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Resolving microbial membership 
using Abundance and Variability In 
Taxonomy (‘AVIT )
Anirikh Chakrabarti1, Jay Siddharth1, Christian L. Lauber1, Mathieu Membrez1, 
Bertrand Betrisey1, Carole Loyer1, Chieh Jason Chou1, Zoltan Pataky2, Alain Golay2 & 
Scott J. Parkinson1

Development of NGS has revolutionized the analysis in microbial ecology contributing to our deeper 
understanding of microbiota in health and disease. However, the quality, quantity and confidence 
of summarized taxonomic abundances are in need of further scrutiny due to sample dependent and 
independent effects. In this article we introduce ‘AVIT (Abundance and Variability In Taxonomy), an 
unbiased method to enrich for assigned members of microbial communities. As opposed to using a 
priori thresholds, ‘AVIT uses inherent abundance and variability of taxa in a dataset to determine the 
inclusion or rejection of each taxa for further downstream analysis. Using in-vitro and in-vivo studies, 
we benchmarked performance and parameterized ‘AVIT to establish a framework for investigating the 
dynamic range of microbial community membership in clinically relevant scenarios.

NGS has greatly expanded our understanding and knowledge of microbes and their importance in a variety of 
habitats, by allowing for sequencing an ever-increasing number of samples1 and depth2. Simultaneously, recent 
work has reiterated the importance of microbes to human health3–10. However, there exists disconnects between 
advancements in sequencing capability and our understanding of community membership. Additionally, our 
understanding is confounded by uncertainties in technical and bioinformatic assignment of taxonomy to riboso-
mal sequences. These limitations handicap our ability to evolve towards an understanding of integrated commu-
nity metabolism and dynamics.

NGS data processing in microbial ecology (ensuring balance between “quantity” and “quality”) remains an 
important area for development. Current strategies for the removal of spurious data encompass platform specific 
methods, pre-processing assessment of quality and post processing removal of data-points using a priori thresh-
olds. For example, flowgram de-noising is specific to 454 Life Sciences Pyrosequencer and does not apply to other 
sequencing NGS methods11,12. In case of Illumina, CASAVA filters sequences on a per-read basis. Additionally, 
Caporaso et al. have suggested strategies to avoid exaggerated diversity estimates using Illumina reads13. Bokulich 
et al. demonstrated how high-quality read length and abundance were the primary factors differentiating authen-
tic and spurious reads produced by different sequencing methods14. They presented guidelines for user-defined 
quality-filtering enabling efficient extraction of high-quality data and facilitating interpretation of Illumina 
sequencing reads. These methods focus on platform-specific solutions but stop short of addressing other mech-
anisms contributing to spurious data inclusion. The community could benefit from a consistent methodology 
addressing these concerns in a platform independent manner. Current data-processing methods cull low abun-
dance OTUs or model the abundance and distribution of all OTUs in a data set, to reduce variability and increase 
confidence in statistical measures of community composition15. A priori cutoffs risk discarding low abundant but 
omnipresent members that contribute to the metabolic potential of the community.

This concept led us to explore the utility of concurrently considering both taxon variability and abundance 
in analysis of complex microbial communities using NGS platforms. We introduce ‘AVIT (Abundance and 
Variability In Taxonomy), an unbiased method to use the available metrics (relative abundances and variability 
in the whole study) in unison to remove potentially erroneous members while retaining low-abundant legitimate 
members of the microbial community. Using defined in-vitro and in-vivo studies with a priori knowledge of sam-
ple composition, we identified thresholds at which high quality noise reduction was achieved and benchmarked 
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‘AVIT performance. Key advantages of ‘AVIT include: a) removal of spurious members, b) inclusion of members 
known to be present across 106 abundance range (otherwise rejected by a priori abundance cutoffs), and c) opti-
mizing the balance of membership and accounted variability in downstream analysis. By applying ‘AVIT to a 
clinical study16, we identified the spectrum of microbial fecal community membership from clinical samples. We 
provide a classification based on resolution to assign a confidence regarding accurate community membership, 
which will facilitate downstream analysis and hypothesis generation. Overall, the ‘AVIT framework provides 
inferences that cannot be achieved using preexisting approaches, and its broad application could enhance our 
understanding of microbial communities.

Material and Methods
Abundance and Variability In Taxonomy (‘AVIT) Algorithm. ‘AVIT algorithm uses the outputs from 
datasets in the form of taxa counts obtained after pre-processing, OTU and taxonomy assignment steps common 
in many 16S pipelines. ‘AVIT filters out elements by taking into account taxon abundance and variability in a 
sample and across samples to identify members to be analyzed. Abundance of a member is quantified by the raw 
count observed post sequencing. While variability can be quantified in different ways, we specifically are referring 
to either the sample mean (average) or study mean (average) as a measure of variability.

Implementation of ‘AVIT was carried out using MATLAB (The Mathworks, Natick, MA) on an Apple work-
station (Apple, Cupertino, CA) and involved the following steps (Fig. 1):

(1) The initial step of ‘AVIT algorithm normalizes the raw counts of each identified member (Bi, where i is a 
member of the n originally identified members being either OTUs or taxa counts) within each sample (Cj, 
where j corresponds to one sample amongst the s samples) to the sum of all the members identified in the 
corresponding sample obtaining the relative abundances (RAij).

(2) This is followed by a core filtering sequence within ‘AVIT, based on a combination and ultimately consensus 
set, derived from choice and application of three parameters: i) proportionality threshold (Pth), ii) raw count 
cut-off (RCco), and iii) cross-sample cut-off (CSco). Pth values are in the form of 0.0001, 0.0002…  0.01. These 
parameters indicate a threshold allowing for selection/rejection of a measurement as compared to the rest 
of the dataset. For example, if a relative abundance of a member is less than the chosen Pth multiplied to the 
maximum relative abundance in a sample, then the scheme would reject the member under consideration. 
RCco values are integers (eg. 1, 2…  10) indicating a threshold to allow for selection or rejection of a member 
based on the raw count observed. For example, using an RCco of 2 would filter out all measurements with raw 
counts ≤2. CSco values are also integers indicating the threshold used to accept or reject a member based on 
how many times it is observed across different samples. For example, using a CSco of 2 would result in filtering 
out a member observed only twice across all samples in the study. Using a combination of these parameters, 
we take into account sample specific and cross-sample information to define retained members. Based on a 
combination of choices of the parameters discussed earlier (e.g. Pth =  0.0001, RCco =  2, CSco =  1), we perform 
three parallel steps to filter the original dataset as outlined below:

Arm 1 Sample specific and dominant member level based arm – using the dataset in the form of relative 
abundances (RAij), the algorithm filters out the RAij values in any particular column (corresponding to a sam-
ple) which are ≤ Pth times the maximum RAij for the corresponding column. Consequently, based on the orig-
inal raw counts, it will remove the corresponding entries in the dataset that are ≤RCco. Finally in the reduced/
filtered dataset, it would check if any member was observed in different samples greater than the initially chosen 
CSco. If not, then it would filter out the corresponding member. This finally results in a reduced/filtered subset of 
the initial dataset for the corresponding parameters deployed for the filtration process.
Arm 2 Sample specific and average member level based arm – Based on the relative abundances (RAij), 
in this arm, the algorithm would filter out the RAij values in any particular column (corresponding to a 
sample) which are ≤ Pth times the mean (average) RAij for the corresponding column. Consequently, it 
would filter further based on the original raw counts based on RCco and presence across different samples 
based on CSco as discussed earlier. This results in a reduced/filtered subset of the initial dataset for the 
corresponding parameters that was used to perform the cutoff.
Arm 3 Cross-sample and average member level based arm – Using relative abundances (RAij) dataset, 
the algorithm would first calculate the mean of the RA’s (mRAi) for each of the identified members. It 
would then filter out the members for which the mRA are ≤Pth times the mean (average) mRAi across all 
the identified members. Consequently, it would filter further based on the original raw counts based on 
RCco and presence across different samples based on CSco as elaborated earlier. Finally, it results in further 
reduced/filtered subset of the initial dataset for the corresponding parameters used for data filtration.

 Using these three arms (1, 2 and 3) and the corresponding starting filtering parameters (i.e. Pth, RCco and CSco), 
the proposed method would have three parallel arms to take into account only the abundances within each 
sample (arm 1), both abundance and variability within each sample (arm 2) and both abundance and variabil-
ity within the whole study (arm 3) and obtain different possible filtered states of the initial dataset which was 
the original input data. An iteration of step 2 is performed with all other possible combinations of parameters, 
within the initial starting range; to obtain all the possible filtered datasets. Each iteration refers to an individual 
independent run, starting with the raw data each time, with a different parameter combination of Pth, RCco and 
CSco.

 The final step is to collect and compile all the information contained within the different filtered datasets ob-
tained after the iterations in step 2. This allows us to simultaneously account for abundance and variability 
within/across all samples. Upon completion of all individual runs, we identify the common members that 
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were removed using the three arms and across different ranges of Pth, RCco and CSco parameters. Consensus 
is primarily an outcome of three components. First based on whether you are using P6 or Pd parameters (cor-
responding to diverse community with members varying over six order of magnitude ranges or dominant 
members only community) for the ‘AVIT implementation, outcomes of selected Pth values are only taken into 
consideration. For example, for ‘AVIT implementation with P6 parameters, the outcomes corresponding to the 
first two Pth values of 0.0001 and 0.0002 are taken into account (along with combinations with other param-
eters RCco and CSco). Similarly for ‘AVIT implementation with Pd parameters, the outcomes for the first 100 
or more Pth values are taken into account. With all these different outcomes, i.e. with different combinations 
of Pth (based on the parameter choice as discussed above), RCco and CSco, we identify the lowest combination 
of Pth, RCco and CSco, such that their outputs (marked by members removed and retained) are similar within 
an accepted range (stopping criterion). This accepted range of variability is user defined. For example, in the 
current study, we used a value of 2. This indicates that when the outcomes for the three different arms for a 
particular combination of parameters (Pth, RCco and CSco) are different by less than equal to 2 members, then 
we stop and the members suggested to be removed commonly by all the three arms for this lowest combination 
of Pth, RCco and CSco are the ones we finally decide to treat as noise. An additional control over this accepted 
range of variability can de obtained by using a factor for the depth of sequencing. For example, if you have deep 
sequencing, you can relax the accepted range of variability by a factor.

Figure 1. Abundance and Variability In Taxonomy (‘AVIT) methodology. (A) In ‘AVIT we look into both 
the column (individual sample) and row (across samples) and using metrics like average abundance within a 
sample, maximum abundance within a sample and average abundance over the whole data-set, we take into 
account not just abundance but also variability into removal of noise (potentially erroneous species) from 16S 
taxonomic data. Individual characteristics of each arm can be seen in Supplementary materials S1-S2.  
(B) Different levels/modes of ‘AVIT used in the current study; normal, strong and extra-strong and its 
corresponding parameters. Primarily, the three levels used for demonstration in the current study differed in  
the ranges of parameters for the raw count cut-off (RCco). (C) Current study plan. We used a combination of  
in-vitro (20 strains mock community) and in-vivo (monoinoculated GF mice and Altered Schaedlers Flora 
mice) to develop, identify parameters and validate ‘AVIT methodology in house. Subsequently, we applied 
‘AVIT to clinical samples from Lauber et al.16 study (including lean healthy, obese diabetic and obese non-
diabetic patients) to assess the applicability of the methodology and highlight the implications of our findings.
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 For example, in the current study, we employed three different stringency levels of noise reduction using ‘AVIT 
for demonstration purposes, namely normal, strong and extra-strong (Fig. 1B).

•	 Normal noise reduction was characterized by consensus filtering of members based on parameter choices 
of Pth =  0.0001, 0.0002…  0.01, RCco =  1, 2…  4 and CSco =  1.

•	 Similarly, strong noise reduction was characterized by consensus filtering of members based on parameter 
choices of Pth =  0.0001, 0.0002…  0.01, RCco =  5, 6…  8 and CSco =  1.

•	 And finally, extra-strong noise reduction was characterized by consensus filtering of members based on 
parameter choices of Pth =  0.0001, 0.0002…  0.01, RCco =  9, 10 and CSco =  1.

Therefore, by employing different ranges of parameter values for Pth, RCco and CSco and thereby accounting 
for sample specific and study specific abundances and variabilities, the method was able to obtain different yet 
reliable filtering of erroneous members.

In-vitro mock community composition and 16S rRNA gene analysis. Genomic DNA from 20 
individual bacterial species (Fig. 2A, Supplementary Table S1) was obtained from DSMZ to compose a mock 
community. V4 variable region of 16S rRNA genes were amplified using a unique barcoded primer with the PCR 
conditions described in Caporaso et al.17. Amplicons were then quantified using PicoGreen and combined in 
equal molar amounts to form a single pool for paired-end sequencing on the MiSeq platform (Illumina Inc, San 
Diego CA, USA), using version 2.0 chemistry.

The mock community was used in two parts; a) First, we took a mixture of 40 in-vitro samples, including 
20 single strain samples, 6 equimolar pool samples and 14 staggered pools with 6 orders of magnitude different 
concentrations of the members (details in Supplementary data Stagger_Proportions_For_InVitro_Pools.xls), b) 
Second, we created four in-vitro sets for analysis; Equimolar set (EMS), Pool 1 set (P1S), Pool 2 set (P2S) and 
Single Strain set (SSS). In case of EMS, 20 strains were mixed in equimolar ratios (10 ng/μ L in total) and 15 rep-
licates were sequenced across three MiSeq sequencing machines. In P1S and P2S, we varied the abundance of 20 
species (in different orders) over six orders of magnitude (5 ng/μ L to 0.00005 ng/μ L) as illustrated in Fig. 2B and 
ran 17 replicates across three MiSeq machines.

The demultiplexed, fastq formatted sequences resulting from MiSeq runs were analysed using MOTHUR 
version 1.29.1 following the MiSeq SOP (dated 14th Nov 2014)18. The paired end reads were combined to form 
a contig for each amplicon, which were then trimmed to homogenous length. Sequences with homopolymers 
and low quality scores were also removed from the data. This was then used to perform an alignment using the 
SILVA release 119, trimmed to the V4 region. The alignment was then trimmed followed by chimera removal 
using UCHIME19, the sequences were then classified using Mothur against GreenGenes (GG) (release 13_5)20, 
RDP (release 9) and SILVA database (release 119) using the wang method for classification with 1000 iterations 
(http://www.mothur.org/wiki/MiSeq_SOP). The resultant tables were then used as input for further analysis in 
the ‘AVIT strategy.

In-vivo experiments. Procedures were approved by “Office Vétérinaire Cantonal du canton de Vaud” 
Lausanne, Switzerland (Authorization number 2718). All procedures were carried out in accordance with the 
approved guidelines. All germfree male C57BL/6J mice were purchased at 8 weeks of age from Charles River 
Laboratories (L’Arbresle, France). Upon arrival, mice were housed individually under a 12 h light/dark cycle for 
1 week. All mice (n =  15) were given autoclaved water and γ -irradiated (40 kGy) chow diet (R03-40, Safe diets, 
Augy, France). Fecal samples from all mice (n =  15) were obtained 1 day before the intervention (day -1). On day 
0, 7 mice were randomly selected and treated with 108 CFU/mL E. coli in drinking water for 14 days and their 
fecal samples were collected at 1 day after and 14 days after the treatment. The remaining 8 mice were kept in a 
germfree condition and their fecal samples were collected at day 14. Altered Schaedler Flora (ASF) mice fecal 
samples were provided by Nicola Harris and Kathy McCoy.

Clinical Study. Details about the study population, study design, intervention, fecal sample collection, 
DNA extraction, PCR, sequencing and analysis are provided in Lauber et al.16 (also provided in Supplementary 
materials).

Accession Numbers. The data reported in the paper will be provided on SRA database (SRP079895). This 
data includes the raw sequences for both the in-vitro and in-vivo studies. The raw data for the clinical fecal sam-
ples is associated with the manuscript by Lauber et al.16.

Supplemental Information. Supplemental information includes supplementary text explaining the inner 
workings, different implementation states and parameterizations of ‘AVIT. Additionally it also includes addi-
tional results on the different studies using different parameter sets. Overall, it includes supplemental text, eight 
supplemental figures, one supplemental table, twelve excel sheets with data and one zip file with the code (in 
MATLAB) and demonstration of ‘AVIT.

Results
In this study we introduce ‘AVIT - an approach considering both abundance and variability within and across 
samples to define members of a microbial community (Fig. 1). Using three key parameters: i) proportionality 
threshold (Pth), ii) raw count cut-off (RCco), and iii) cross-sample cut-off (CSco), split over three parallel arms, 
we take into account the abundances within each sample (arm 1), both abundance and variability within each 
sample (arm 2) and both abundance and variability within the whole study (arm 3) (materials and methods). 

http://www.mothur.org/wiki/MiSeq_SOP
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Additionally, ‘AVIT can be implemented in different stringency levels (normal/strong/extra-strong) using dif-
ferent RCco and for different communities using different combinations of Pth and RCco. We used a combination 
of in-vitro, in-vivo and clinical studies for development, parameterization and benchmarking of ‘AVIT. A priori 
knowledge of the sample composition facilitated identification of threshold values (parameters) to improve noise 
reduction. However, defining such parameters for clinical samples of unknown composition is more challenging. 

Figure 2. Application of ‘AVIT at different levels normal, strong and extra strong, on separate in-vitro 
Equimolar, Single Strain and staggered pool samples of 20 strain mock community. (A) Strains used 
in the study and corresponding matches at the genus level after using the 16S pipeline. (B) Composition 
of the staggered pools with the corresponding species and their concentrations. (C) Number of species 
retained in different samples upon using abundance only noise reduction and using ‘AVIT at different 
stringency levels. (D) Species correctly/incorrectly retained or removed in 0.005 relative abundance based 
cutoff and different levels of ‘AVIT application to single strain, equimolar and staggered pool samples.
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Therefore, using the benchmarked parameters coupled with different stringency levels, we explored the spectrum 
of potential membership of microbes in clinical samples.

In-vitro mock community and ‘AVIT. Many factors (sample composition, type, source, and sample inde-
pendent factors like DNA extraction, PCR, reagents, laboratory error and sequencing machines) contribute to 
the variability observed in any study21,22. Knowing this, we began with an in-vitro mock community of 20 defined 
bacterial taxa (Fig. 2A, methods) and applied ‘AVIT to filter noise and attempted to identify only known members 
of the mock community.

First, we took a mixture of 40 in-vitro samples including single strain, equimolar and staggered pools and 
analyzed them using a single MiSeq run (methods). We obtained 132–148 genus level taxa after classifying the 
sequences. Removing singletons (members identified in only one sample), reduced ∼ 7.2% noise in RDP, 2.34% 
in SILVA, and 1.90% in GG classified datasets (Supplementary materials S1-S2). Using a relative abundance based 
cutoff of 0.005 (Rabc0.005), we reduced 92.8% noise in RDP, 92.18% in SILVA, and 90.65% in GG classified data-
sets. In comparison, using ‘AVIT at different levels (normal, strong and extra-strong), we obtained ∼ 93% noise 
reduction in normal level, ∼ 95% in strong level and ∼ 97% in extra-strong level consistently across the RDP, 
SILVA and GG classified datasets. Effects of the individual arms of ‘AVIT (corresponding to the differential use 
of relative abundance and variability) and demonstration of the stringency levels (normal-strong-extra-strong) is 
provided in Supplementary materials S1-S2.

Next we analyzed differences emerging from sample independent sources, e.g. different machines. We ana-
lyzed four in-vitro sets; Equimolar set (EMS), Pool 1 set (P1S), Pool 2 set (P2S) and Single Strain set (SSS) (meth-
ods, Fig. 2B). These sets were selected as defined surrogates for mimicking biological samples. We obtained 118 
genera in EMS, 90 in P1S, 82 in P2S, and 195 in SSS (taxonomic assignments tabulated in Supplementary data). 
Removing singletons had a negligible effect as we still retained 111 members in EMS, 90 in P1S, 79 in P2S and 191 
in SSS (Fig. 2C). Using Rabc0.005, we retained 17 members in EMS, 6 in P1S, 4 in P2S and 45 in SSS. Using ‘AVIT, 
we retained 19/16/15 (normal/strong/extra-strong) members in EMS. Similarly, we retained 12/10/8 (normal/
strong/extra-strong) members in P1S, 10/10/6 (normal/strong/extra-strong) members in P2S and 24/22/22 (nor-
mal/strong/extra-strong) members in SSS (Fig. 2D).

In silico the 20 mock community members match to 18 distinct genera (Fig. 2A). For SSS, ‘AVIT performed 
better than the abundance based noise reduction, ∼ 78% noise reduction in normal level and ∼ 85% in strong and 
extra-strong levels were achieved as compared to Rabc0.005 (Fig. 2D panel 1). In all cases of SSS, we retained the 
original 20 members. Thus in samples with dominant members, ‘AVIT performed better when compared to a pri-
ori abundance based cut-offs. Conversely, in the case of EMS, using Rabc0.005, 17 out of 18 distinct genera were 
retained (Fig. 2D panel 2). In comparison, we retained 19 members using normal level of ‘AVIT. However, two 
members were erroneously retained. While we retained Propionibacterium, Bacillus cereus was removed. Strong 
and extra-strong level retained 16/18 and 15/18 distinct genera respectively without any additional inclusion of 
erroneous members. Using the EMS dataset and ‘AVIT, we are probing the limits of balancing the cost of noise 
removal at the risk of losing true members.

Using Rabc0.005 in P1S, we retained Bifidobacterium longum, Clostridium beijerinckii, Enterococcus faecalis, 
Lactobacillus gasseri, Lactobacillus reuteri, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus 
epidermidis (Fig. 2D panel 3). Of the three most abundant members in the P1S pool (5 ng/μ L), Rhodobacter 
sphaeroides was not retained. The three members at the 0.5 ng/μ L range were retained along with Bifidobacterium 
longum, which was at 0.00005 ng/μ L. While the inputs differed by 6 orders of magnitude, the output (measured 
abundance levels) correlated poorly with the initial concentration, illustrating biases introduced by laboratory 
based steps like DNA extraction, PCR, reagents, laboratory error and sequencing rather than in silico methods 
(Supplementary data). Using ‘AVIT, we retained additional true members like Bacteroides vulgatus, Dorea lon-
gicatena, Blautia wexlerae, and Akkermensia muciniphila, which were spread across different initial concentra-
tion ranges (Fig. 2B). However, we retained additional erroneous members, e.g. Saccharibacillus (normal level of 
‘AVIT) and Dermacoccus (normal and strong level of ‘AVIT). Despite this cost, resolution of the mock community 
by ‘AVIT (normal level) was 67% better as compared to the abundance only method. We defined the parameter 
sets used by ‘AVIT to obtain optimized retention of true members across staggered pools (six-orders of magni-
tude variable microbial community) as P6 parameters (Supplementary materials S3). Using Rabc0.005 in P2S, we 
retained only highly abundant members in the 5 ng/μ L and 0.5 ng/μ L pools, (Anaerostipes caccae, Enterococcus 
faecalis, Pseudomonas aeruginosa and Rhodobacter sphaeroides) (Fig. 2D panel 4). In comparison, using ‘AVIT, 
we also retained Escherichia coli and Akkermensia muciniphila at the cost of removing Rhodobacter sphaeroides. 
‘AVIT (normal level) was ∼ 50% better at retaining true members as compared to the abundance only method, 
however at the cost of inclusion of 5 erroneous members.

In summary, in all cases (SSS, EMS, P1S and P2S) mock community retention using ‘AVIT was equivalent or 
superior to the a priori cutoff. In some cases (P2S and EMS), the improved community membership came at the 
cost of noise. Additionally, our findings with mock communities demonstrated that abundance did not necessar-
ily translate to community inclusion.

‘AVIT and in-vivo studies on Germ-free mice, mice inoculated with E. coli and Altered Schaedlers 
Flora mice. Motivated by the outcomes of using ‘AVIT on in-vitro mock community studies, we investigated 
the efficacy of ‘AVIT on (a) Germ-free (GF) mice, (b) GF mice monoinoculated with an E. coli strain and (c) 
Altered Schaedlers Flora (ASF) mice (Fig. 1C). This study design allowed us to have known inputs to benchmark 
the outputs and performance of ‘AVIT and to identify parameters for ‘AVIT for analysis of communities with 
dominant members.

For the first part of the study, 7 GF mice were inoculated with E. coli (referred further as MI mice) on Day 0 
(Fig. 3A). Fecal samples were collected before inoculation (GF), and 1 and 14 days after inoculation. Additionally, 



www.nature.com/scientificreports/

7Scientific RepoRts | 6:31655 | DOI: 10.1038/srep31655

fecal samples from the remaining 8 GF mice were collected on Day − 1 and Day 14. Additionally, 5 in-vitro E. coli 
culture samples (referred further as EC samples) were used as controls. For all 42 samples, DNA extraction was 
performed and sequenced using one MiSeq machine. Average sequence depth along with 25 and 75 percentile 
around the mean for different groups are shown in Fig. 3B.

After classification of the sequences, we obtained 231 genus level taxa in GF samples (GFS), 82 in MI samples 
(MIS), and 54 in EC samples (ECS) (Supplementary data). Considering all the samples together (whole study 
together: WST) we obtained 237 unique genus level taxa. Removing singletons we retained 237 members in 
WST, 230 in GFS, 82 in MIS and 52 in ECS, therefore having little to no effect of noise reduction (Fig. 3C). Using 
Rabc0.005, we retained 39 members in WST, 31 in GFS, 14 in MIS and 1 in ECS.

Figure 3. In-vivo application of ‘AVIT for a monoinoculation study and analysis of Altered Schaedlers 
Flora (ASF) Mice fecal samples. (A) 15 Germ-free (GF) mice were used for the monoinoculation study. 
7 GF mice were monoinoculated with E. coli (subsequently refered to as MI mice) and fecal samples were 
collected on Day 1 and Day 14 after monoinoculation. Additionally fecal samples were collected from all the 
15 GF mice before monoinoculation (at Day 0) and from 8 remaining GF mice on Day 14. Additionally, 5 
pure E. coli samples were used as controls. 13 fecal samples were collected from ASF bred mice. (B) Variation 
of sequence depths observed for different groups of samples. (C) Number of members retained after different 
forms of noise reduction for different samples. (D) Members correctly/incorrectly retained or removed in 0.005 
relative abundance based cutoff and different levels of ‘AVIT application to the GF +  MI, MI*  (including one 
erroneously sequenced sample) samples, MI (excluding the erroneously sequenced sample) samples, E. coli  
in-vitro samples and samples from ASF mice respectively.
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Output of ‘AVIT is dependent on the parameters used. Accordingly, parameters identified from the in-vitro 
experiments (P6) to optimize retention of true members in a six-orders of magnitude variable microbial commu-
nity are not applicable. So we identified Pd, i.e. parameters optimized for community dominated by few dominant 
members. P6 and Pd primarily differ based on the ranges of Pth (proportionality thresholds) and RCco (raw count 
cutoff), signifying how deep a consensus for noise reduction we are exploring (Supplementary materials S3).  
Applying Pd to ‘AVIT, we retained 16/15/15 (normal/strong/extra-strong) members in WST. Similarly, we 
retained 21/19/16 (normal/strong/extra-strong) members in GFS, 4/4/2 (normal/strong/extra-strong) members 
in MIS and 1/1/1 (normal/strong/extra-strong) member in ECS (Fig. 3D). Comparisons of the correctly/incor-
rectly retained/rejected members using P6 parameters are provided in Supplementary materials. Knowing how 
the starting 1 member (i.e. E. coli) should match up to 1 distinct taxa (Fig. 3D), we compared how ‘AVIT per-
formed in each of the cases.

For ECS, irrespective of the method used, we filtered out noise and uniquely identified E. coli (Fig. 3D panel 1).  
In these samples 99.84–99.92% of sequences belonged to E. coli and average sequence depth was 734,280. Overall 
we had less noise and we could easily identify the main member. For MIS, taking all the 14 samples, 12.6-99.90% 
of the sequences belonged to E. coli with an average sequence depth of 126,050. While using Rabc0.005 we 
retained 13 erroneous members, we retained 3 in normal and strong level and 1 in extra-strong level of ‘AVIT 
(Fig. 3D panel 2). Using ‘AVIT, we removed most of the potentially erroneous members. Analyzing the sequenced 
results we identified one sample as erroneous (Supplementary materials S4). After removal of this sample, irre-
spective of the method used, we filtered out all the noise and uniquely retained E. coli (Fig. 3D panel 3).

For GFS, we obtained an average sequence depth of 47,640 in 23 samples, with mean relative abundance of 
a member as 0.0043. While we expected no members, we retained 31 members using Rabc0.005 and 21/19/16 
(normal/strong/extra-strong) members using ‘AVIT. Firstly, ‘AVIT clearly lead to retaining lower number of 
potentially erroneous members. However, in all cases it was not zero (Supplementary Figure 8). In the absence of 
any evidence of contamination of the gnotobiotic isolator, and the low sequencing depth obtained from the GF 
samples, these sequences are likely amplified from the environment, reagents and/or derived from machinery.

Analyzing WST, where different subsets bring in different levels of noise, we retained 39 members using 
Rabc0.005 instead of retaining only E. coli (Fig. 3D panel 4). The erroneous members retained reduced by > 50% 
after using ‘AVIT. Pooling all the samples together, study specific abundance and variance changed, so did the 
outcome of ‘AVIT. This highlights the importance of pooling samples for analysis, consistent with our earlier 
observations in the mock community.

In the second part of the in-vivo studies, we collected fecal samples from Altered Schaedlers Flora (ASF) mice. 
Firstly, we took the raw sequences of the ASF flora23 and trimmed to the V4 region and matched the in-silico 
sequences to the RDP database. Accordingly, we obtained 7 distinct genera, Parabacteroides, Mucispirillum, 
Lactobacillus, Clostridium XIVb, Dorea, Roseburia and Pseudoflavonifractor, which represented the 10 members 
of ASF. Interestingly, after processing of the 13 fecal samples from the ASF mice, using same process as described 
earlier, we obtained 99 genus level taxa. Average sequence depth was 449,765 (Fig. 3B). Removal of singletons had 
no effect on noise reduction (Fig. 3C). Using Rabc0.005 or using ‘AVIT at any stringency level using Pd parameters 
we retained only Parabacteroides and Lactobacillus (Fig. 3D panel 5). Members retained/rejected using the P6 
parameter sets are provided in Supplementary data.

Overall, using the in-vitro and in-vivo studies; a) we identified parameter sets P6 and Pd for ‘AVIT, enabling us 
to infer true members in highly or poorly diverse microbial communities, respectively, b) ‘AVIT performed equal 
if not better than Rabc0.005 in terms of retaining less erroneous members, more so with erroneous samples, and c)  
pooling of samples into proper bins facilitated identification of true/erroneous members.

‘AVIT and categorization of human gut microbiome. Having benchmarked and parameterized ‘AVIT 
in both in-vitro and in-vivo studies, we used ‘AVIT to analyze sequencing data from clinical samples16. For all the 
159 fecal samples, DNA extraction was performed and subsequently sequenced using one MiSeq machine (details 
in Lauber et al.16), and we obtained 84 genus level taxa (Fig. 4).

Removal of singletons had no effect on potential noise reduction (Fig. 4B). Using Rabc0.005, we retained 
63 members (Fig. 4A). Subsequently we applied ‘AVIT at different stringency levels (normal, strong and 
extra-strong) using both P6 and Pd parameters to investigate a spread of potential noise reduction and accordingly 
a wide spectrum of potential membership of the microbial community.

Applying ‘AVIT using P6 parameters, we retained 53/53/52 (normal/strong/extra-strong) members. In com-
parison, using Pd parameters, we retained 24/18/17 (normal/strong/extra-strong) members (Fig. 4, tabulated 
in Supplementary materials). Based on the retention/rejection of members across different ‘AVIT implementa-
tions (combinations of different parameter sets and stringency levels), we categorized the microbial members 
into five bins (Fig. 4A). Consistent/sporadic retention/rejection of a member across different implementations 
could be a measure of consistency/resolution. High resolution bin (Fig. 4A) members were consistently retained 
across all implementations of ‘AVIT and also retained using Rabc0.005. Medium-high resolution bin members 
were consistently retained across all implementations of ‘AVIT using P6 parameter sets and retained for normal/
strong level of ‘AVIT using Pd parameter sets and retained using Rabc0.005. Medium resolution bin members 
were consistently retained using Rabc0.005 and P6 but not Pd parameter sets across all implementations of ‘AVIT. 
Medium-low resolution bin members were retained across some/all implementations of ‘AVIT using P6 param-
eter sets but rejected using Pd parameter sets and Rabc0.005. Finally, low resolution bin members were consist-
ently rejected across all implementations of ‘AVIT using P6 and Pd parameter sets but retained using Rabc0.005. 
Projection of members in the average abundance versus variance across all samples is depicted in Fig. 4C. High 
resolution members are highly abundant and variable and consistently seen across all gut samples. Akkermansia, 
Ruminococcus, Parabacteroides and Bacteroides are some of the most commonly seen and implicated members 
of the gut community and are retained irrespective of the denoising method. On the contrary, low resolution 
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members (e.g. Veillonella, Pseudomonas, Mogibacterium) with low abundance and low variance have relative 
abundance greater than 0.005 in a few samples but not seen consistently across samples. So while abundance 

Figure 4. Application of ‘AVIT for fecal samples from Lauber et al.16 including samples from lean healthy, 
obese diabetic and obese non-diabetic individuals before and after fiber supplementation. As compared 
to abundance only method of noise reduction, using ‘AVIT we firstly retain a different set of members. 
Additionally, based on parameter choices and stringency levels in ‘AVIT, we retain different sub-groups 
of members. Based on the presence/absence of members across different methodologies, we categorized 
the members in terms of high to low resolution. Blue: high resolution – Category 1, Purple: medium-high 
resolution – Category 2, Orange: medium resolution – Category 3, Green: medium-low resolution – Category 4 
and Brown: low resolution – Category 5. This categorization of members allowed us to implicitly consider this 
scoring downstream for analysis and for rank ordering hypothesis generation.
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based denoising would retain these members, ‘AVIT, giving importance to variability rejects them. Medium-low 
resolution members were below the 0.005 relative abundance threshold but were variable enough to appear con-
sistently across many samples. These members, including Rhodobacter, using abundance based cutoff would be 
rejected, but retained using ‘AVIT. Interestingly, in the mock community studies Rhodobacter was identified as a 
difficult to detect genus (Fig. 2) but was retained according to the Medium-low resolution definition in the fecal 
samples. Thus taking into consideration how much and how often taxa appear we can assign a consistency and/or 
a resolution score for members to provide a ranking/weightage to aid in further downstream analysis using ‘AVIT.

Discussion
We present ‘AVIT, an alternative approach to analyze metagenomic sequencing reads and provide insights into 
the application of 16S rRNA sequencing to elucidate microbial community composition. Our use of a defined 
mock community permits the calibration of parameters optimized to ensure best representation of communities 
under investigation. This is now standard practice within our laboratory and provides a reference permitting 
cross-comparison of different studies and samples run across different machines and different times.

In contrast to currently used abundance only methods for filtering, we present arguments about the potential 
issues, limitations and how they can be overcome by ‘AVIT. One of the key outcomes of ‘AVIT is to attain balance 
of quality and quantity for increased confidence in downstream processing. While using Pd parameters we focus 
on true dominant members, using P6 parameters, we explore potentially diverse microbial membership. ‘AVIT 
is not a one-stop solution to completely de-noise a dataset. However, we demonstrated how coupling in-vitro 
mock communities and in-vivo defined studies we can use ‘AVIT (with benchmarked parameters and different 
stringency levels) to explore a wide spectrum of potential membership of the microbial community in any clin-
ical sample. Taking into account abundance, variability across samples and raw counts we ascertain a resolution 
measure, which can be subsequently used for further downstream analysis.

Our work also explores the limits of 16S rRNA sequencing to define the membership of a commu-
nity. Detection and inclusion of different taxa were not rigorously consistent with abundance. One example, 
Rhodobacter was excluded using ‘AVIT despite being among the most abundant species in the mock community 
(Fig. 2). This would suggest that there are challenges to detect this particular taxa using 16S rRNA-based methods. 
However, in the fecal sample analysis, Rhodobacter could be detected as a Medium-Low Resolution species only 
using the ‘AVIT protocol (Fig. 4). This may reflect mis-classification of taxonomy, different Rhodobacter species 
being present in the fecal sample versus the mock community, differences in the environment of the Rhodobacter 
impacting on the DNA extraction, or other issues. These observations could also be interpreted as demonstrating 
an underappreciated representation of Rhodobacter within the gut microbiome. With efforts to move towards 
determining the functional potential of the microbiome from merely characterizing its members, ‘AVIT may have 
a role to play in identifying ‘low-abundant’ taxa that play significant metabolic roles.

Our work also explores the limits of the utility of 16S rRNA sequencing to characterize microbial commu-
nities. The data summarized in Fig. 2 demonstrates a limited scope to reproduce known bacteria from mock 
communities of known composition. As demonstrated, ‘AVIT significantly improves the reconstruction vs ad hoc 
methods, however, as the goals of studies move towards functional characterization, whole genome metagenom-
ics might be beneficial. While currently demonstrated for 16S, ‘AVIT framework is also applicable for similarly 
error-prone, noisy, community level ‘omic’ strategies.
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