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Nonvolatile and tunable switching 
of lateral photo-voltage triggered 
by laser and electric pulse in metal 
dusted metal-oxide-semiconductor 
structures
Peiqi Zhou, Zhikai Gan, Xu Huang, Chunlian Mei, Meizhen Huang, Yuxing Xia & Hui Wang

Owing to the innate stabilization of built-in potential in p–n junction or metal-oxide-semiconductor 
structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed 
after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage 
(LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse 
and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile 
manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed 
between the metal layer and silicon substrate, including the consequent change of film resistivity. This 
work may widely improve the performance of existing LPE-based devices and suggest new applications 
for LPE in other areas.

Since the lateral photovoltaic effect (LPE) was first discovered by Schottky in ref. 1 and explicitly raised by 
Wallmark in ref. 2, its unique features (LPV varies linearly with irradiation position with high sensitivity) have 
given birth to extensive applications in many fields, which can be divided into two categories. In one category, LPE 
was applied to design new optical transducers and sensors, and a prominent example is position-sensitive detec-
tors3–5 (PSD), which is widely used in various experimental measurements6–8 (especially in high energy physics 
experiments). In the other category, LPE is used as a method to explore new physical phenomena9–11 or measure 
other physical quantities12,13 such as sheet resistivity, junction conductance, and built-in potential. Because of 
these application values and physical properties, over the past few decades, a fair amount of work has been done 
to improve the sensitivity and linearity of LPE in varieties of PN junction type or MOS type structures14–18, such 
as interface modification19, thickness control20, quantum dots embedding21, ions implantation22, external bias23–25, 
and so on ref. 26,27. However, almost all these methods are either applied in the fabrication stage or invalid with-
out continuous voltage input. In other words, nonvolatile optimization measures of LPV under working condi-
tion have scarcely been reported. In this paper, we investigated the LPE in Cu (dusted)-SiO2-Si structure, differing 
from previous studies, the sensitivity and linearity of LPV, can be freely adjusted by an electric pulse with assist of 
light after fabrication. We attribute this adjustment to the control of Schottky barrier height (SBH) between Cu 
and Si layer. This discovery may widely improve the performance of existing LPE-based devices. Moreover, it may 
immensely expand the application space of LPE.

Methods
We deposited Cu films on n-type Si (1 1 1) (0.3 mm with an oxide layer) at room temperature by radio-frequency 
sputtering. The base pressure of the vacuum system prior to deposition was 4.1 ×  10–4 Pa, and the argon gas 
pressure was 0.7 Pa during the deposition. The deposition rates, determined by stylus profile meter on thick 
calibration samples, were 0.41 Å/s. A semiconductor laser (415 nm wavelength) was used to scan the sample, 
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with a 50 μ m laser spot diameter and a 3 mW laser power reaching the sample. All the contacts (less than 1 mm 
in diameter) to the films were formed by alloying indium and showed no measurable rectifying behavior (ohmic 
contact). Several ultrathin Cu films were deposited with various thicknesses from 0.4 nm to 4 nm. Figure 1 shows 
the AFM images of one sample, which indicates that the super thin Cu films are discontinuous, actually nanopar-
ticles in light of the first stage are of Volmer-Weber growth mode. More direct visualized SEM and AFM images 
of this discontinuity and the growth mode can be found in other previous reports28,29. Therefore, the deposited Cu 
thickness in our samples is only a nominal thickness.

Results and Discussion
The original LPV (photo-voltage between A point and B point, see the illustration in Fig. 2(b)) curve of our 
sample was shown in Fig. 2(a) in black line. We can see the sensitivity of LPV is only about 38 mV/mm, and the 
linearity is not very ideal either. Then, we applied a + 5 V voltage pulse (“+ ” means the anode is located on the Cu 
side) on A point, which was irradiated by the laser. Once again, we measured the LPV curve of this sample, the 
sensitivity increased to 48.8 mV/mm. And it further increased to 70.4 mV/mm after a + 10 V pulse, until reaching 
83.1 mV/mm after a + 20 V pulse, more than double the original state, as shown in red line. At the same time, the 
linearity of the curve is also much better than the original state, too. To investigate the stability of this improve-
ment, we continuously measured the LPV for a week and didn’t find obviously change. This is a very exciting 
result. It means the voltage pulse permanently changed the internal structure of this sample in some degree. To 
further investigate this phenomenon, we reversed the polarity of pulse, applied a − 5 V pulse on A point (still 
with the assist of laser on A point), consequently, the sensitivity dropped to 71.3 mV/mm. We increased the 
voltage to − 10 V, and then the sensitivity dropped to 62.1 mV/mm, with the LPV curve shown in the blue line. 
We can see the sensitivity and linearity both reduced obviously after the pulse was reversed, which indicating this 
pulse & laser adjustment is reversible. In other words, with the help of local illumination, we can use different 
pulses enhance or reduce the performance of LPV. In order to confirm the necessity of laser illumination on 
pulse point, we repeated this experiment without laser on the control group, which is a sample tailored from a 
same original one as in the case of the experimental group. Interestingly, without the assist of laser, the change of 
sensitivity turns to a negligible level, which is not shown in the figure. This result indicates that this tunable LPV 

Figure 1. The height image, phase image and 3D image of 2.46 nm thickness sample. Showing the metal film 
is actually discontinuous nanoparticles.

Figure 2. (a) The response of LPV to the pulse & laser stimulation. Black line: original LPV curve without 
stimulation. Red line: LPV curve after a + 20 V pulse & laser stimulation at A point. Blue line: LPV curve after 
a − 10 V pulse & laser stimulation at A point on the basis of the blue line. Table: the variation of LPV sensitivity 
with the change of pulse voltage in sequence. (b) The evolution of LPV with the increase of αl based on the 
current continuity equation and Ohm’s low.
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effect is stimulated by voltage pulse combined with illumination, and both of these two factors are indispensable. 
Therefore, we have reasons to infer that the photon-generated carriers play an important role in this effect.

To account for this phenomenon, we start with the conventional derivation of LPV in MOS structure. Based 
on the current continuity equation and Ohm’s low, we can elicit the electric potential of every point on Cu surface, 
and then the LPV between electrodes A and B. The derivation is as follow26,30:
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where α is the spatial decay parameter, Js is the Schottky current, ρ is the metal film resistivity, ρ′  is the semicon-
ductor film resistivity, t the metal film thickness, t′  the semiconductor film thickness, A* is Richardson constant, 
Φ  is Schottky barrier height, d is the diameter of the light spot, f is the light generated carrier flux which is col-
lected, l is the distance between two electrodes, and xL is the position of the light spot.

From equation (5), we can see the sensitivity of LPV is proportional to ρ/αt, and the linearity mainly relies 
on the spatial decay parameter α and l. Figure 2(b) shows the evolution of LPV with the increase of αl, when 
αl ≤  1, the curve shows good linearity, but when αl >  1, linearity and sensitivity drop quickly with the increase of 
αl. In practical applications, l usually relates to the device measurement range, and it should not be sacrificed to 
improve linearity. So the parameter α, which is positive correlation with ρ and negative correlation with Φ  and 
t, is the key factor in linearity. Therefore, if we want to improve the performance (both sensitivity and linearity) 
of LPV devices, we must try to increase the metal film resistivity ρ and the Schottky barrier height Φ , and reduce 
the thickness of metal film t at the same time. However, ρ is a function strongly depended on t, and the Schottky 
barrier, as is well known, is determined by the metal work function, the electron affinity of the semiconductor, 
the degree of Fermi-level pinning S =  dφB/dφM

31, and the metal coverage for ultrathin film32. Namely, after device 
fabrication (t is settled), ρ and Φ  are almost fixed, so that most of the previous attempts to optimize LPV are in 
the stage of fabrication. The most striking feature of our study is that our experiment operations, light-assisted 
electric pulse, changed the metal film resistivity and the Schottky barrier height when the thickness of metal film 
is already invariable.

A model concerning the trapping of generated carriers is suggested to account for the variation of SBH. Firstly, 
it is worth mentioning that our sample is different from conventional MOS structures. The metal layer in our 
sample is so thin (less than 2 nm) that actually it is nanoparticles rather than bulk metal or continuous film due to 
the first stage of the Volmer-Weber growth mode. This discontinuity results in a very low surface conductivity33,34, 
on account of the difficult transport between adjacent metal particles for electrons with low energy. Hence, these 
particles can be treated as potential wells for electrons in the interface. Additionally, due to the presence of oxide 
layer between Cu and Si, once electrons from Si layer are trapped in these potential wells35,36, the oxide layer will 
act as a barrier and prevent these electrons from returning to the Si film. These features of structure give the SBH 
tunable character. When a laser (the photon energy is greater than the energy gap of Si) is irradiating at a certain 
point on the sample, a current will flow from Si to Cu (electrons migration from Cu to Si). Meanwhile, if a positive 
voltage is applied at the same point, some light-generated electrons will drift from the Si layer to the Cu layer 
under the drive of this external voltage. So the ultima flow direction of the generated electrons is the result of the 
game between the applied voltage and the build-in internal electric field. If the voltage is high enough, a fraction 
of the total number of electrons will tunnel through the oxide layer, and then be trapped in potential wells at the 
surface. Even, therefore, after the voltage is removed, some light-generated electrons still stay at the surface due to 
the block effect of the oxide layer37,38. Because of these trapped electrons, the charge distribution in the semicon-
ductor below the interface will be altered, which can be dealt with as if it is an image-charge forming a dipole layer 
with the electrons trapped in the wells. This charge readjustment leads to a larger build-in internal electric field, 
i.e. the increase of SBH39, thereupon, will increase the sensitivity and linearity of LPV. It is worth noting that the 
trapped electrons will produce a feeble lateral electric field, which generates the translation of LPV zero point, just 
as the red line in Fig. 2(a). Conversely, if a negative pulse & laser is subsequently applied in the same position, the 
trapped electrons will be released and flow back to the Si layer, neutralizing the positive space charge, and con-
sequently reducing the SBH towards its former level. Moreover, based on this model it is easy to understand why 
the assist of laser illumination is necessary, as it provides a large number of photo-generated electrons, thereby 



www.nature.com/scientificreports/

4Scientific RepoRts | 6:32015 | DOI: 10.1038/srep32015

allowing sufficient electrons to be trapped in the surface potential wells. A schematic illustration and band dia-
grams of these changes in charge states, following the application of a pair of positive and negative pulses, is given 
in Figs 3 and 4.

Figure 3. Schematic of the charge states under a pair of positive and negative pulses. (a) Original state with 
low built-in electric field and thin depletion. (b) During the positive pulse, the generated electrons are moving 
from Si to Cu. (c) Excited state with high built-in electric field and thick depletion. After the pulse, the generated 
electrons trapped on the Cu particles. (d) During the negative pulse, the trapped electrons are being released to 
the Si layer.

Figure 4. Band diagrams of the charge states under a pair of positive and negative pulses. (a) Original state. 
(b) During the positive pulse, the generated electrons are moving from Si to Cu. (c) Excited state: after the pulse, 
the generated electrons trapped on the Cu particles, reducing the barrier on the side of metal and enhancing the 
built-in electric field. (d) During the negative pulse, the trapped electrons are being released to the Si layer.
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There are some indispensable explanations for the difference of Fermi level in Fig. 4(a,c). This difference is 
caused by the unique structure of our sample. During the formation of Schottky barrier, the oxide layer is trans-
parent for the high energy electrons on side of semiconductor and insulated for the low energy electrons on side 
of metal. With the loss of electrons, the Fermi level of semiconductor drops until the oxide is insulated for the 
electrons in semiconductor, too. Therefore, the existence of an oxide layer may afford a difference of Fermi level 
and provide charge trapping space for electrons. As a result, we need to separately discuss the barrier on the side 
of metal Φ B and the built-in electric potential ψ bi, which always keep a constant difference value En =  EC− EF in 
conventional Schottky contact. After a positive pulse & laser treatment, some generated electrons are trapped in 
the metal particle. These electrons raise the Fermi level of metal particle32, which leads to a lower Φ B. At the same 
time, the increased holes in depletion region will enhance the built-in potential ψ bi. Therefore, the difference 
between Φ B and ψ bi isn’t constant any more.

The I-V characteristic curve shown in Fig. 5 is helpful to verify the unidirectional tunnel property of oxide 
layer and change of Φ B and ψ bi. This curve measured by Fastscan-AFM with a 20 nm tip, and the testing schematic 
is shown in Fig. 5. As we can see, there is a threshold voltage in the reverse region, indicating that electrons can’t 
tunnel oxide layer under this voltage, so the oxide layer is insulated for the electron on the metal side without 
bias. After a + 8 V pulse & laser treatment, the reverse current increases notably and the forward current drops. 
This result is consisted with the change of Φ B and ψ bi. Because Φ B mainly influences electrons moving from metal 
to semiconductor, and ψ bi, on the contrary, prevent electrons moving from semiconductor to metal. Here it is 
necessary to clarify that, the Schottky current Js in equation (3) is the forward current without bias, therefore, Φ  in 
equation (4) is equal to ψ bi +  En, which is the SBH we discussed before.

However, the increase of sensitivity of LPV in our experiment is as large as 120%, which can not be merely 
explained by the decrease of α. During the measurements, another critical factor was found: the metal film resis-
tivity ρ increased over 30% after the treatment of + 20 V pulse & laser (see Fig. 6). In our model, this change is 
associated with the increase of SBH. As shown in Fig. 6, the electroconductibility of the Cu ultrathin film mainly 
comes from two parts: one is electrons hopping from one island to another, the other is electrons detouring 
through the Si layer. For our sample, the Cu film is thinner than 10 nm and the oxide layer is not very thick, which 
results in the hopping probability is very low33,34 and the detouring is relatively easy for electrons so that the 
second path of electron conduction occupy a dominant position. For this part, the SBH play a role of preventing 
electrons from tunneling the interface layer, therefore, the increase of SBH will increase the metal film resistivity. 
Figure 6 shows the transformation of I-V curve between point A and B before and after a + 20 V pulse & laser, and 
the reduction of slope signifies the increase of resistivity. Certainly, this effect only becomes noticeable when the 
metal film is thin enough that the metal islands have not begun to grow and coalesce.

The effect of another two materials Ti and Pt have also been investigated, whose work function is respective 
lower and higher than Cu. For the same thickness samples, the improvement of LPV on A point under a same  
+ 20 V pulse & laser treatment is shown in the following Table 1.

The original LPV is a function of SBH, which is closely related to metal work function. Therefore, Table 1 
reveals a law that there is a negative correlation between the modification range of SBH through charge trapping 
effect and the original SBH, or the work function of metal material. This rule can be simply attributed the toler-
ance capacity of oxide layer to built-in electric field (Schottky barrier). Obviously, the oxide layer can’t always hold 
a difference of Fermi level no matter how strong the built-in field is. The higher the field is, the easier for electrons 
to tunnel through oxide layer. Therefore, low work function materials show better control characteristics than 
high work function materials.

Figure 5. The schematic diagram and I-V curve of single particle through FastScan-AFM. 
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In summary, we discovered a nonvolatile and tunable switching effect of lateral photo-voltage in metal dusted 
metal-oxide-semiconductor structure. By combining the application of a short voltage pulse with laser illumi-
nation, the sensitivity and linearity of lateral photo-voltage can be adjusted in a nonvolatile manner. Based on a 
photo generated electrons trapping model, the variation of Schottky barrier height and film resistivity was pro-
posed to account for this phenomenon. Compared to common LPV devices, the tunable and nonvolatile features 
of this effect may endow it a wider application areas.
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