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Identifying the Stern-Gerlach force 
of classical electron dynamics
Meng Wen, Heiko Bauke & Christoph H. Keitel

Different classical theories are commonly applied in various branches of physics to describe the 
relativistic dynamics of electrons by coupled equations for the orbital motion and spin precession. 
Exemplarily, we benchmark the Frenkel model and the classical Foldy-Wouthuysen model with spin-
dependent forces (Stern-Gerlach forces) to the quantum dynamics as predicted by the Dirac equation. 
Both classical theories can lead to different or even contradicting predictions how the Stern-Gerlach 
forces modify the electron’s orbital motion, when the electron moves in strong electromagnetic field 
configurations of emerging high-intensity laser facilities. In this way, one may evaluate the validity and 
identify the limits of these classical theories via a comparison with possible experiments to provide a 
proper description of spin-induced dynamics. Our results indicate that the Foldy-Wouthuysen model is 
qualitatively in better agreement with the Dirac theory than the widely used Frenkel model.

The electron couples to external electromagnetic fields via its charge as well as via its spin. Gradients of the elec-
tromagnetic fields induce a spin-dependent force in addition to the Lorentz force. Spin-dependent motion is 
implemented in the seminal Stern-Gerlach experiment1 and variants thereof2,3. Effects of spin-dependent forces 
appear in condensed matter4, in astrophysical systems5, in quantum plasmas6,7, and at relativistic electrons in 
strong electromagnetic fields8–13. A consistent theoretical framework for the description of particles with internal 
angular momentum is provided by the Dirac equation14. The application of this quantum-mechanical theory, 
however, is not always feasible and/or necessary if quantum effects are not important. Classical models of charged 
point-like particles with spin in electromagnetic fields are appealing because they are usually simpler from a 
mathematical point of view than the Dirac equation and are easier to interpret. A first covariant theory to describe 
the dynamics of a charged particle with spin was proposed by Frenkel in 1926 by purely classical considerations15. 
The Frenkel model has been employed in many studies and continues stimulating new research16–21. Considering 
that the spin was introduced as an intrinsic quantum feature of the electron22 it may, however, appear appropriate 
to start from quantum theory to find a classical model for the electron. Such a model can be derived from relativ-
istic quantum theory by applying the correspondence principle to the Heisenberg equation for the time evolution 
of the position, the kinematic momentum, and the spin in the Foldy-Wouthuysen representations of the Dirac 
equation23,24. Both kinds of classical models are currently employed in different branches of physics, e. g., the 
classical Foldy-Wouthuysen model in gravitational fields25 or in crystals26, and the Frenkel model in astrophysics5 
or in plasma fields27. Nevertheless, the validity and the limits of those classical models have not been studied, e. g., 
by a comparison to the Dirac theory. The lack of a widely accepted classical description of the electron is deeply 
related to interpretation problems regarding kinematic momentum operators in the Dirac theory28 and identify-
ing an accurate classical model may also facilitate insights into quantum theory and will be valuable for systems 
where quantum descriptions are too complex such as for many-particle systems in extreme laser pulses.

Results
The dynamics of a classical particle with rest mass m, charge q, and internal spin degree of freedom are governed 
by the modified Lorentz equation
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Here, τ denotes the proper time of the particle with dτ =  dt/γ, uα =  drα/dτ =  (γc, − p/m)Τ the four-velocity, 
rα =  (ct, − r)Τ the time-space coordinate, γ = + p mc1 /( )2 2  the relativistic Lorentz factor, c the speed of light, 
Fαβ the electrodynamic field tensor, p the kinematic momentum, M the effective mass, Sα =  (S0, S)Τ the spin’s 
four-vector in the laboratory frame with
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The classical spin vector in the rest frame s of length ħ/2 is proportional to the particle’s polarisation and corre-
sponds to the spin operator in quantum mechanics. The spin-dependent forces may be written for the classical 
Foldy-Wouthuysen model (FW) and the Frenkel model (F) as15,23
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with the scalars UFW and UF defined as
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The effective masses in these two models are MFW =  m and MF =  m −  qγUF/(mc2), respectively. The forces (4) and 
(5) become equal in the limit of low electron energies. The classical Foldy-Wouthuysen and the Frenkel models 
differ mainly in the large-kinematic-momentum limit.

The spin-dependent forces (4) and (5) are gradient forces, which become large in systems of ultra strong 
laser fields in the short-wavelength limit. In the following, we consider the interaction of relativistic electrons 
with strong electromagnetic fields in the X-ray regime. The electron moves initially in x direction opposite to 
the plane-wave laser pulse, which is assumed to have linear polarisation in y direction and to be modulated by a 
sin2-shaped envelope. At time zero, the front of the laser pulse reaches the origin of the coordinate system, where 
the electron is initially located. The electron’s initial spin orientation is parallel or anti-parallel to the direction of 
the magnetic field (z direction), representing spin up (indicated by ↑ ) or down (indicated by ↓ ) states. Note that as 
a consequence of equation (2) the spin remains in its initial state for all times for the considered setup.

Due to the spin-dependent forces, the electron’s trajectory depends on the spin orientation. Although the 
influence of the spin on the shape of the trajectory is very small, the spin-dependent force may be used to com-
pare the three models. In the classical models the total force can be split directly into a Lorentz force part and a 
spin force part (see equation (1)), which is not possible in the framework of the Dirac equation. Therefore, the 
magnitude of the spin-dependent force is evaluated by calculating the difference of the total forces F↑ and F↓ for 
the trajectories of electrons with initial spin parallel and anti-parallel to the z direction. Figure 1 shows the x com-
ponent of F↑ −  F↓ as a function of time t as determined from the Dirac equation, the classical Foldy-Wouthuysen 
model, and the Frenkel model. For zero initial momentum, the three models yield very similar results, as shown 
in Fig. 1(a). In particular, the predictions of the Dirac equation and the classical Foldy-Wouthuysen model for the 
force difference F↑,x −  F↓,x match very well and the prediction of the Frenkel model shows only small deviations 
from the other two models. The qualitative predictions of the various models diverge with growing initial electron 
momentum, see Fig. 1(b–d). The Frenkel model predicts that the force difference becomes larger for relativistic 
electrons, while the Dirac equation and the classical Foldy-Wouthuysen model yield smaller force differences. 
The qualitatively different behaviour of the Frenkel model and the classical Foldy-Wouthuysen model is a conse-
quence of a different dependence on γ of the spin-dependent forces (4) and (5).

For symmetry reasons the net effect of the plane-wave pulse on the electron momentum vanishes in the 
Frenkel model as well as the classical Foldy-Wouthuysen model, although both models predict different forces 
acting on the electron during its interaction with the laser pulse. Therefore, a plane-wave setup is not suita-
ble to test the classical models experimentally. However, considering focused infrared laser pulses of upcoming 
high-power laser facilities the discrepancy in the predicted electron dynamics by the classical Foldy-Wouthuysen 
and the Frenkel models becomes large enough to distinguish between them experimentally.

An electron, which is initially directed towards the focus of a counter-propagating high-intensity laser pulse 
with linear polarisation, is displaced transversely due to the transverse electric field. When the oscillating field 
changes its sign, the force drives the electron back to its initial transverse position. However, this force is smaller 
than the expelling force due to the focusing inhomogeneity. As a result, the oscillation centre of a spinless charged 
particle drifts radially from the spot centre, which is called ponderomotive scattering31. Beside the deflection of a 
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charged particle in the ponderomotive potential of the laser fields, the spin may induce a further deflection via the 
spin-dependent forces (4) and (5), in particular, if the electron is polarised parallel or anti-parallel to the direction 
of the magnetic field. As the spin is (anti-)parallel to the magnetic field direction it follows from the equations (1) 
and (2) that the electron remains in the plane perpendicular to the magnetic field direction and the electron’s spin 
is frozen to its initial state. The deflection of a particle in the ponderomotive potential of the focused laser pulse 
is defined by the angle θ between its initial momentum and its final momentum after the particle is separated 
from the laser fields. It is dominated by the ponderomotive scattering due to the dominant Lorentz force, which 
increases with increasing field strength.

Besides the deflection due to the charge, the electron’s spin state leads to a modification of the deflection angle 
θ, which depends on the spin orientation. In this way, one can define the aberration angle Δ θ =  θ↑ −  θ↓, where θ↑ 
and θ↓ denote the deflection angles for the spin-up and spin-down cases, see also Methods section. The Frenkel 
and the classical Foldy-Wouthuysen models lead to different aberrations Δ θ, as shown in Fig. 2 for varying elec-
tron energies. As indicated in the inset, the two models share the same non-relativistic limit. In the relativistic 
regime, the angle Δ θ as predicted by the classical Foldy-Wouthuysen model does not vary with the electron’s 
initial energy monotonically and it may even change its sign. Furthermore, the absolute value of the spin-induced 
additional deflection angle Δ θFW from the classical Foldy-Wouthuysen model remains under the magnitude of 
10−6 rad and decreases with the electron’s initial energy in the relativistic parameter regime. In contrast to the 
classical Foldy-Wouthuysen model, the aberration angle of the Frenkel model Δ θF increases to about 0.05 rad 
with the electron’s energy for relativistic electrons in high-intensity laser fields of the applied parameters.

Discussion
We have investigated the dynamics of electrons in various setups by applying two different classical models, the 
classical Foldy-Wouthuysen and the Frenkel models. The predictions of these classical models were compared 
to each other and to predictions by the Dirac equation, when a numerical solution of the Dirac equation was 
feasible. In specific parameter regimes, these classical models can lead to conflicting predictions. The Frenkel 
model may be of timely interest5,27,32 and prominent33,34 for its much longer history and its wide application35,36. 

Figure 1. Difference between the force components in laser propagation direction for electrons in a strong 
plane-wave laser pulse with initial spin orientation parallel or anti-parallel to the magnetic field direction 
as predicted by the various considered models. The four sub-figures correspond to different initial electron 
momenta opposite to the propagation direction of the laser pulse. (a) p =  (0, 0, 0)Τ; (b) p =  (− mc, 0, 0)Τ;  
(c,d) p =  (− 2mc, 0, 0)Τ. Sub-figures (c,d) show the same data but on different scales. Laser parameters are peak 
electric field strength = . ×Ê 2 57 10 V/m15 , wavelengths λ =  1.06 nm, the pulse length equals n =  6 cycles. In 
case of the Dirac equation the wavepacket had an initial width of 0.026 nm.
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The classical Foldy-Wouthuysen model, however, may be superior as it is qualitatively in better agreement with 
the quantum mechanical Dirac equation.

The discrepancies in the predictions of the two classical models may become experimentally detectable 
in light-matter interaction in strong highly focused beams. As electron bunches with the emittance as low as 
10−3 rad have been prepared37, the spin-induced aberration angle of the order of 10−2 rad from the Frenkel model 
is potentially measurable, if an electron beam with an energy of tens of MeV and an infrared laser of the intensity 
~1022 W/cm2 are applied as discussed above. The spin-induced contribution to the deflection as predicted by the 
classical Foldy-Wouthuysen model, which is for the applied parameters of the order of 10−6 rad, is too small to be 
demonstrated. However, a differentiation among both predictions appears feasible. In current head-on experi-
ments38,39 with focused fields of high inhomogeneities and energetic electrons no significant spin effect in orbital 
motion was observed. The lack of experimental evidence for a non-negligible spin-induced deflection may be 
seen as a superiority of the classical Foldy-Wouthuysen model again regarding spin modified dynamics.

Methods
For the plane-wave setup, the laser pulse is assumed to have linear polarisation in the y direction and is modulated 
by a sin2-shaped envelope

η θ η θ η π η= − +w ( ) ( ) ( ) sin , (8)2

where θ (η) denotes the Heaviside step function. Introducing the wavelength λ, the peak amplitude Ê, and the 
pulse width n measured in laser cycles, the electric field component of the laser pulse is given by

π
λ

π
λ

=





− 







− 



ˆE r et E x ct w x ct
n

( , ) sin 2 ( ) ( )
(9)y

and the magnetic field component follows via B(r, t) =  ex ×  E(r, t)/c. At time zero, the front of the laser pulse 
reaches the origin of the coordinate system, where the electron is initially located. The electron’s initial spin ori-
entation is parallel or anti-parallel to the direction of the magnetic field (z direction). We solved the equations of 
motion of the classical Foldy-Wouthuysen model and the Frenkel model for the plane-wave setup numerically via 
the Boris algorithm40. The time-dependent Dirac equation for a two-dimensional wavepacket in the same setup 
was propagated numerically employing a Fourier split operator method41–44. In order not to violate the 
quantum-classical correspondence between classical operators and quantum mechanical operators, the Dirac 
wavepacket was prepared to have a small width compared to the wavelength of the applied electromagnetic field45. 
The force, which acts on the electron during its interaction with the plane-wave electromagnetic field and which 
enters in Fig. 1, is given by equations (4) and (5). In the case of the Dirac equation, the force was determined as 
the time derivative of the quantum mechanical expectation value of the electron’s kinematic momentum 

∇Ψ |− − |Ψr A r rt q t t( , ) i ( , ) ( , ) , where Ψ (r, t) is the electron’s four-component wave function and A(r, t) 
denotes the vector potential of the electromagnetic fields.

For the setup with a focused infrared laser pulse, numerical solutions of the Dirac equation are not feasible due 
to the long time scale of infrared laser pulses. A longer pulse length in combination with wavepacket spreading 
leads to a λ3- or λ4-scaling of the computational demand to solve the Dirac equation in two or respectively three 
dimensions. Thus numerical simulations were limited to the two classical models.

The polarisation and the longitudinal (in propagation direction) profile of the focused laser pulse are as in the 
plane-wave case. The transverse profile and the phase are modelled as a Gaussian beam with the transversal focus 
radius w0, e.g. with terms up to the 5th order of the small diffraction angle ϵ =  w0/xr as in ref. 46, where 

Figure 2. The aberration angle Δθ between spin-up and spin-down electrons induced by the 
ponderomotive potential as a function of the initial energy γmc2 of the particle for the classical Foldy-
Wouthuysen (solid black line, left scale) and Frenkel (dashed light red line, right scale) models. The inset 
shows the non-relativistic limit. The electric field strength of the counter-propagating laser pulse scales with 
initial γ as π γ λ= − | |Ê mc q4 1/( )2 2 , which causes a strong acceleration of the electron opposite to its initial 
velocity but without reflecting it. Other parameters are the wavelength λ =  800 nm, the duration (number of 
cycles) n =  20, and focus radius w0 =  2λ.
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π λ=x w /r 0
2  is the Rayleigh length. The phase of the focused pulse depends not only on the longitudinal coordi-

nate but also on the transverse coordinate. The deflection of an electron in a head-on collision with a focused laser 
pulse is defined by the angle between the final transverse and the longitudinal momentum components after the 
particle is separated from the laser fields. Due to spin-dependent forces the deflection depends on the electron’s 
initial spin orientation (relative to the magnetic field direction). In this way, the aberration angle Δ θ is defined as 
the angle between the final momenta for electrons with initial spin-up and spin-down orientation, see Fig. 3.

The considered setup with the employed parameters is also sensitive to radiative reaction forces. Our cal-
culations involving both spin and radiative reaction forces (via the Landau-Lifshitz equation47) have, however, 
confirmed that the key deviations displayed in Fig. 2 are not essentially modified such as especially the strong 
rise of the aberration angle Δ θ for the Frenkel model as compared to the Foldy-Wouthuysen model in the highly 
relativistic regime. Because of this and since the Landau-Lifshitz equation has not been confirmed experimentally 
as well, we decided here to present comparisons not including the radiative reaction forces.
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