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A conditional likelihood is required 
to estimate the selection coefficient 
in ancient DNA
Angelo Valleriani

Time-series of allele frequencies are a useful and unique set of data to determine the strength of 
natural selection on the background of genetic drift. Technically, the selection coefficient is estimated 
by means of a likelihood function built under the hypothesis that the available trajectory spans a 
sufficiently large portion of the fitness landscape. Especially for ancient DNA, however, often only 
one single such trajectories is available and the coverage of the fitness landscape is very limited. In 
fact, one single trajectory is more representative of a process conditioned both in the initial and in 
the final condition than of a process free to visit the available fitness landscape. Based on two models 
of population genetics, here we show how to build a likelihood function for the selection coefficient 
that takes the statistical peculiarity of single trajectories into account. We show that this conditional 
likelihood delivers a precise estimate of the selection coefficient also when allele frequencies are close 
to fixation whereas the unconditioned likelihood fails. Finally, we discuss the fact that the traditional, 
unconditioned likelihood always delivers an answer, which is often unfalsifiable and appears reasonable 
also when it is not correct.

Past records of the frequency of a character, i.e., an allele or a phenotype, until present observational time 
are often the only source of information to infer the strength of selection on that character. Time series of 
ancient DNA, in particular, are becoming available thanks to modern advances in preparation and sequencing  
methods1,2. These past records deliver the fluctuating frequency of an allele over time. The nature of these fluctu-
ations is characterized by the combined effect of various mechanisms, the simplest of which are natural selection 
and genetic drift, on which we will focus our attention here. While natural selection drives the frequency towards 
fixation or stabilization, genetic drift caused by a small effective population size works towards elimination of 
genetic diversity and, thus, towards fixation of one of the characters or alleles3. As such, if the population size is 
known, genetic drift is a noisy effect that changes the frequency of the alleles and masks the effect of selection.

Natural selection can be theoretically described with relatively simple population genetics models, such as the 
Moran and the Wright-Fisher models3,4. At the basis of these models, the effect of natural selection is often crys-
tallized in one single parameter per locus, called the selection coefficient. One of the tasks ahead of the analysis of 
DNA time-series is thus the extrapolation of the underlying selection coefficient. Indeed, the selective advantage 
of a certain character is quite impossible to determine from first principles, e.g. from an evaluation of metabolic 
costs and benefits, with the exception perhaps of a few experimentally controlled cases in bacterial populations. 
But even in bacteria, the advantage of a certain gene compared to another is determined indirectly, mostly by 
competition experiments and growth rate measurements5.

Various methods, mostly based on maximum likelihood techniques have been developed to duly take both 
genetic drift and sampling errors into account6–9. Several limiting cases have considered the task of determining 
the selection coefficient in the absence of genetic drift, i.e., with large populations, thus taking in fact a determin-
istic approach5,10–12. The limiting cases that we consider here are both an haploid character with two competing 
alleles and a one-locus two-allele model with selection and codominance. We consider a finite population with 
perfect sampling. These conditions allow an analytic and precise treatment of the effect of genetic drift.

Taking apart those cases where the population size is too big for genetic drift to play any role, in the general  
case it is possible that the less advantageous character or allele is present at a larger frequency than a competing 
but more advantageous character. Nevertheless, we may inquire if and when a given time-series of the frequencies 
is informative of the relative selection strength of the two competing characters. Simple models of population 
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genetics, albeit sometimes not completely realistic, provide a clear platform to derive analytical results easy 
to interpret and generalize. The aim of this work is to introduce a new likelihood function that works for any 
strength of the selection coefficient and for any value of the frequency, i.e., also for frequencies close to the fixation 
boundary. Accordingly, in order to understand the potentiality and the limits of such analysis we will first work 
with the Moran model of population genetics, which is by far one of the most intensively studied and successful 
metaphor of evolution under selection and drift4,13,14. We will then study the same problem with the one-locus 
two-allele Wright-Fisher model, which is definitively a more complex and more realistic metaphor of natural 
selection and drift6.

As we shall see, extracting the selection coefficient even in such a simple set-up is tricky. If one uses the wrong 
likelihood, apparently meaningful, self-consistent but otherwise incorrect conclusions are produced. The key 
point will be to understand that single time-series of processes that are per se non-stationary need to be treated as 
stochastic processes conditioned both in the initial and the final condition.

Results
The models that we consider have two types of alleles, A and B. In the Moran model we will have haploid individ-
uals carrying the alleles of type A and B. In the Wright-Fisher model we will have diploid individuals carrying a 
pair of alleles of types A and B in one autosomal locus. Although these two models differ in structure and com-
plexity, it is still possible to provide a common description of the underlying process of selection and drift. We 
start by considering a population of N alleles. To allow for a common treatment of both models we will assume 
that N is an even number. At any point in time, NA and NB are the number of alleles of type A and B in the popu-
lation, respectively, and at each time point NA +​ NB =​ N holds. We will say that NA and NB are the frequencies of 
alleles A and B, respectively. Throughout the whole manuscript, we assume that these frequencies can be meas-
ured exactly (no sampling errors).

We will follow the fate of the number of alleles of type B whose dynamics will be described as a Markov chain 
in discrete time with two absorbing states in NB =​ 0 and NB =​ N. These two absorbing states correspond to the 
fixation of allele A and B, respectively.

A single historical trajectory of T +​ 2 measurements for the frequency NB can be used to estimate the selection 
coefficient. The trajectory has a initial condition NB(0) =​ i, followed by T intermediate measurements from strictly 
consecutive updates and one additional, final measurement at TF. In what follows, while NB(0) is the same for all 
cases studied here, we consider various options for the timing TF of the final measurement and for the value of the 
frequency of the alleles of type B at TF, NB(TF). We will also assume that the time is measured in generations, even 
if, strictly speaking, in the Moran model the generations are overlapping and in the Wright-Fisher model they 
are non-overlapping. We consider a total of four different limiting cases (Fig. 1). On the one hand, the first two 
cases are when TF is just one generation after the Tth measurement, i.e., TF =​ T +​ 1. Ideally, these first two cases 
correspond to time series of consecutive generations finishing at present time. Case I is defined when NB(TF) is at 
an intermediate frequency, i.e., NB(TF) ≠​ 0, N. Case II is when NB(TF) =​ N, namely when the allele of type B has 
reached fixation before or at present time. On the other hand, the second two cases are when generation TF is long 
after generation T, i.e., TF ≫​ T. Ideally, this corresponds to trajectories where the initial time t =​ 0 of the temporal 
observation is far back in the past so that also after T generations the time-series of available data is still far back 
in the past. Here, generation TF is at present time and NB(TF) is known but the values of NB at times between gen-
erations T and TF are missing. We then distinguish between case III, when the present frequency NB(TF) is at any 
intermediate frequency, i.e., NB(TF) ≠​ 0, N, and case IV where the present frequency is at fixation for the allele of 
type B, i.e., NB(TF) =​ N. Obviously, cases III and IV reduce to cases I and/or II when the frequency at present time 
is ignored. As will become clear later, these cases are definitively different depending on the assumption that one 
makes for the present state. One can also recognize that case III is the most studied one in the literature so far2,6,15. 
Since in cases II and IV fixation can occur at any generation including generations t <​ T, with the Wright-Fisher 
model we have also considered a variant of these two cases in which NB(TF) =​ N −​ 1, i.e., very close to fixation but 
not yet fixed. These variants do not present substantial differences in the results and are further discussed below.

Figure 1.  Four kinds of time series. Schematic representation of the four cases considered here. The green bars 
represent available data for T consecutive generations, whereas the blue dashed lines represent non available 
data. The time arrow goes from left to right with the present time called generation TF. The data includes an 
initial condition at generation zero. We follow the trajectory of the allele B, whose frequency at present time is 
known in all cases. In cases I and II, TF is just one generation after the measurement T, i.e., TF =​ T +​ 1, so that 
the available data concern the recent history of the allele. In cases III and IV the measurement TF is made a long 
time after the measurement T. We can think of the cases III and IV as time-series where both the ancient history 
and the present frequency are known in detail but data in between are missing. Within the Wright-Fisher model 
we consider a variant of cases II and IV, in which B is very close to fixation but not yet fixed.
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For each one of these four cases we generate 100 independent time-series while keeping the selection coeffi-
cient fixed to S =​ 2, whose meaning is explained below for each of the two models separately. We generate such 
trajectories via stochastic simulations and then analyze them with the likelihood developed below to prove if we 
are able to reliably extract the selection coefficient. Within each of the four cases I to IV, all trajectories share the 
same initial and final conditions NB(0) and NB(TF), respectively, but are otherwise completely independent.

Each trajectory is fully described by the index functional δij(t) ∈​ {0, 1} such that

δ =


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namely δij(t) =​ 1 when a transition from frequency i to frequency j of the number of B alleles occurs at time step t. 
The index t runs over the measurements, t =​ 0, 1, 2, …​, T. Thanks to this functional, the selection coefficient can 
be estimated by means of the conditioned likelihood
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where lowercase s refers to the estimated value of S and the conditional transition probability is defined as
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The selection coefficient s enters into this definition through the explicit form of the model as will be discussed 
in detail below and in the Methods section.

The application of the conditioning at the final frequency NB at the end of the trajectory allows to explicitly 
write the relationship between the conditioned and the non-conditioned transition probabilities by exploiting the 
Markov property of the chains, as16

− =
= + =
= =

+ = =P s T t
N T k N t j

N T k N t i
N t j N t i( , )

Pr{ ( ) ( 1) }
Pr{ ( ) ( ) }

Pr{ ( 1) ( ) },
(4)

ij k F
B F B

B F B
B B

which in a shorthand we write as

φ− = − ⋅P s T t s T t P s( , ) ( , ) ( ), (5)ij k F ij k F ij

where Pij(s) are the non-conditioned transition probabilities as defined by the model. The functions φij|k are 
instead complex functionals, determined by the Doob’s h-transform, that depend on s, i, j and TF −​ t (Methods).

If we could ideally access a large number of trajectories collected under the same initial condition but free to 
cover the available fitness landscape, only the initial condition would matter and the condition in the final state is 
no longer necessary. This case is what one encounters in experimental evolution. The estimation of the selection 
coefficient in those cases should be made by means of the unconditioned likelihood17
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where n({i, j}) is the number of transitions between each pair of frequencies i and j in the ensemble of trajectories. 
The number of transitions can be computed through δ= ∑n i j t({ , }) ( )t ij . The likelihood function L(s), and vari-
ations thereof that take sampling errors into account, is the most commonly used function to estimate the selec-
tion coefficient2. For a correct interpretation of the results presented below it is relevant to note that Lc(s) and L(s) 
are related through

= ΦL s s L s( ) ( ) ( ), (7)c

where Φ​(s) is a complex functional depending on the φij|k and on the specific trajectory described by δij(t).
In the following we present a comparison of the estimated value of the selection coefficient from the likelihood 

Lc(s) and from the likelihood L(s), for the Moran and the Wright-Fisher models. Applied to each single trajectory 
both likelihoods allow to derive the most likely value of s. The variation of the maximum likelihood estimates 
across the set of 100 time-series for each of the four cases introduced earlier (Fig. 1) gives a distribution from 
which the average and the 95% confidence interval can be estimated.

The Moran model.  We consider the simplest version of the Moran model4,13,18, which consists of a population  
of N individuals split into NA individuals carrying the character A and NB individuals carrying the character B. 
Except for the characters A and B, the individuals are identical. Individuals of type A have fitness WA and indi-
viduals of type B have fitness WB. The selection coefficient is S =​ WA/WB. In the Moran model the generations are 
overlapping and the dynamics runs as follows. At each time point t, one of the existing individuals reproduces 
with a probability proportional to its fitness. The resulting offspring is identical to the parent individual and 
replaces one of the existing individuals chosen at random with uniform probability. At each time step, thus, the 
number NB of B individuals can increase or decrease by one, or stay the same with probabilities that depend on 
NB, N and S (Methods). The Moran model is thus a random walk on a line for the number NB, with two absorbing 
states in 0 and N corresponding to the fixation of the character A and B, respectively.
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For this model, the 100 trajectories of type B frequencies for each of the four types (Fig. 1) have a duration 
of T =​ 500 generations. The trajectories have been generated by standard methods for conditioned processes16,19 
and then both the conditioned likelihood Lc(s) and the non-conditioned likelihoods L(s) have been numerically 
derived as described. Surprisingly, only for the case III, i.e., time-series far back in the past with the character not 
yet fixed at present time, also L(s) delivers a selection coefficient close to the true one (Fig. 2, grey boxes). In all 
other cases I, II, and IV, L(s) delivers selection coefficients that are quite different from the true one.

The Wright-Fisher model for one-locus two alleles.  In the Wright-Fisher model we consider an auto-
somal locus of a diploid organism with two alleles A and B. Reproduction occurs with perfect mixing but popula-
tion size is fixed to a total of N alleles (corresponding to N/2 individuals). The three possible genotypes have fitness 
WAA, WBB and WAB. The selection coefficient is S =​ WAA/WBB with codominance implying WAB/WBB =​ (1 +​ S)/2. 
With these choices, in the absence of genetic drift the evolutionary trajectory would deterministically lead to 
the fixation of the allele A. For finite populations instead, the zygotes of the next generation are sampled from 
the gametes from the previous generation, in which the frequency of the alleles A and B have been determined 
through the evolutionary dynamics. The number NB of alleles of type B in a finite adult population thus changes 
randomly from one generation to the next as a result of selection and drift (Methods). Also here the number of 
alleles NB is described as a Markov chain with two absorbing states in 0 and N, corresponding to the fixation of 
allele A and B, respectively.

This model is numerically more challenging than the Moran model. In particular, the time scale to fixation is 
shorter than for the Moran model because here the generations are non-overlapping. Here, thus, each trajectory 
has a duration of T =​ 100 generations. As for the Moran model, we have generated 100 independent time-series 
for each of the four types (Fig. 1). Using the transition probabilities of this model and the δij(t), we have numeri-
cally derived the conditional likelihood Lc(s) and the unconditioned likelihood L(s). The results are qualitatively 
similar to the ones for the Moran model (Fig. 3). For type III trajectories, however, the two likelihoods perform 
differently, with Lc(s) providing a good estimate of the selection coefficient and L(s) a poor estimate. As discussed 
below, this has to do with the very rapid time scales of the Wright-Fisher model. If T is set to 10 generations 
instead of 100, the estimate from L(s) becomes closer to the true value. Due to its rapid time scales, it was also 
convenient to set NB(TF) =​ N −​ 1, i.e., very close to fixation, in order to have relatively long trajectories.

Methods
In both models considered here, the process NB is a Markov chain in discrete time in a finite state space {0, 1, …​, N}.  
These Markov chains are characterized by the one step transition probability matrix P whose elements Pij are 
independent of time and are defined as

= + = | = .P N t j N t iPr{ ( 1) ( ) } (8)ij B B

The factors φij|k that enter into the definition of the conditioned transition probabilities can be explicitly written  
by exploiting the definition of conditional probabilities and the Markov property of the process16 as
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Figure 2.  Selection coefficient for the Moran model. For each of the four cases, we have generated 100 
independent trajectories with S =​ 2 (dashed horizontal line). For each such trajectories we have constructed 
the likelihoods Lc(s) and L(s) and found the two values of s that maximize each of them separately. From the 
distribution of these two sets of maximizing s we obtain the mode and the 95% confidence interval (CI) shown 
here. The conditioned likelihood Lc(s) always provides a good estimate of the true selection coefficient (red 
squares). The unconstrained likelihood L(s) delivers a poor estimate of the selection coefficient (grey squares) 
except for case III due to the slow dynamics of the Moran model. For each trajectory: T =​ 500, NB(0) =​ 27 and 
N =​ 54. In cases I and III we have set NB(TF) =​ 40. In cases II and IV we have set NB(TF) =​ N.
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which are non-negative functions dependent explicitly on i, j, k and TF −​ t for t =​ 0, 1, 2…​, T. When TF =​ T +​ 1, as 
in the cases I and II (Fig. 2), the factors φij|k depend explicitly on time and change in such a way to realize the 
condition NB(TF). Nevertheless, the knowledge of the transition probabilities Pij defined in Eq. (8) allow to com-
pute all likelihoods through Eq. (9) for any choice of the parameters. When T TF , as in the cases III and IV 
(Fig. 1), the factors φij|k do not depend on time20 and can be computed as the mathematical limit TF →​ ∞​ by 
exploiting the spectral properties of the transition probability matrix P. When k is a transient state, i.e., k ≠​ 0, N, 
then

φ λ= −s w j
w i

( ) ( )
( )

,
(10)ij k 0

1 0

0

where λ0 is the largest non-trivial eigenvalue of P and w0(i) is the i-th component of the corresponding right 
eigenvector. When k represents fixation, i.e., k =​ 0 or N, then16

φ =s
u
u

( ) ,
(11)ij k

jk

ik

where uik is the probability of absorption in k for a process started in i. Since deciding when TF is sufficiently large 
to allow using these last limit cases may depend on the system15, the definition given in Eq. (9) was used to the 
limits of numerical precision for large powers.

For the Moran model, at each generation, each individual of type A produces a number of offspring equal to 
WA and each individual of type B produces a number of offspring equal to WB. At each generation, just one among 
the entire pool of NAWA +​ NBWB offspring is chosen at random. This new individual, then, replaces one randomly 
chosen individual in the parents’ population. With this dynamics, the population size remains constant but the 
frequencies NA and NB change with time. Eventually, all individuals will be either of type A or of type B.

We follow the fate of character B. At each generation and before fixation occurs, the frequency NB can increase 
by one, decrease by one or stay the same. Based on the dynamics described above, the probabilities associated to 
the changes of NB are given by
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where the selection coefficient S =​ WA/WB is non-negative and the transition probabilities are independent of 
time. When 0 ≤​ S <​ 1 the individuals of type B have a selective advantage with respect to individuals of type A 
(i.e., Pj >​ Qj) and vice versa when S >​ 1. The borderline case S =​ 1 corresponds to neutral evolution. The probabil-
ities Pi, Qi and Ri form the elements of the transition probability matrix

Figure 3.  Selection coefficient for the Wright-Fisher model. For each of the four cases, we have generated 
100 independent trajectories with S =​ 2 (dashed horizontal line). For each such trajectories we have constructed 
the likelihoods Lc(s) and L(s) and found the two values of s that maximize each of them separately. From the 
distribution of these two sets of maximizing s we obtain the mode and the 95% confidence interval (CI) shown 
here. Here, the rapid dynamics of the Wright-Fisher model leads to very short trajectories in cases II and IV 
that leads to poor statistics. For this reason, in cases II and IV we have set NB(TF) =​ N −​ 1 (very close to fixation) 
instead of N. The conditioned likelihood Lc(s) always provides a good estimate of the true selection coefficient 
(red squares). The unconstrained likelihood L(s) delivers a poor estimate of the selection coefficient (grey 
squares) with a CI smaller than the box size. For each trajectory: T =​ 100, NB(0) =​ 27 and N =​ 54. In cases I and 
III we have set NB(TF) =​ 40.
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The fixation probabilities as function of the initial frequencies and of the selection coefficient can be computed as 
absorption probabilities from this matrix4,16,18.

For the Wright-Fisher model, let NB(t) =​ i be the number of alleles of type B in the adult population at gen-
eration t. Then, according to the evolutionary dynamics the frequency of the allele B in the successive gamete 
population is3

π =
+

i
W p i W p i

W
p i( )

( ) ( )
( ),

(14)B
BB B AB A

O
B

where pB(i) =​ i/N, pA(i) =​ 1 −​ pB(i) and WO is the average fitness of the adult population, defined as

= + + .W W p i W p i p i W p i( ) 2 ( ) ( ) ( ) (15)O AA A AB A B BB B
2 2

The frequency of the allele of type B in the new adult population is obtained through random sampling and 
leads to the transition probabilities
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(16)ij B
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according to the binomial sampling.

Discussion
At a first sight, it may seem odd that the correct likelihood should depend on the conditional transition proba-
bilities Pij|k(s). In fact, Lc(s) is computed on one single trajectory of a stochastic process governed by selection and 
genetic drift. The key point is that single trajectories of a stochastic process should be considered as representative 
of a bundle of trajectories starting and ending at fixed conditions. Functionals of single trajectories are thus condi-
tioned not only in the initial condition but also in their final condition. When only one realization of ancient DNA 
variations is available a special form of conditioning in the future has to be included in order to correctly estimate 
the selection parameters. Such processes were already studied by Schrödinger21 who recognized the emergence of 
possible contradictory claims from the observation of diffusion trajectories conditioned in their initial and final 
positions. In mathematics, this kind of conditioning has been studied in the context of Brownian bridges, namely 
processes conditioned both at their initial and final value, a precise description of which requires the introduction 
of the Doob’s h-transform. More recently, the Doob’s h-transform has become an essential theoretical tool to study 
the statistics of rare events22 and to understand circular arguments in statistical analysis16,23. It was also shown that 
this transform emerges necessarily when trajectories are selected on the basis of their outcome16.

The likelihood L(s) defined in Eq. (6), based on the transition probabilities Pij given in Eq. (12) is not the one 
that should be used to extract a parameter like the selection coefficient from one given trajectory. Indeed, L(s) 
fails in almost all cases to provide a realistic interval of confidence. The reason for the failure of this method is 
born in the fact that a given realization does not reveal if it is an unlikely event of a process that would otherwise 
typically behave differently. As a matter of fact, the process behind a given realization is rather more represent-
ative of a process conditioned (in probabilistic terms) to end at the frequency observed at its final observation. 
If one knows, from first principles, what is the microscopic (molecular) mechanism driving the process under 
scrutiny then one can follow the procedure explained in this work, derive the conditional probabilities Pij|k and 
write the likelihood Lc(s) in terms of these conditioned quantities. This quite obviously provides a good estimate 
of the selection coefficient. A crucial requirement for the success of this enterprise is the knowledge of the correct 
model to use.

The use of the unconditioned likelihood L(s) would still give an answer, i.e., a value of s that is apparently 
consistent with the data. Indeed, case I, which describes a process conditioned on ending at an intermediate 
state k ≠​ 0, N would lead to support the idea of neutral evolution or balancing selection and in fact, L(s) yields a 
value of s close to unity. In case II, when k =​ N instead, the individuals of type B would get fixed in the population 
and the analysis of such a trajectory by means of unconditioned likelihood L(s) would lead to support the idea 
of a selective advantage in favor of type B even if type A individuals have a selective advantage by construction. 
Moreover, the time dependence of the transition probabilities, due simply to the effect of conditioning as seen in 
Eq. (9), would deceptively support the idea of changing environmental conditions. We see that these conclusions, 
albeit logical from the point of view of explaining the observations a posteriori, are determined by conditioning, 
i.e., by the fact that NB(TF) takes a particular value. Given our a priori knowledge of how we have generated the 
trajectories, conclusions taken through the analysis with the likelihood L(s) would be therefore deprived of any 
foundation. But if we had no such a priori knowledge, there would be no way to confirm or reject the conclu-
sions based on L(s). Case III, with data coming from far back in the past and no fixation, presents some peculi-
arity. For the Moran model L(s) gives a relatively good estimate of the true selection coefficient whereas for the 
Wright-Fisher model it does not. The reason relies on the different time scales associated to absorption in each 
of these models. One step in the Wright-Fisher model corresponds to at least N steps in the Moran model. Thus, 
when the duration T of the time-series is very long and no absorption takes place at the end or close to the end of 
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the time-series, the analysis performed with L(s) leads to a value of s close to unity, compatible with the apparent 
neutrality of the evolutionary trajectory. When T is short, instead, also for the Wright-Fisher model L(s) delivers 
a value of s closer to the true value (a test done with T =​ 10 confirmed this assertion). Therefore, the effect of con-
ditioning in the future combined with the typical time scale of the process and the length of the measurement T is 
non trivial15. Finally, in case IV conditioning can be very strong because the process can enter fixation at any time 
before the present, including times during the observed time-series. From the point of view of the likelihood L(s), 
case IV would give type B individuals a selective advantage where Lc(s) instead correctly predicts that A was in 
advantage. Furthermore, in the light of the relationship between Lc(s) and L(s), it emerges especially in trajectories 
belonging to case II that Lc(s) is bimodal, with a local maximum governed by L(s) and a second local maximum 
at larger values of s governed by Φ​(s). This explains the larger confidence interval for this case in both models. 
This suggests that the ratio of the likelihoods R(s) =​ Lc(s)/L(s) rather than Lc(s) alone could be considered an even 
better functional to estimate the true value of the selection coefficient.

It had already been observed in the context of other models of population genetics that the generation of faith-
ful trajectories of allele frequencies under the condition that fixation has occurred requires the introduction of a 
fictitious selection coefficient19,24. In the context of the Moran model instead, it was shown that under the condi-
tion that fixation has not occurred after long time, the transition probabilities require a correction factor20. While 
both these cases are included and generalized in this manuscript, we should stress here instead that extrapolating 
the selection coefficients from single historic records without due consideration to the peculiar conditioning 
associated to single trajectories gives values of the selection coefficients that are often very different from the real 
values.

Conclusions
An historic time-series is one trajectory whose contingency acts as a condition in the future and thus enters 
in the form of a bias in the elementary transition probabilities. The existence of such a bias when processes are 
conditioned in the future is often referred to as the Doob’s h-transform. Extracting the selection coefficient from 
frequency time-series using the false likelihood function has a deceptive effect: the extracted parameters seem 
to be meaningful and would support models that completely agree with the data used to extract them. Especially 
when predictions about the future outcomes are not possible because of the experimental limitations, seeking 
for models solely from past macroscopic data generates a false self-consistency reminiscent of circularity in data 
analysis16,25–27. When the correct model is known, it is possible to derive a likelihood function that takes the 
Doob’s h-transform into account and to produce reliable estimates of the selection coefficient.
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