified experimentally^{3}.
As for the violation of Bell’s inequality, the incompatibility between the LHV models and quantum mechanics was essentially demonstrated in a statistical manner. If instead one aims to achieve a more sharper conflict, one can have the GreenbergerHorneZeilinger (GHZ) theorem, an “allversusnothing” proof of Bell’s nonlocality that applies to three or more parties^{4,5}. The elegant GHZ argument involved the threequbit GHZ state^{5}
where 0〉 and 1〉 are the eigenstates of the Pauli matrix σ_{z} with the eigenvalues +1 and −1. respectively. It is easy to verify that the GHZ state is the common eigenstate of the following four mutually commutative operators: σ_{1x}σ_{2x}σ_{3x}, σ_{1x}σ_{2y}σ_{3y}, σ_{1y}σ_{2x}σ_{3y}, and σ_{1y}σ_{2y}σ_{3x} (here σ_{1x} denotes the Pauli matrix σ_{x} measured on the 1st qubit, similarly for the others), with the eigenvalues being +1, −1, −1, −1, respectively. However, a contradiction arises if one tries to interpret the quantum result with LHV models. Specifically, we denote the supposedly definite values of σ_{1x}, σ_{2y}, … as v_{1x}, v_{2y}, … (with v’s being 1 or −1), then a product of the last three operators, according to LHV models, yields , in sharp contradiction to the first operator v_{1x}v_{2x}v_{3x} = +1. Such a full contradiction “1 = −1” indicates that the GHZ theorem is a nogo theorem for quantum nonlocality, i.e., there is no room for the LHV model to completely describe quantum predictions of the GHZ state. The GHZ theorem has already been verified by photonbased experiment^{6}, and recently a faulttolerant test of the GHZ theorem has also been proposed based on nonabelian anyons^{7}.
In the original formulation of the EPR paradox^{1}, a bipartite entangled state is considered which is a common eigenstate of the relative position and the total linear momentum and can be expressed as
with the Planck constant. Experimentally one can generate the twomode squeezed vacuum state in the nondegenerate optical parametric amplifier (NOPA)^{8} as
where r > 0 is the squeezing parameter, , are respectively the annihilation and creation operators, m〉 ≡ Ψ_{m}(x)〉 are the Fock states of the Harmonic oscillator. In the infinite squeezing limit, , thus the original EPR state is a maximally entangled state for the bipartite continuousvariable system.
Since the discovery of the EPR paradox, the question of whether the original EPR state possesses the LHV models has pushed many researchers to achieve intriguing and thought provoking results^{9,10,11,12,13,14}. Bell first showed that the Wigner function of the EPR state, due to its positive definiteness, can directly be used to construct the LHV models^{9}. However, attempt has also been made to reveal its nonlocality in phase space by considering displaced parity operators upon the NOPA state in the large r limit^{10}. Moreover, maximal violations of the EPR state by multicomponent Bell’s inequalities have also been investigated in refs 15,16.
Very recently the notion of “steering”^{17,18} has stimulated people to reconsider the exact implication of the EPR argument. For instance, Werner has remarked on why Einstein did not go all the way to discover Bell’s inequality^{19} Steering is indeed a quite old concept. In response to the EPR paper^{20}, Schrödinger, who believed the validity of quantum mechanical descriptions of Nature, introduced in the same year of EPR’s paper a term “steering” to depict the “spooky action at a distance” which was mentioned in the EPR paper. Specifically, steering in a bipartite scenario describes an ability of one party, say Alice, to prepare the other party’s (say Bob’s) particle with different quantum states by simply measuring her own particle with different settings. This is also at the heart of remote state preparation protocol using EPR state^{21}. However, steering lacked operational meanings, until in the year 2007 Wiseman et al.^{17,18} gave a rigorous definition of it through the quantum information task. It then turns out that the EPR paradox concerns more precisely the existence of local hidden state (LHS) models, rather than that of LHV models leading to Bell’s inequality.
That is, the exact type of quantum nonlocality in the EPR paradox is EPR steering, rather than Bell nonlocality. After that, there has been rapid development in EPR steering both theoretically and experimentally^{22,23,24,25,26}, such as in the test of steering inequalities^{27,28,29,30} and the experimental observation of oneway EPR steering^{31}.
Thus, a natural question arises: since there exist a simple GHZ paradox, i.e., “1 = −1”, which rule out the LHV models more uncompromisingly than Bell inequalities, one may ask whether a similar contradiction can be found so as to completely rule out the LHS models, especially for the EPR state. The merits of confirmatively answering this question include not only finding out the aforementioned missing piece of proofs of steering in analogy to proofs of Bell nonlocality, but also accomplishing the demonstration of the EPR paradox in its most original sense.
The aim of this paper is to present a very simple steering paradox, i.e., “2 = 1”, which intuitively demonstrates the steerability for the EPR state, directly confirming that EPR steering is exactly the type of quantum nonlocality inherited in the EPR paradox, henceforth proving a nogo theorem for nonexistence of LHS models in EPR’s original sense.
Results
Simple steering paradox in two qubits
We shall show that in the original EPR’s scenario, there exists a simple steering paradox that leads to “2 = 1”. A twosetting EPR steering scenario together with a bipartite entangled state are sufficient to demonstrate this full contradiction.
To illustrate the central idea, let us first consider the twoqubit case. In a twosetting steering protocol of (with ), Alice prepares a twoqubit state ρ_{AB}, she keeps one and sends the other to Bob. Bob asks Alice to perform his choice of either one of two possible projective measurements (i.e. twosetting) and on her qubit and tell him the measurement results of a. Here
is the projector, with the measurement direction, a (with a = 0, 1) the Alice’s measurement result, the 2 × 2 identity matrix, and the vector of the Pauli matrices. After Alice’s measurements, Bob obtains four conditional states as with j = 1, 2 and a = 0, 1. Suppose Bob’s state has a LHS description, then there exists an ensemble and a stochastic map satisfying
where (with ) and are probabilities satisfying , and for a fixed ξ, and ρ_{B} = tr_{A}(ρ_{AB}) is Bob’s reduced density matrix (or Bob’s unconditioned state)^{17,18}.
Then, Bob will check the following set of four equations:
If these four equations have a contradiction (or say they cannot have a common solution of and ), then Bob is convinced that a LHS model does not exist and Alice can steer the state of his qubit.
Now, let the state ρ_{AB} be an arbitrary twoqubit pure entangled state, which is given in its Schmidt form as
where θ ∈ (0, π/2). The pure entangled state ρ_{AB} = Ψ(θ)〉〈Ψ(θ) has a remarkable property: Bob’s normalized conditional states are always pure, and for (Here are four different pure states when ρ_{AB} is a pure entangled state). It is wellknown that a pure state cannot be obtained by a convex sum of other different states, namely, a density matrix of pure state can only be expanded by itself. Therefore without loss of generality, from Eq. (7) one has
with the probabilities , and other terms are zeros (see Methods for more detail of derivation). By summing them up and taking trace, due to , the lefthand side gives 2trρ_{B} = 2. But the righthand side, by definition, gives , this leads to a full contradiction of “2 = 1”.
The above simple paradox “2 = 1” offers a transparent argument of nonexistence of LHS models (or existence of EPR steering) for a twoqubit pure entangled state. The subtlety of the paradox lies in the fact the wavefunction Ψ(θ)〉 can have different decompositions, such as
with and . In practice, the twosetting protocol can be chosen as . Namely, Bob asks Alice to measure her qubit along the direction and the direction, respectively. Suppose Alice performs her measurement in the direction (or the direction), for convenient, one may denote the set of her projectors as (or ), then she can project Bob’s system into one of the pure states {0〉, 1〉} (or {χ_{+}〉, χ_{−}〉}). It is easy to verify that are locally orthogonal and complete bases. Namely, 〈01〉 = 〈+−〉 = 0, , and the basis can be obtained from the diagonal basis through a unitary transformation.
Generalization to bipartite highdimensional systems
Suppose in the steering scenario, the quantum state that Alice prepares is a pure entangled state of two ddimensional systems (twoqudit), then one can have the same simple paradox “2 = 1”.
Let us consider the twoqudit pure entangled state in its Schmidt form
where m〉 is the state in the diagonal basis, λ_{m}’s are the Schmidt coefficients, and . In the twosetting steering protocol of , Alice prepares a twoqudit pure state ρ_{AB} = Φ〉〈Φ, she keeps one and sends the other to Bob. To verify the steerablity of Alice, Bob asks Alice to perform his choice of either one of two possible projective measurements m〉〈m and m′〉〈m′ on her qubit and tell him the measurement results of m and m′. Similarly, the sets of projectors for Alice are as follows
In principle, the choice of and is rather arbitrary, as long as any element in does not fully overlap with that in . For simplicity and here can be taken as two of the mutually unbiased bases for a ddimensional system, such that 〈mm′〉^{2} = 1/d for any pair of m and m′. After Alice’s measurements, Bob obtains 2d conditional states as and . Similarly, Bob can check the following set of 2d equations:
with m, m′ = 0, 1, 2, …, d − 1. If these 2d equations have a contradiction, then there is no a LHS model description and Bob has to be convinced that Alice can steer the state of his qubit.
Because ρ_{AB} = Φ〉〈Φ is a pure entangled state, it can be directly verified that Bob’s normalized conditional states are always pure, for instance one has . Due to the fact that a density matrix of pure state can only be expanded by itself, therefore, from equation (13) one has
with m, m′ = 0, 1, 2, …, d − 1. By summing them up and taking the trace, we have
From (15), one sees that the lefthand side gives 2trρ_{B} = 2 and the righthand side gives trρ_{B} = 1, leading to a full contradiction of “2 = 1”.
The above analysis is also valid when d tends to infinity. By chosing and let d → ∞, then one can have a similar paradox “2 = 1” for the continuousvariable state NOPA〉, which includes the original EPR state by taking the infinite squeezing limit. Thus, we complete the demonstration of the simple steering paradox for the original EPR scenario, which is a nogo theorem for nonexistence of LHS models in the EPR paradox. In other words, the sharp contradiction “2 = 1” indicates that there is no room for the LHS description of any bipartite pure entangled state, including the original EPR state.
Remark 1.—The original EPR state has the following elegant decompositions
where in the last step we have operated a translation transformation on Ψ〉_{EPR} that does not change the state Ψ〉_{EPR}, is a real number, and . Thus the twosetting steering protocol can be chosen as .
Discussions
The EPR paradox has resulted in search for local hidden variable models with locality and reality as starting points, but Bell’s inequaliy rules out such mdels as the predictions of LHV models do not match quantum theory. The GHZ paradox demonstrates sharp contradiction between the predictions of local hidden variable theory and quantum mechanics without using any inequality. However, the GHZ paradox is not applicable to bipartite systems. Hardy did attempt to extend the allversusnothing argument to a twoqubit system to reveal Bell’s nonlocality^{32,33}, and this proof is usually considered as “the best version of Bell’s theorem”^{34}. However, Hardy’s proof works for only 9% of the runs of a specially constructed experiment, and moreover, it is not valid for twoqubit maximally entangled state. Thus, in this sense, Hardy’s proof may not be considered appropriately as the closest form to the spirit of EPR’s original scenario.
In summary, we have presented a simple steering paradox that shows the incompatibility of the local hidden state model with quantum theory for any bipartite pure entangled state, including the original EPR state. The full contradiction that results in “2 = 1”; not only intuitively demonstrates the steerability for the EPR state, directly confirming that EPR steering is exactly the type of quantum nonlocality inherited in the EPR paradox, but also indicates that the very simple steering paradox is the closest in its form to the spirit of the EPR paradox. Furthermore, if one considers the EPR steering scenario in ksetting, then following the similar derivation one can arrive at a full contradiction, i.e., “k = 1”. We expect that the simple steering paradox can be demonstrated in both twoqubit system and continuousvariable system by photon entangled based experiments in the near future.
Methods
Detail derivation of the steering paradox for two qubits
It can be directly verified that, if the state ρ_{AB} = Ψ(θ)〉〈Ψ(θ) is a pure entangled state, then are four different pure states. For example and for convenient, let us take
Then in the twosetting steering protocol of , Bob asks Alice to perform his choice of either one of two possible projective measurements along the zdirection (with the projector ) and the xdirection (with the projector ) on her qubit and tell him the measurement results of a (with a = 0, 1). More precisely, one has the projectors as
with . Then Bob’s four unnormalized conditional states become
with . Thus, Bob’s four normalized conditional states are
which are obviously four different pure states.
Now, if Bob’s four unnormalized conditional states can have a LHS description, then they must satisfy
Since the four states in the lefthandside of Eqs (21)–(24), are all proportional to pure states, thus it is sufficient for ξ to run from 1 to 4, namely, one can take the ensemble as
with (if , it implies that the corresponding state ρ_{ξ′} is not the hidden state considered in the ensemble ), and ρ_{i} (i = 1, 2, 3, 4) are the hidden states. Then, Eqs (21)–(24), become
In the following, we come to show a simple steering paradox “2 = 1” based on Eqs (26)–(29), under the constraints of Eq. (6), and
It is wellknown that a pure state cannot be obtained by a convex sum of other different states, namely, a density matrix of pure state can only be expanded by itself. Let us look at Eq. (26), because the lefthand side is proportional to a pure state, without loss of generality, one has
Similarly, one has
With the help of Eq. (31), one has
This directly yields
which is just the set of equations given in (9). It can be verified that
For Eq. (37), by summing them up and taking trace, the lefthand side gives 2trρ_{B} = 2. But the righthand side, by definition in Eq. (6), gives , this leads to the sharp contradiction “2 = 1,” as shown in the main text.
Existence of LHS model for the pure separable state
Consider now, however, a pure separable state of two qubits
For this state, we shall show that a local hidden state model does exist. Without loss of generality, let Alice’s two choices of projective measurements be
with
By acting these projectors on the separable state (39), Bob’s four conditional states are found to be
It then turns out that there exists a local hidden state model, with Alice’s strategy based on a single hidden state, that could simulate the above Bob’s four conditional states:
Thus, local hidden state model is possible for pure separable states.
Additional Information
How to cite this article: Chen, J.L. et al. Sharp Contradiction for LocalHiddenState Model in Quantum Steering. Sci. Rep. 6, 32075; doi: 10.1038/srep32075 (2016).
References
 1
Einstein, A., Podolsky, B. & Rosen, N. Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935).
 2
Bell, J. S. On the EinsteinPodolskyRosen paradox. Physics (NY) 1, 195–200 (1964).
 3
Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed Experiment to Test Local HiddenVariable Theories. Phys. Rev. Lett. 23, 880 (1969).
 4
Greenberger, D. M., Horne, M. A. & Zeilinger, A. In Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by Kafatos, M., p. 69 (Kluwer, Dordrecht, 1989).
 5
Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990).
 6
Pan, J. W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum nonlocality in threephoton GreenbergerHorneZeilinger entanglement. Nature (London) 403, 515 (2000).
 7
Deng, D. L., Wu, C., Chen, J. L. & Oh, C. H. FaultTolerant GreenbergerHorneZeilinger Paradox Based on NonAbelian Anyons. Phys. Rev. Lett. 105, 060402 (2010).
 8
Reid, M. D. & Drummond, P. D. Quantum Correlations of Phase in Nondegenerate Parametric Oscillation. Phys. Rev. Lett. 60, 2731 (1988).
 9
Bell, J. S. Speakable and Unspeakable in Quantum Mechanics. Chap. 21 (Cambridge University Press, Cambridge, England, 1987).
 10
Banaszek, K. & Wódkiewicz, K. Testing Quantum Nonlocality in Phase Space. Phys. Rev. Lett. 82, 2009 (1999).
 11
Banaszek, K. & Wódkiewicz, K. Nonlocality of the EinsteinPodolskyRosen state in the Wigner representation. Phys. Rev. A 58, 4345 (1998).
 12
Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the EinsteinPodolskyRosen Paradox for Continuous Variables. Phys. Rev. Lett. 68, 3663 (1992).
 13
Cetto, A. M., De La Pena, L. & Santos, E. A Bell inequality involving position, momentum and energy. Phys. Lett. A 113, 304 (1985).
 14
Cohen, O. Nonlocality of the original EinsteinPodolskyRosen state. Phys. Rev. A 56, 3484 (1997).
 15
Chen, Z. B., Pan, J. W., Hou, G. & Zhang, Y. D. Maximal Violation of Bell’s Inequalities for Continuous Variable Systems. Phys. Rev. Lett. 88, 040406 (2002).
 16
Chen, J. L. et al. Multicomponent Bell inequality and its violation for continuousvariable systems. Phys. Rev. A 71, 032107 (2005).
 17
Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, Entanglement, Nonlocality, and the EinsteinPodolskyRosen Paradox. Phys. Rev. Lett. 98, 140402 (2007).
 18
Jones, S. J., Wiseman, H. M. & Doherty, A. C. Entanglement, EinsteinPodolskyRosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007).
 19
Werner, R. F. Steering, or maybe why Einstein did not go all the way to Bell’s argument. J. Phys. A: Math. Theor. 47, 424008 (2014).
 20
Schrödinger, E. Discussion of probability relations between separated systems. Naturwiss. 23, 807 (1935).
 21
Pati, A. K. Minimum cbits for remote preperation and measurement of a qubit. Phys.Rev. A 63 014320 (2000).
 22
Oppenheim, J. & Wehner, S. The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics. Science 330, 1072 (2010).
 23
Branciard, C., Cavalcanti, E. G., Walborn, S. P., Scarani, V. & Wiseman, H. M. Onesided deviceindependent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012).
 24
Chen, J. L. et al. AllVersusNothing Proof of EinsteinPodolskyRosen Steering. Sci. Rep. 3, 2143 (2013).
 25
Chen, J. L. et al. Beyond Gisin’s Theorem and its Applications: Violation of Local Realism by TwoParty EinsteinPodolskyRosen Steering. Scientific Reports 5, 11624 (2015).
 26
Sun, K. et al. Experimental Demonstration of the EinsteinPodolskyRosen Steering Game Based on the AllVersusNothing Proof. Phys. Rev. Lett. 113, 140402 (2014).
 27
Saunders, D. J., Jones, S. J., Wiseman, H. M. & Pryde, G. J. Experimental EPRsteering using Belllocal states. Nature Phys. 6, 845 (2010).
 28
Smith, D. H. et al. Conclusive quantum steering with superconducting transition edge sensors. Nature Comm. 3, 625 (2012).
 29
Bennet, A. J. et al. Arbitrarily losstolerant EinsteinPodolskyRosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole. Phys. Rev. X 2, 031003 (2012).
 30
Wittmann, B. et al. Loopholefree quantum steering. New J. Phys. 14, 053030 (2012).
 31
Händchen, V. et al. Observation of oneway EinsteinPodolskyRosen steering. Nature Photonics 6, 596 (2012).
 32
Hardy, L. Nonlocality for Two Particles without Inequalities for Almost All Entangled States. Phys. Rev. Lett. 71, 1665 (1993).
 33
Rabelo, R., Zhi, L. Y. & Scarani, V. DeviceIndependent Bounds for Hardy’s Experiment. Phys. Rev. Lett. 109, 180401 (2012).
 34
Mermin, N. D. The best version of Bell’s theorem. Ann. (NY) Acad. Sci. 755, 616–623 (1995).
Acknowledgements
J.L.C. is supported by the National Basic Research Program (973 Program) of China under Grant No. 2012CB921900 and the National Natural Science Foundation of China (Grant Nos 11175089 and 11475089). H.Y.S. is supported by Institute for Information and Communications Technology Promotion (IITP) grant funded by the Korea Government (MSIP) (No. R0190162028, Practical and Secure Quantum Key Distribution). A.K.P is supported by the Special Project of University of Ministry of Education of China and the Project of K. P. Chair Professor of Zhejiang University of China.
Author information
Affiliations
Contributions
J.L.C. initiated the idea. J.L.C., H.Y.S., Z.P.X. and A.K.P. derived the results and wrote the manuscript. All authors reviewed the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Chen, JL., Su, HY., Xu, ZP. et al. Sharp Contradiction for LocalHiddenState Model in Quantum Steering. Sci Rep 6, 32075 (2016). https://doi.org/10.1038/srep32075
Received:
Accepted:
Published:
Further reading

Relationship between firstorder coherence and the maximum violation of the threesetting linear steering inequality for a twoqubit system
Physical Review A (2021)

Improving of steering and nonlocality via local filtering operation in Heisenberg XY model
Modern Physics Letters A (2020)

Comparing Bell nonlocality and Einstein–Podolsky–Rosen steering based on the chained inequalities
Optics Communications (2018)

Onesided deviceindependent selftesting of any pure twoqubit entangled state
Physical Review A (2018)

Chained Einstein–Podolsky–Rosen steering inequalities with improved visibility
International Journal of Quantum Information (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.