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Localization of Waves in Merged 
Lattices
G. Alagappan & C. E. Png

This article describes a new two–dimensional physical topology–merged lattice, that allows dense 
number of wave localization states. Merged lattices are obtained as a result of merging two lattices of 
scatters of the same space group, but with slightly different spatial resonances. Such merging creates 
two–dimensional scattering “beats” which are perfectly periodic on the longer spatial scale. On the 
shorter spatial scale, the systematic breakage of the translational symmetry leads to strong wave 
scattering, and this causes the occurrences of wave localization states. Merged Lattices promises 
variety of localization states including tightly confined, and ring type annular modes. The longer scale 
perfect periodicity of the merged lattice, enables complete prediction and full control over the density 
of the localization states and its’ quality factors. In addition, the longer scale periodicity, also allows 
design of integrated slow wave components. Merged lattices, thus, can be engineered easily to create 
technologically beneficial applications.

Localization is a key concept in wave physics that enables control and manipulation of wave propagations. A 
periodic lattice of scatters with a complete bandgap for wave propagations in general is able to localize wave cor-
responding to bandgap frequencies if a systematic single or an extended disorder (defects) is introduced in the 
lattice1–6. There are also some special periodic geometries such as Lieb7–12 and Kagome13–17 lattices, which permit 
wave localizations without the presence of any defects. The unit cells of such lattices naturally allow destruc-
tive waves interference, enabling localization. Apart from the periodic topologies, quasi–periodic structures18–22 
and random structures23–33 have been intensively studied for wave localizations. Random dielectric structures 
exhibiting strong wave diffusion is able to localize wave if the mean free path of the diffusion is equal or smaller 
than λ/2π, where λ is the wavelength. Such transformation from a diffusion state to a localized state is the direct 
consequence of the wave interference, and it is well known in the name of Anderson localization. Though, Philips 
Anderson first predicted such localization for electronic wavefunctions23, now Anderson localization is an ubiq-
uitous phenomenon in wave physics, and it has been demonstrated for various wave topologies such as light in 
semiconductor dielectric powders25, light in photonic crystals with random disorders24,26, light in complex optical 
communication cluster27, light in disorder fiber beams28, microwaves in random copper tubes filled with metallic 
and dielectric spheres29, Bose Einstein condensates in random optical lattices30, acoustic waves in glasses31, acous-
tic waves in percolation systems32 water waves in random underwater structures33, etc.

Apparently, new topologies lead to new physics, and paves the way for a new technological exploration. In this 
article, using light wave as an illustration, we introduce a new paradigm of wave localization topology that pos-
sesses double spatial resonances. Doubly resonant systems such as mediums with electromagnetic induced trans-
parencies34–36, and their optical37–40, and plasmonic41,42 analogues are typically made of two physical sub-systems 
(usually resonators or atomic states) of slightly different resonant frequencies. These systems are known for their 
coherent interference effects, especially they can induce transmission in the originally opaque or reflective state. 
We borrow this idea to create majestic, large number of light localization states in two dimensional (2D) periodic 
lattices that has slightly different Bragg resonances.

Two lattices of slightly different periodicities but with the same space group can be merged together to pro-
duce a new lattice of the same space group but periodic on the longer spatial scale. For an example, consider two 
square lattices of periods a and ra (r >  1, and is a rational number close to 1). These two square lattices can be 
merged together to generate a merged lattice (ML) that is also a square lattice, but periodic on the longer spatial 
scale with a period Ra. Here, R is the least integer multiple of r. The square lattice dielectric functions with periods 
a and ra, have fundamental spatial resonances when the absolute value of the reciprocal lattice vectors equal 2π/a 
and 2π/ra, respectively. The closer these spatial resonances are, the longer the resulting 2D spatial dielectric beat. 
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The symmetrically allowed closest proximity between the spatial resonances is 2π/Ra [i.e., absolute value of one 
reciprocal lattice vector of the ML]. This requirement constraints r as r =  R/(R− 1) {or equivalently R =  r/(r− 1)}.

Figure 1(a) to 1(h) illustrates the basic principles of creating MLs. Figure 1(c,g) show the primitive unit cells 
(i.e., the 2D dielectric beats) of MLs with R =  3 and 5, respectively. These primitive unit cell of the ML is obtained 
by combining R primitive unit cells of the lattice with period a {Fig. 1(a) [R =  3] and 1(e) [R =  5]}, with R− 1 
primitive unit cells of the lattice with period ra {Fig. 1(b) [R =  3] and 1(f) [R =  5]}. Note that (R− 1) ×  ra =  Ra, 
and when merging two lattices, the motifs at each lattice site is also merged [see Fig. 1(g,h)]. The primitive unit 
cells of MLs shown in Fig. 1(c,g) are not unique. Another set of primitive unit cells are shown in Fig. 1(d,h) for 
R =  3 and 5, respectively. The positions of these two different primitive unit cells [Fig. 1(c,d)] are illustrated in the 
Fig. 2 for R =  3.

The single 2D dielectric beat [i.e., the primitive unit cell of the ML] itself has no translational symmetries 
within, and hence it enables creation of large number of scattering loop that facilitates polychromatic, light local-
ization. Unlike quasi–periodic dielectric structures18,19, or random dielectric structures25–28, such light localiza-
tions in dielectric MLs are completely predictable (and therefore controllable) using photonic band structures. 
The density of localization states and their quality factors scale as a function of R. Merged lattices (MLs) lie in 
between the two extremes of completely random system (where Anderson localization23–28 prevails), and the con-
ventional periodic system of photonic crystals4,5. In the MLs, the periodicity prevails on the longer spatial scale 
(spatial distance > Ra). The translational symmetry is completely broken on the spatial scale < Ra. Localization in 
ML takes place within this shorter spatial scale, for wavelengths on the order of fractions of a.

MLs for light wave will be useful to create multimode miniature lasers43, efficient quantum computing44, effi-
cient solar energy harvesting45, and enhanced non-linear optical interactions46. In addition to that, as MLs are 
perfectly periodic with the period Ra, thus they can be engineered easily to create defect paths enabling integrated 
slow light components, and photonic chips.

Results
Before we discuss the optical properties of the 2D structures created from MLs, let us briefly review the band 
structure of the conventional 2D square lattice photonic crystal (PC) with the period a. For the sake of numerical 
illustration, assume the PC is made of circular silicon rods (refractive index, n =  3.4, radii of the rods equal to 
0.15a) in an air ambience. Figure 3(a) shows the schematic of the non-primitive unit cell of the 2D PC with the 
length Ra. Rod PC with a square lattice is favorable for the transverse magnetic (TM) polarization [electric field 
along the axis of the rod]5. The photonic band structure of the 2D PC for light wave with the TM polarization, 
can be obtained by solving Maxwell’s equations using a plane wave expansion methodology47–49 (see the methods 

Figure 1. Merging of two square lattices of periods a and ra. Here, r =  R/(R-1), with R is a integer greater than 2. 
(a–d) Merging for R =  3, (e–h) Merging for R =  5. (a,e) R periods of square lattice with period a. (b,f) (R-1) 
periods of square lattice with period ra. (c) One primitive unit cell of the lattice obtained from merging lattice in 
(a) with lattice in (b). (g) One primitive unit cell of the lattice obtained from merging lattice in (e) with lattice in 
(f). (d,h) Alternative primitive unit cells of the merged lattices.
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sections, for the details of the calculation). Figure 3(c) shows the result of calculation for a primitive unit cell 
(R =  1), and as we can see clearly see, the PC exhibits a large bandgap between the bands 1 and 2 for the TM 
polarized light. Figure 3(d–f) display photonic band structures for the non-primitive unit cells. The vertical axes 
in the figures represent normalized frequencies (a/λ). As all unit cells belong to the same 2D PC, the correspond-
ing bandgaps remains exactly the same. The unit cell length of the non-primitive unit cell is Ra, and its’ Brillouin 
zone (BZ), as shown in Fig. 3(b), is shrunk R times in each direction. Therefore, the corresponding photonic 
band structures of the non-primitive unit cells [Fig. 3(d–f)] can be obtained by folding the original bands of the 
primitive cell [Fig. 3(c)], R2 times into the BZs of the non-primitive unit cells6,49. In other words, each band in 
the band structure of the primitive unit cell, becomes R2 folded bands in the band structure of the non-primitive 
unit cell. For a conventional PC, it is well known that the group velocities for the band edge modes are small, and 
the bands flatten towards the photonic bandgap frequencies. Therefore, the folded bands of the conventional PC 
in the proximity of photonic bandgaps are flatter [for example, see the folded band diagrams of Fig. 3(d–f)]. The 
mode pattern corresponding to the band edge mode is basically a standing wave that extends through the entire 
2D lattice5. Thus, the band edge modes of the conventional PC are not spatially localized.

Note that the folded band structure of the conventional PC for R >  1 [Fig. 3(d–f)], possess many degenerate 
point and degenerate bands. Such degeneracies accounts for the finite translational symmetries within the corre-
sponding non-primitive unit cells. These degeneracies will be lifted up, when the translational symmetries within 
the unit cell becomes broken. As we shall see, this is the exactly the case for the MLs, which breaks the transla-
tional symmetries of the original lattice before the merging.

Now let us analyze the photonic band structures of MLs. Let assume MLs are created by merging the dielectric 
functions of two square lattice PCs [silicon rods in air ambience] with periods a and ra as described in Fig. 1. 
For the purpose of comparison with the band structures in Fig. 3, the radii of the rods are taken as 0.15a in both 
PCs. Figure 4 exhibits photonic band structures of the MLs for R =  3, 5, 7 and 9, respectively [see the methods 
sections, for the details of the calculation]. In the same diagram, we have also plotted the folded band structure 
of the conventional PC [i.e., lattice with period a; the corresponding folded band structures are also shown in 
Fig. 3(d–f)] with non-primitive unit cells of the length Ra. As we can from these figures, in the long wavelength 
limit, the bands of the ML look similar to the folded bands of the conventional PC. For this spectral region, the 
wavelengths are much larger than a, and as both ML and the conventional PC exhibit similar long range transla-
tional symmetries, it is not surprising to find their bands are similar. On the other hand, for the spectral region 
closer to the bandgap of the conventional PC, for which the wavelengths are on the order of fractions of a, the 
original translational symmetries in the non-primitive unit cells are completely broken. This induces coupling 
between the various folded bands of the conventional PC [Fig. 3(d–f)]. The coupling splits and flattens the folded 
bands, lifts–up the degeneracies, and pushes them into the bandgap region [Fig. 4]. From Fig. 4, we can clearly 
see that, MLs have dense number of flat bands in their band structure right at the vicinity of the bandgap region 
of the conventional PC. These flat bands occur for wavelengths (λ) on the order of fractions of a [see Fig. 4 for the 
normalized frequencies (a/λ) of the flat bands]. The number of flat bands in ML increases as R increases, and the 
bandwidth (frequency span of the band) of each flat band decreases as R increases.

Flat band has a vanishing group velocity, and it is the key signature of a slow mode50–54. Thus, the dense flat 
bands shown in Fig. 4 guarantees a varieties of localized modes in MLs. Figure 5 illustrates the localized mode 

Figure 2. The relative positions of the two unique primitive unit cells for the case of R = 3 [primitive unit cell of 
Fig. 1(c) is shown in dark green color, and primitive unit cell of Fig. 1(d) is shown in purple color].
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patterns [mode filed density] for R =  7 at the Γ  point of the bands (R2 +  1) to (R2 +  42). As we can see from this 
figure, ML creates variety of configurations that enables localization of light. Quite clearly, the breaking of trans-
lational symmetry in the ML (on the spatial scale < Ra), allows creation of multiple scattering loops within its 
primitive unit cell, and therefore realizes a large number of wave localization states. The density of the localized 
modes in ML scales as a function of R. As R increases, the spatial region of the broken translational symmetry, 
enlarges. This creates more opportunities for light localization.

Figure 3. (a) Non-primitive unit cell of the square lattice with a length Ra. (b) BZ (dashed line) of the square 
lattice. The dark solid line represents the irreducible part of the BZ. Photonic band structures [TM polarization] 
for the 2D square lattice PC made of silicon rods in air matrix, for various unit cell lengths (c) R =  1 [orange] 
(d) R =  3 [green] (e) R =  5 [red] (f) R =  7[blue]. In (d) to (f), the band structures in the orange color is for R =  1 
[reproduced from (c) for a comparison].

Figure 4. Photonic band structures of the merged lattices [blue] for R = 3, 5, 7 and 9. The band structures in 
the orange color are the folded band structures of the conventional square lattice PC with a non-primitive unit 
cell of length Ra [see Fig. 3(c–f)].
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Using group theory, the eigenmode at every band, for any given every k vector, can be uniquely identified with 
an irreducible representation (IR) of the symmetry group of the k vector49,55–58. In the reciprocal space, the high 
symmetrical k vectors of the square lattice are Γ Χ π( )(0, 0), , 0 ,

Ra
 and π π( )M ,

Ra Ra
 [see Fig. 3(b)]. In Schoenflies 

notation55,56, the symmetry group for these k vectors are respectively, C4v, C2v, and C4v. The symmetry representa-
tion for the group C4v consists four non-degenerate IRs, and one doubly degenerate IR. On the other hand, the 
symmetry representation for the group C2v consists four non-degenerate IRs. As any band is a continuous path (or 
a surface) in the reciprocal space, the adjacent bands are bound to touch each other if the bands possesses any 
degenerate IR at the symmetrical k vectors. In the square lattice, such touching will only occur at Γ  and Μ  points, 
because only these k vectors have doubly degenerate IRs. The degenerate modes at the Γ  point of the discussed 
ML are boxed together in Fig. 5.

The knowledge on the degeneracy, allows us to categorize the flat bands into two important categories. The 
first category is flat bands with no degenerate points, and the second category is flat bands with at least one degen-
erate point. These two genre of flat bands have distinct mode dispersion. In general, the first category of flat bands 
displays more symmetrical mode than the flat bands from the second category. In Fig. 6, we illustrate examples of 
mode profiles for the two genre of flat bands.

For an example of flat band with no degenerate points [i.e., the first type], let us take the R2 +  1 –th band. The 
enlarged plot of the frequency dispersion for R =  7 is shown in Fig. 6(a) [green color], and the corresponding 
mode profiles at the symmetrical k vectors are shown in Fig. 6(b). As can be seen from Fig. 6(b), the first genre of 

Figure 5. Mode field density (|E|2) at the Γ point of the merged square lattice with R = 7. The mode patterns 
correspond to the flat bands R2 +  1 to R2 +  42, and plotted for one primitive unit cell. The boxed pair of modes 
corresponds to the pair of bands with the degenerate frequencies.
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flat bands exhibits a nearly same mode profile (i.e., a small dispersion) along the k vector path. The electric field 
of the R2 +  1 –th band is sharply confined in the center of the unit cell (almost entirely in one rod). Figure 7(a) 
shows the evolution of the mode profile [R2 +  1 –th band, Γ  point] as a function of R. In Fig. 7(b), we show the 
horizontal (x) cross section of the mode field density for various R. Figure 7(b) shows that the mode radius 
remains the same for all R. The calculated mode area is 0.34 λ( )n

2
. As we have said earlier, the flatness of the band 

increases as R increases, and this is quantified in Fig. 7(c) for the R2 +  1 –th band. As we can clearly see from the 

Figure 6. (a) Left: Enlarged version of the band structure shown in Fig. 4 for R =  7. Right: Two different genre 
of flat bands. The first genre is flat band with no degenerate points [for example, +R 12  –th band (shown in 
green)], and the second is flat band with at least one degenerate point [for example, the R2 +  8 –th and R2 +  9 –th 
band (shown in red) touches each other at the Γ  point]. (b) Mode pattern along the first genre of flat bands 
[R2 +  1 –th band is shown for an illustration]. (c) Mode pattern along the second genre of flat bands [R2 +  8 –th 
and R2 +  9 –th bands are shown for an illustration].
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figure, the bandwidth (frequency span of the band) decreases almost one order, as R reduces from 3 to 9. As R 
increases, the length of the primitive unit cell increases, and therefore the evanescent coupling of localized to the 
adjacent unit cells decreases. This in turn results in a flatter dispersion50. A flatter band exhibits mode with higher 
quality factor. Given a fixed mode volume (area in 2D), and the higher quality factor as R increases, enhances 
Purcell factor and creates a favorable condition for variety of application in quantum computing and cavity quan-
tum electrodynamics44,59.

Let us consider the R2 +  8 and R2 +  9 –th bands [Fig. 6(a) {red color}]. These pair of bands are degenerate 
at the Γ  point, and hence belongs to the second genre of flat bands. The mode profiles of these bands at the Γ  
point consists of two independent eigenmodes as shown in the box A of Fig. 6(c). These degenerate mode splits 
along the path, Γ –X. The modes profiles at the X point are indicated as B’ and B for bands 8 and 9, respectively 
[see Fig. 6(a,c)]. As stated earlier, Γ  point has C4v point group symmetry, and therefore the mode must be invar-
iant with respect to all symmetry operations of the group C4v. However, the individual modes in box A, on its 
own, does not have the C4v symmetry [for example, the π /2 rotational symmetry is missing]. Thus, by symmetry 
requirement the two modes in box A must co-exist (i.e., degenerate). These individual mode possess a C2v symme-
try, and when they split along the path Γ –X, this symmetry is retained. This splitting is perfectly consistent with 
the symmetry requirement at point X, which has the C2v symmetry.

Figure 8 highlights a special group of modes in the ML that have ring shapes. These modes are localized in the 
closed path shown in Fig. 8(a). As oppose to the usual ring modes which are trapped in the dielectric region, these 
ring modes [Fig. 8(b–d)] in the ML are trapped in the air region. Therefore, these ring modes are robust with 
respect to material dispersion, and hence suitable for variety of applications in non-linear optics. Furthermore, 
the periodic nature [on the longer spatial scale] of the ML, creates a two dimensional array of such ring modes, 
similar to a two dimensional array of ring resonators60.

Wave localization states in a ML are different from the band edge modes of a conventional PC [although both 
have vanishing group velocities]. Unlike the band edge modes of the conventional PC (for which the standing 

Figure 7. (a) Mode field density of the +R 12  –th band (Γ  point). (b) The horizontal {x} cross section of the 
mode field density for various R. (c) The frequency span (band width) of the R2 +  1 –th band as a function of R.
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wave modes extend through the entire lattice), the modes of MLs are spatially localized with smaller modal 
volumes (areas in 2D). For the conventional PC, the band edge mode is a result of coherent interference effects 
arising from the periodic arrangement of the scatters (i.e., Bragg scattering), and hence, periodicity is an essen-
tial prerequisite in observing the band edge modes. However, in the ML, flat band occur as a consequence wave 
localization due to the breaking in the translational symmetry, resulting from the merging. The periodicity Ra, 
is thus, not required to observe the localized modes of the ML (as they are not resulting from Bragg scattering).

The modes of ML are well localized within the primitive unit cell, and only the evanescent tail couples to the 
adjacent unit cell. Therefore, a single unit cell is sufficient to spatially confine light in ML. In fact, the mode pat-
terns in Fig. 5 can be reproduced using a single primitive unit cell of the ML, assuming a non-periodic boundary 
condition such as perfectly matching layer boundary condition61.

The primitive unit cell of the ML also can be visualized as an optical resonator that supports large number of 
localized modes with finite and large lifetimes. The photonic band structure [Figs 4 and 6] is then, can be regarded 
as a display of the dispersion of these modes, when identical resonators arranged in a periodic fashion (i.e., the 
dispersion of the slow mode of the coupled optical resonators50). The photonic band structure also shows, how 
the degenerate mode of the optical resonator splits when identical resonators arranged in periodic fashion [for 
instance, see Fig. 6(c)].

Methods
The photonic band structures [Figs 3, 4 and 6(a)], and the mode patterns [Figs 5, 6(b,c), 7(a) and 8(b–d)] are 
calculated using a plane wave expansion methodology. This method assumes a periodic boundary condition 
for the unit cell of the dielectric function, and Bloch theorem for the electric field. In the method, both electric 
field and the periodic dielectric functions are expanded in terms of plane waves, and substituted in the Maxwell’s 
equations. The resulting equations are combined as a matrix eigenvalue problem. In this paper, we used the freely 
available plane wave expansion solver, MPB48. The photonic band structure of the conventional lattice is obtained 
using 1024 plane waves. On the other hand, the photonic band structures, and the mode patterns of the MLs are 
obtained by employing (nreslR)2 plane waves, where nresl =  64 is the resolution parameter used in MPB.

Figure 8. (a) The primitive unit cell for R =  7. The orange arrow shows the closed path for light localization. 
(c–d) The ring type of modes in the closed path of (a), correspond to the bands (b) 38 (c) 39, and (d) 42.
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Conclusion
In this article, we have presented the principles of two dimensional merged lattice constructions. Using light 
wave in square lattice as an example, we have demonstrated the salient wave localization properties of the merged 
lattice. We show, how the photonic band structure of the merged lattices evolves from the corresponding folded 
band structure of the conventional photonic crystals. The destruction of the translational symmetry induces 
strong coupling between the folded bands, and results in dense number of flat bands with variety of localized 
mode profiles. The mode profiles include sharp localized modes with small mode volumes, and ring modes 
trapped in the annular air region.

Although, the periodicity of merged lattice on the longer spatial scale is not required to see the localized 
modes of the merged lattice, the natural periodicity that it has, is certainly an added advantage. The periodic con-
figuration of merged lattice in the longer spatial scale allows coupling of localized modes to the similar modes in 
the adjacent unit cells, forming a 2D coupled resonator system. In optics, such 2D coupled resonators are useful 
when constructing integrated slow light devices and circuits.
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