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Effect of pristine graphene 
incorporation on charge storage 
mechanism of three-dimensional 
graphene oxide: superior energy 
and power density retention
Kiran Pal Singh, Dhrubajyoti Bhattacharjya, Fatemeh Razmjooei & Jong-Sung Yu

In the race of gaining higher energy density, carbon’s capacity to retain power density is generally 
lost due to defect incorporation and resistance increment in carbon electrode. Herein, a relationship 
between charge carrier density/charge movement and supercapacitance performance is established. 
For this purpose we have incorporated the most defect-free pristine graphene into defective/sacrificial 
graphene oxide. A unique co-solvent-based technique is applied to get a homogeneous suspension 
of single to bi-layer graphene and graphene oxide. This suspension is then transformed into a 3D 
composite structure of pristine graphene sheets (GSs) and defective N-doped reduced graphene oxide 
(N-RGO), which is the first stable and homogenous 3D composite between GS and RGO to the best 
of our knowledge. It is found that incorporation of pristine graphene can drastically decrease defect 
density and thus decrease relaxation time due to improved associations between electrons in GS and 
ions in electrolyte. Furthermore, N doping is implemented selectively only on RGO and such doping is 
shown to improve the charge carrier density of the composite, which eventually improves the energy 
density. After all, the novel 3D composite structure of N-RGO and GS greatly improves energy and 
power density even at high current density (20 A/g).

Energy and power densities are the main features, which distinguish the energy storage devices. In supercapacitors, 
also known as double layer capacitors, the movement of charge determines both the energy and power densities. 
Unlike batteries, supercapacitors store their energy in electrode-electrolyte interphase generated due to the appli-
cation of voltage bias1–4. Another distinction of supercapacitors is their superior power density compared with 
batteries, which arises due to negligible resistance encountered during charge transfer. However, compared with 
batteries, supercapacitors possess much less energy density, and to improve this aspect, various studies have been 
performed, especially on carbon electrode, where it has been shown that improving the pore volumes (mico/meso)  
helps in enhancing the specific capacitance and energy density5–9. However, the destruction of carbon electronic 
structure due to pores incorporation, increases the resistivity in the carbon electrode, which ultimately causes a 
decrease in capacitance at higher current density, eventually dragging down the power density of the superca-
pacitor (P =  Vi

2/4R, where P is maximum power output, R is resistance and V is applied voltage), and limiting 
its applications in many fields1,10–12. Eventually, in the race of gaining higher capacitance/energy density, carbon’s 
capacity to retain power density is generally lost due to defect incorporation and resistance increment in the 
carbon electrode. In this regard, we lack a common ground, where both the properties of supercapacitors can be 
exploited effectively.

Charge storage and utilization in supercapacitor devices, are highly dependent on the defect density of the 
carbon. It has been reported that the volumetric capacitance of the supercapacitors gets saturated, if surface 
area of carbon increases beyond a certain limit, especially when pores have thin walls similar to the thickness of 
graphene12. In recent studies, it was found that the interfacial capacitance gets limited by the quantum capacitance 
although the surface area of the graphene is increased. Therefore, experimentally it was observed that surface 
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area-normalized capacitance of reduced graphene with surface area of 705 m2 g−1, is much higher than that of 
activated graphene oxide (GO) with surface area of 3100 m2 g−1 13,14. Hence, it can be deduced that the improved 
surface area is not the only determining property, which induces higher capacitance into the graphene-like mate-
rials. Zhang et al.15 later showed that the superior volumetric capacitance in graphene-like materials is derived 
not only from the surface area, but also from the charge density. It was shown that capacitance at the point of zero 
charge (PZC) was uplifted after doping of nitrogen (N) into the graphene matrix, and this increase was credited 
to the superior charge density in N-doped graphene15. The five valence electrons in nitrogen’s outer shells impart 
n-type doping once N gets doped into the carbon framework. However, the extent of n-character or free electron 
density depends on the type of N doping in carbon, such as graphitic, pyridinic and pyrrolic. For instance, in gra-
phitic nitrogen, three electrons among five valence electrons, participate in the formation of three σ  bonds with 
three neighbor carbon atoms, one electron goes in the pz orbital, and the fifth is an additional electron that actu-
ally occupies a π *-donor state, providing n-type doping to graphene. In contrast, pyridinic and pyrrolic nitrogen 
atoms are found near a carbon vacancy and so they have only two carbon atoms as neighbors. As a consequence, 
they contribute 2 electrons with only two σ  bonds along with one electron in the pz orbital forming a π -bond with 
its neighbor, and thus leave two electrons as a lone pair. Imparting N-doping in carbon, can therefore have huge 
implication on its surface morphology as well as its electrochemical performance. Hence, it can be concluded that 
in carbon materials like graphene, one can achieve superior capacitance/energy density by simply increasing the 
charge carrier density as well as sheet exposure to electrolyte. Therefore, graphene can be an excellent candidate 
for obtaining higher energy density without significantly disrupting the power density.

Herein the major challenge is to incorporate N heteroatom into the graphene matrix as pristine graphene has 
a perfect structure, and it is difficult to introduce heteroatom without disrupting its lattice16. Nitrogen doping like 
other heteroatoms (oxygen, phosphorus, sulphur, and so on), distorts the carbon lattice, due to the difference in 
the electronegativity and bond length between C-C and C-N. These kinds of variances introduced by a dopant 
into the carbon lattice can distort the π  electron cloud, which eventually hinders the in-plane electron move-
ment on the graphene lattice. Furthermore, even though pristine graphene shows excellent promises in lowering 
the relaxation time and enhancing power density12,17,18, its applicability is limited due to restacking of graphene 
sheets, and pristine graphene has also comparatively less energy density than that of N-doped graphene19–23. 
Thus, it would be very effective if pristine graphene can be distributed into N-doped graphene oxide matrix, as 
a mono or a few layers of graphene sheets, for maximum power density. Therefore, in this work, a unique novel 
methodology has been developed for the first time to realize a new three-dimensional (3D) composite structure, 
where defect-free pristine graphene sheets (GSs) are homogeneously incorporated between defective N-doped 
reduced graphene oxide (N-RGO) layers as an efficient model for high performance supercapacitor. Here, GO 
serves as a sacrificial moiety in which heteroatom dopant and defects are introduced, which helps in improving 
the charge storage capability of the composite. On the other hand, dispersed GSs due to their superior con-
ductivity and defect-free surface can drastically decrease the defect density and thus decrease relaxation time 
due to improved associations between electrons in GS and ions in electrolyte, greatly improving power density. 
Therefore, N-RGO-GS composite can be an excellent candidate for supercapacitor as it possesses properties, 
which can decrease relaxation time and increase capacitance while maintaining both high energy and power 
density. A similar concept of enhancing the overall capacitor performance has been reported before by using CNT 
and graphene oxide composite24–27. Recently Xu et al. showed a tremendous specific capacitance improvement 
after PANI incorporation in carbon aerogel. However the capacitance retention of the material was quite low and 
it retained only 66% of the initial capacity at 10 A/g28. However, due to the complexity of achieving defect-free and 
stable graphene sheets, incorporation of pristine graphene into graphene oxide has never been reported earlier.

Herein, we take the advantage of π  electronic interaction of graphitic carbon to obtain a stable uniform 3D 
composite of N- RGO and pristine GS via freeze drying for generation of high surface area and macropores. 
Giving a 3D structure to the composite is essential to exploit the complete surface of GSs. To obtain this 3D 
structure by freeze drying, it is of greatest importance to identify the solvent, which can disperse and keep both 
graphene and GO sheets stable and be compatible for freeze drying process as well. Therefore, the use of normal 
organic solvents, which are generally being used for dispersing graphite, is out of question as they can introduce 
other functional groups onto graphene sheets during processing29 and are not compatible for GO dispersion and 
freeze drying as well. To deal with the situation, we have adopted a co-solvent (water-ethanol) system, based on 
Hansel solubility parameter (HSP)30, which can efficiently disperse both graphene materials and GO. In brief, 
firstly both graphite powder and GO were separately dispersed in water-ethanol mixture through sonication. 
With help of sonication, GSs were generated from graphite powder. After mixing both the solutions, the mix-
ture was then freeze-dried to obtain 3D structure of graphene oxide-graphene sheet (GO-GS) composite. To 
carry out the N-doping and reduction of GO, the hydrazine vapor reduction of GO-GS was carried out to obtain 
N-doped reduced graphene oxide-graphene sheet (N-RGO-GS) composite as shown in Fig. 1 (For more details, 
see method section)31. This reduction process is preferred over a high temperature carbonization and other pro-
cesses, due to the capability of this process to selectively incorporate N into GO matrix, without disrupting the 
pristine graphene matrix (Figure S1 of Supplementary Information (SI)). The supercapacitance performance of 
the N-RGO-GS composite shows a remarkable capacity retention even at current density as high as 20 A/g, as 
compared with N-RGO alone.

Results and Discussion
First, the efficacy of the water-ethanol co-solvent system for exfoliating graphite is evaluated. Figure 2a shows the 
absorbance determined from UV spectroscopy of the dispersed graphite in various ethanol-water compositions. 
It can be seen that the absorption spectra is highly dependent on the amount of ethanol used, and the best dis-
persion is obtained for the system consisting of 40% of ethanol. The Ra (HSP distance) curve shows the parabolic 
behavior with minimum at 40% ethanol concentration in water, which clearly illustrates that the adaptability of 
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co-solvent system for graphite is maximum at this ethanol concentration. On the basis of cohesive energy, cal-
culated by considering atomic and molecular bonding, such as dispersive δ D, polar δ P, and hydrogen bonding δ H, 
(see Table S1 of SI) of the solvent system, the solubility parameter required for the efficient dispersion of solute 
can be predicted. HSP for solvent and solute can be calculated by finding the level of their adaptation also known 
as HSP distance, Ra,

= δ − δ + δ − δ + δ − δ
.

R [4( ) ( ) ( ) ] (1)a D,solv D,solu
2

P,solv P,solu
2

H,solv H,solu
2 0 5

δ = Σ δø (2)blend n,comp n,comp

where Ra is the length of the vector from the point in Hansen space representing the graphene to the point rep-
resenting the solvent (azeotrope). Therefore, the smaller the value of Ra, the better the adaptation of solvent for 
solute. For the present system on the basis of Ra value, we have tried to determine the exact concentration of eth-
anol and water in the co-solvent system, required for the efficient dispersion of graphite. For our present system, 
40% of ethanol in water was found to give the best dispersion of graphite. The concentration of graphite in 40% 
ethanol-60% water system is calculated to be 0.32 mg/ml as shown in Fig. 2b.

Quality of the dispersed graphene was further evaluated. Figure S2 of SI shows that dispersed sample mainly 
comprises of 1–2 layers of graphene. The electron diffraction pattern shows that the mixed solvent system does 
not disrupt the chemical integrity of the obtained graphene. From atomic resolution HR-TEM images, the lattice 
constant for graphene is found to be 0.25 nm, which is consistent with that of pristine graphene. On the other 
hand, Figure S3 of SI shows the dispersed GO morphology. It is seen that GO sheets are efficiently dispersed in 
water-ethanol azeotropic system like in pure water system.

Topographical features of the freeze-dried N-RGO-GS composite and N-RGO are shown in Fig. 3. SEM 
images for both the samples were quite similar, and a free standing 3D graphene structure can be seen clearly. 
This 3D structure can definitely provide maximum sheet exposure to the electrolyte ions due to the presence of 
macroscopic pores and is necessary to keep the sheets separated from each other. Interestingly, in TEM image for 
N-RGO-GS in Fig. 3c, it is found that N-RGO sheets are wrapped onto GS, which simply implies the existence 
of π -π  interaction between two graphene materials. In solid phase, the restacking of graphene sheets occurs due 
to the presence of weak van der waals forces. However, once the graphite is stably dispersed in any solvent, this 

Figure 1. Schematic representation of novel 3D N-RGO-GS composite. 

Figure 2. (a) Absorbance of the graphene in ethanol/water mixtures and their respective calculated Ra values 
according to Hansen solubility parameter and (b) graphene concentration variation with respect to ethanol 
concentration.
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force has almost no effect between them as it is counterbalanced by the surface tension of the liquid. On the 
other hand, in the case of graphene oxide, due to incorporation of oxygen moieties they becomes hydrophilic in 
nature and can be easily dispersed in many aqueous solvents. Therefore, once graphene oxide is stably dispersed 
in azeotropic solvent (water:ethanol) as shown in the present study, upon addition of graphene sheets dispersed 
in the identical azeotropic solvent (water:ethanol), there may occur an interaction between graphene oxides and 
the graphene sheets due to lattice matching or π -π  interaction associated with presence of graphitic lattice in both 
materials. Similar phenomena have been observed previously as well, where graphene oxide solution have been 
used as dispersant for the dispersion of the carbon nanotubes32,33. Hence, we can surmise that due to the presence 
of these weak forces, i.e. π -π  interaction or lattice matching, the final product will be an composite of graphene 
oxides and graphene sheets. This morphology also illustrates the presence of GS between two RGO sheets. This 
kind of packing can keep the GSs separate and also offer efficient electrical transmission path in the composite. 
Figure 3d shows a HR-TEM image, where it can be seen that the prepared N-RGO-GS sample contains defective 
N-RGO sheets on the top of the pristine GS. Therefore, it can be predicted that the presence of stable pristine GSs 
can significantly enhance the electronic conduction of the composite materials. Herein, we would again like to 
mention that the graphene dispersion contains 1–2 layer of GSs and thus, the possibility of their restacking during 
addition of GO solution is very less as the dispersant used for GO is also the same concentration of ethanol-water 
solution, which can keep the overall solubility parameter of the solvent system constant. In addition, the π -π  
interaction between GSs and GO sheets can keep GSs stably dispersed in the solution34,35. For comparison we had 
also freeze-dried graphene dispersion only without graphene oxide, and it is found that the dried product consists 
of heavily stacked graphite sheets (Figure S4 of SI), which signifies the importance of incorporating graphene 
oxide for obtaining stable respective pristine graphene sheets.

The effectiveness of present reduction process on the prepared composite material is analyzed by XPS analysis. 
Figure 4 shows the full XPS survey graphs for GO, GO-GS, N-RGO, and N-RGO-GS. High intensity oxygen sig-
nal in GO and GO-GS samples due to the presence of GO can be noticed. It can be seen that after hydrazine vapor 
treatment, C/O atomic ratio changes from 2.3 to 14.2, along with the introduction of 2.9% of nitrogen, indicating 
the simultaneous reduction and doping of GO in N-RGO-GS composite. As shown in Table S2 of SI, similar trend 
is observed in GO and N-RGO samples as well. Interestingly, lesser amount of carbon content is observed in GO 
and N-RGO (Table S2 of SI) as compared with GO-GS and N-RGO-GS, due to the presence of pristine GSs in 
the composites. High resolution of C1s spectra can be seen in Figure S5a of SI. Interestingly, intensity of C1, sp2 
hybridized carbon, is found to increase after addition of graphene in N-RGO matrix, whereas C2, sp3 hybridized 
carbon, decreases due to pristine GS in N-RGO-GS. On a closer look after N1s deconvolution (Figure S5b of SI) 
it is found that in both N-RGO and N-RGO-GS, N heteroatom mainly got doped as a pyrrolic or amine species  
(ca. 399.5 eV)36. In addition, the overall peak intensity of nitrogen content is found to be decrease and this dec-
rement can be attributed to the presence of N-free pristine GSs in N-RGO-GS composite. Even though there 
are various factors which influence the performance of the supercapacitors, N-doping is a key factor, which 
improves binding energy of the ions in the electrolyte with the electrode. The binding energy enhancement would 

Figure 3. SEM images of (a) N-RGO-GS, (b) N-RGO, and (c,d) TEM images of N-RGO-GS.
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contribute to the capacitance increase because larger binding energy allows a larger number of ions to be accom-
modated on the electrode surface37. If we consider the electronic charge distribution around various types of 
N-dopant, pyrrolic and pyridinic nitrogen can impart high charge concentration in the carbon lattice due to 
the availability of 2 lone pair of electrons in their outer orbital, as compared to graphitic nitrogen38. In addition, 
pyrrolic-N is known to contribute greatly to electrochemical behavior as it reduces the band gap of carbon. This 
means that carbon framework with a pyrrol nitrogen-containing group at the edge of graphene layer has high 
charge mobility in a carbon matrix and excellent donor-acceptor properties39. Hence, we can surmise that the 
presence of pyrrolic nitrogen in the carbon lattice can improve the overall charge storage capacity of the carbon 
electrode.

To study the crystal structure, Raman analysis was performed on the prepared samples (Figure S6 of SI). 
Interestingly, very pronounced G band and 2D band are observed in N-RGO-GS in comparison to N-RGO, 
which clearly indicates the efficient incorporation of GSs into GO matrix. BET surface area of the prepared sam-
ples was also evaluated as shown in Figure S7 of SI. An obvious decrement in mesopores volume and surface area, 
from 0.79 to 0.51 cm3g−1 and from 190 to 171 m2g−1, is observed after graphene sheet incorporation. However, 
micropore volume is found to increase in N-RGO-GS (Table S3 of SI). This variation in surface area and pore 
volume can be attributed to the insertion of GSs between two graphene oxide layers as shown in Fig. 3.

The electrochemical testing was performed in a three-electrode setup by keeping Pt as a counter and SCE as 
a reference electrode. The effect of GS addition on the electrochemical behavior can be easily seen from the CV 
performance in Fig. 5a. A nearly perfect rectangular shape is obtained for N-RGO-GS sample, whereas a current 
suppression, indicating a slow discharge current release during voltage reversal, is observed for N-RGO sample 
at 50 mV/sec scanning. The gravimetric capacitances of the samples measured from charge-discharge curve are 
shown in Figure S8 of SI. To our surprise, it is found that although N-RGO-GS possesses less gravimetric capaci-
tance than N-RGO at 1 A/g, its capacitance gets much better than N-RGO as the current density increases as seen 
in Fig. 5b. This indicates that to achieve desirable supercapacitance performance, it is of utmost importance to 
improve surface area without losing the conductivity of the carbon, which can decrease relaxation time. For com-
parison, the capacitance on freeze-dried graphite particles was also measured (Figure S9 of SI). These particles 
are found to possess much less capacitance due to very low defect density although their capacity retention is very 
high even at current density of 20 A/g (Figure S9b of SI). This also shows that a 3D uniform composite structure 
of both highly conductive GSs and high surface area N-RGO with high charge carrier density is necessary as an 
efficient model for high performance supercapacitor.

To understand this excellent stability in capacitance in N-RGO-GS as compared with N-RGO at higher cur-
rent density, we have carried out the impedance analysis on the samples. Figure 6a shows the Nyquist plots of 

Figure 4. XPS survey scans of (a) GO-GS, (b) GO, (c) N-RGO-GS, and (d) N-RGO.
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both the samples. Undoubtedly N-RGO-GS shows much better charge transfer conductance than N-RGO at 
higher frequency. A near ideal vertical graph without any high frequency RC (resistor-capacitor) loop is observed 
for N-RGO-GS unlike N-RGO. This indicates very good electrode contact throughout the N-RGO-GS sample 
facilitated by the presence of pristine graphene in it40. To get the better perspective of the capacitance behavior, 
the complex capacitance plots were plotted from impedance spectra (Fig. 6b,c). It can be seen from C’ vs fre-
quency plot that both electrodes reach their maximum capacitance at lower frequency. However, the N-RGO-GS 
maintains its capacitance up to a much higher frequency (0.26 Hz) as compared with N-RGO electrode (0.07 Hz). 
The irreversible energy dissipation and relaxation process are judged from imaginary part capacitance (C”). The 
relaxation time constant ‘τ ’ is calculated from the fmax of Fig. 6c. It can be seen that N-RGO-GS shows τ  =  0.46 sec, 
whereas for N-RGO it was found to be 2.63 sec. Hence, after addition of GSs, the ion transport and rate constant 
get much better, and this in turn results in better power output for N-RGO-GS41.

Figure 5. (a) CV scans at 50 mV/sec and (b) relative capacitance retention as a function of current density for 
N-RGO and N-RGO-GS electrodes.

Figure 6. (a) Nyquiste plots, (b) C′  and (c) C″  vs. frequency plots, and (d) cyclic stability at 3 A/g of N-RGO 
and N-RGO-GS.
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As a result, from the lower relaxation time and higher frequency response of N-RGO-GS as compared with 
N-RGO, it can be understood that at lower frequency alternating current (AC) field, almost all the polarized ions 
in N-RGO are fully aligned, and hence N-RGO possesses better capacitance than N-RGO-GS. It is necessary to 
mention here that the defect density in N-RGO is much higher (see Figure S6 of SI) as compared to N-RGO-GS, 
which enables much higher charge storage in this material at lower frequency/current density. However, as the AC 
frequency increases, most of the polarized ions in N-RGO cannot follow the higher frequency field at each direc-
tion reversal, due to poor conductivity of this sample as compared with its counterpart. As the high-frequency 
AC field changes direction faster, these ions “relax” to nonaligned positions, where N-RGO cannot store energy 
as much as N-RGO-GS can. Hence, a decrement in the N-RGO performance is observed at higher frequency42. 
Impact of GS incorporation on the energy and power density retention of N-RGO-GS can be clearly seen from 
the Ragone plot in Figure S10 of SI. The cyclic stability of both the samples is also tested upto 5000 cycles (Fig. 6d), 
and only a mild capacitance fading is observed, signifying that the pore system of the prepared system can remain 
intact for a longer cycling period. For the sake of comparison, a comparative table portraying the capacitance 
performance of other graphene oxide composites and current N-RGO-GS is shown in Table S4 of SI. It can be 
seen that all the prepared materials shown in earlier works possess a very high surface area as compared with 
our sample prepared in the present manuscript, but the capacitance performance of our N-RGO-GS is equally 
comparative to others. Furthermore, we have also compared the capacity retention for various graphene and 
carbon composites and N-RGO-GS composite, in Table S4 of SI. It can be seen that the capacity retention for the 
N-RGO-GS material (~88%) is far better than that of the previously reported materials. This indicates the impor-
tance of introducing a defect free graphene lattice into the N-RGO framework. This clearly proves the point that 
the surface area is not the only determining factor for enhancing the capacitance performance. Hence, if the mate-
rial is designed with high charge carrier concentration and the surface area of the graphene sheets can be fully 
exploited, an excellent capacitance with superb energy density without sacrificing power density can be achieved.

To get a better picture of the origin of this phenomenon, Mott-Schottky plots are obtained for N-RGO and 
N-RGO-GS (Fig. 7). Before carrying out the impedance analysis, CV curves for both the samples were obtained 
in the potential range of − 0.5 to 0.5 vs. SCE in 2.0 M KCl. It can be seen no faradic process occurs in the used 
potential range and hence the obtained capacitance can only attributed to the EDLC (Figure S11 of SI). A fre-
quency dependent Mott-Schottky plots obtained for N-RGO and N-RGO-GS signify the spreading of localized 
states in the whole range of energies, which causes a slow response of charge carriers in the depletion region to 
the applied alternating potential43–47. As N-RGO possesses much higher amount of defects and oxygen content, 
it is reasonable to conclude that the carbon surface is more resistive and therefore possesses such frequency 
dependence behavior. Therefore, it can be established that due to the presence of pristine graphene, the presence 
of defects has been reduced to a greater extent, which has increased the AC response of the charge particles. This, 
in return gives rise to lower relaxation time and hence increasing the power and energy output of the N-RGO-GS 
samples at higher frequency.

In conclusions, herein, with the motive of finding a common ground of improving energy density without 
significantly losing the power density and proving the importance of defect-free conductive surface in super-
capacitors, we have developed for the first time a novel uniform 3D high surface area structure of N-doped 
reduced graphene oxide–pristine graphene sheet (N-RGO-GS) composite, via simple freeze drying process, using 
a common ethanol-water azeotrope solvent. In the resultant novel 3D composite, the graphene sheets are present 
between two graphene oxide layers, and this kind of packing can keep the graphene sheets separate, thus offering 
efficient electrical transmission path in the composite scaffold with high surface area. The well-separated sheet 
structure provides much higher surface accessibility to the electrolyte ions, improving the electrolyte-electrode 
interaction. Furthermore, it was found that N-doping induces n-type charge carriers and helps in increasing the 
capacitance (energy density) of the N-RGO-GS. On the other hand, due to the incorporation of highly conductive 
pristine graphene, the defect density, which affects the frequency response of the capacitance, has been reduced, 
causing a drastic reduction in relaxation time. Therefore, much improved overall supercapacitance performance 
is observed even at higher current density (20 A/g), illustrating superior energy density retention. Through this 
study, we have also shown that in addition to higher surface area, a defect-free conductive surface is very essential 
for obtaining an excellent candidate for supercapacitor. This facile method of incorporating pristine graphene 

Figure 7. Mott-Schottky plots for (a) N-RGO and (b) N-RGO-GS.
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into disordered graphene oxide is expected to have huge implication towards the development of high efficient 
supercapacitor and battery materials in the energy storage field and can definitely open new dimensions in both 
synthetic and electro-chemistry of new carbon composite materials.

Methods
Material synthesis. Synthesis of Graphene Oxide. The graphene oxide was synthesized using improved 
Hummers method. In brief 3.0 gm of graphite (Alfa Aesar, 325 mesh), was mixed with 18.0 gm of KMNO4 in 
H2SO4:H3PO4 (9:1) solution. The obtained mixture was then stirred for 12 h at 50 °C. After getting brownish 
colour, 400 ml ice was added to the solution followed by dropwise addition of 3 ml H2O2. Obtained yellowish 
solution was then stirred for 2 h more. The final product was then obtained by centrifuging and washing with HCl 
and water. The obtained graphene oxide (GO) product was then dried at 70 °C overnight.

Preparation of pristine graphene-graphene oxide composite. Firstly, 10 mg graphite powder was dispersed in 
50 ml ethanol/water mixture with 40 vol% ethanol volume, using a bath sonicator operated at low power for 
8 h continuously. The obtained dispersion was then centrifuged at 3000 rpm for 30 mins, and the supernatant 
was collected. On the other hand, the GO product was dispersed in the same azeotropic solvent (50 ml ethanol/
water mixture with 40 vol% ethanol volume), by 2 h of sonication for 25 mg GO. The GO dispersant was then 
centrifuged at 4000 rpm for 45 mins to get stable GO solution. To obtain the final composite, both graphene and 
graphene oxide solutions are then mixed together under sonication for 30 mins. The obtained composite solution 
was then freeze-dried in a freezer (operated at − 40 °C) and dryer (operated at 5 m torr) (Ilshin Bio Ltd, Korea). 
The obtained graphene oxide-graphene sheet product is termed at GO-GS composite. For comparison, only GO 
dispersion was also freeze-dried by keeping all the conditions similar to those of GO-GS. In addition, we have 
tried to synthesize only 3D graphene by keeping all the conditions same as above, but in absence of graphene 
oxide.

N-doping and reduction of GO. The reduction of GO was carried by vapor hydrazine reduction. In brief, the GO 
or GO-GS sample, kept in a separate beaker, was treated with hydrazine vapor generated by the blowing Ar gas 
into 10 ml 50% hydrazine hydrate (Sigma Aldrich) for 8 h. During reduction process the samples were heated at 
60 °C to stop the condensation of hydrazine on carbon samples. The completion of reduction was judged by the 
change of brown color of GO to black color of RGO. The reduced hydrazine-treated samples were then termed 
as N-RGO and N-RGO-GS for the corresponding GO and GO-GS, respectively. At the same time, N-doping was 
realized on the reduced GO during hydrazine process.

Material characterization. The morphology and microstructure of the obtained samples were investigated 
by scanning electron microscopy (SEM) Hitachi (S-4700, Hitachi, Japan) microscope, Transmission electron 
microscopy (TEM) EM912 Omega and High resolution-TEM (HR-TEM) JEOL FE-2010 microscope. X-ray 
photoelectron spectroscopy (XPS) analyses were carried out with an ESCALAB 250 XPS System using a mono-
chromated Al Kα  (150 W) source. Raman spectra were recorded with a Renishaw spectrometer using an Ar ion 
laser (λ  =  514.5 nm). The absorption spectra of the samples were recorded by using an Ultraviolet-Visible-Near 
Infrared Spectrophotometer (CARY 5000) manufactured by Agilent Technology. The specific surface areas of all 
the samples were measured with ASAP 2020 Physisorption Analyzer (Micrometrics, USA) at − 196 °C, based on 
the Brunauer– Emmett–Teller (BET) method from nitrogen adsorption data in the relative pressure range from 
0.05 to 0.2. Total pore volumes were determined from the amount of gas adsorbed at the relative pressure of 0.99. 
The pore size distribution was derived from adsorption branches by the Horvath-kawazoe (HK) report.

Electrochemical Characterization. All the electrochemical measurements were carried out with a 
Biologic electrochemical workstation (Biologic VSP). N-RGO and N-RGO-GS carbon electrodes were fabricated 
as follows. The electrode slurry was prepared by mixing 90 wt% active materials and 10 wt% polyvinylidene flu-
oride (PVdF) binder in a mortar and pestle using a few drops of N-methylpyrrolidinone (NMP) as a solvent. The 
resulting uniform slurry was then coated onto a nickel foam current collector (1 cm2) and dried at room temper-
ature overnight, followed by further drying at 80 °C in a vacuum oven for 12 h. The sample loading in all samples 
are kept constant at 10 mg. The electrochemical performances of the electrodes were tested using a three-electrode 
configuration in aqueous 6.0 M KOH electrolyte, where prepared carbon sample acts as a working electrode with 
SCE as a reference and Pt wire as a counter electrode. Cyclic voltammetry (CV), galvanostatic charge–discharge 
(CD) and electrochemical impedance spectroscopy (EIS) methods were employed for measurement of the elec-
trochemical performance. The CV and CD curves were recorded between − 1.0 to 0.0 V at potential scan rates of 
10, 50 and 100 mVs−1 and at current densities of 0.1 to 1.0 Ag−1. The EIS measurements were carried out in the 
frequency range from 10 KHz to 100 mHz with a sinusoidal amplitude of 10 mV. The alternating current (AC) 
complex impedance was measured based on the following equation Z*  =  Z′ − iZ″ . The complex AC capacitance 
C*  =  C′ − iC″  was calculated from the impedance data, as C′  =  Z″ /ω |Z|2 and C″  =  Z′ /ω |Z|2, where ω  =  2π f, and f 
is frequency. The relaxation times τ  =  1/fm were calculated from the relaxation frequencies fm, corresponding to 
the C″  maxima.

The energy density and power density of the electrodes at various current density is calculated using the fol-
lowing equations:

= ∆ ×−E(WhKg ) 1/2 C V (1000/3600) (3)1
S

2
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= = ∆ ×−P(WKg ) E/T (I V/2m) 1000 (4)1

where E is the specific energy density, Cs is the specific capacitance, Δ V is the potential range, P is specific power 
density and T is the time of discharge. For the measurement of the interfacial capacitance, a three-electrode con-
figuration was assembled using Pt plate of surface area 5 cm2 as a counter electrode, SCE as a reference electrode 
and N-RGO or N-RGO-GS sample as a working electrode. In order to make the working electrode, carbon paste, 
consisting of 95% active material, 5% PvDF and NMP, was painted over the Ti foil, whose edges are already pro-
tected with the scotch tape. The uncoated part of the electrode was isolated with Teflon coating. For ensuring low 
ohmic resistance, the leads were attached to the working electrode using silver paints. The electrolyte was a 2.0 M 
KCl solution without any additive and was purged with N2 gas for 1 h before the measurement. All the electrodes 
were partially immersed into the electrolyte, and the capacitance was measured using electrode impedance spec-
troscopy. The electrode impedance spectroscopy was performed by using a sinusoidal signal with amplitude of 
10 mV over a frequency range of 100 kHz–10 Hz and a scanning potential range of − 0.5 to 0.5 V versus a SCE 
reference electrode at a step size of 0.1 V with a 600 s equilibration time allowed at each step.
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