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Insights into the transmission of 
respiratory infectious diseases 
through empirical human contact 
networks
Chunlin Huang1,2,*, Xingwu Liu1,*, Shiwei Sun1, Shuai Cheng Li3, Minghua Deng4, 
Guangxue He5, Haicang Zhang1,2, Chao Wang1,2, Yang Zhou5, Yanlin Zhao5 & Dongbo Bu1,6

In this study, we present representative human contact networks among Chinese college students. 
Unlike schools in the US, human contacts within Chinese colleges are extremely clustered, partly due to 
the highly organized lifestyle of Chinese college students. Simulations of influenza spreading across real 
contact networks are in good accordance with real influenza records; however, epidemic simulations 
across idealized scale-free or small-world networks show considerable overestimation of disease 
prevalence, thus challenging the widely-applied idealized human contact models in epidemiology. 
Furthermore, the special contact pattern within Chinese colleges results in disease spreading patterns 
distinct from those of the US schools. Remarkably, class cancelation, though simple, shows a mitigating 
power equal to quarantine/vaccination applied on ~25% of college students, which quantitatively 
explains its success in Chinese colleges during the SARS period. Our findings greatly facilitate reliable 
prediction of epidemic prevalence, and thus should help establishing effective strategies for respiratory 
infectious diseases control.

Respiratory infectious diseases pose a serious threat to human health, due to their high mortality rate as well 
as their rapid transmission across populations1. For example, influenza, a highly infectious disease, led to an 
estimated 250,000~500,000 deaths worldwide each year2. In comparison, tuberculosis, although spreading rela-
tively slowly, was reported to cause more than 1.3 million deaths in 20123. However, predicting the prevalence of 
respiratory infectious diseases and establishing effective control strategies remain fundamental challenges, partly 
due to the lack of understanding on the principles of disease spread.

Unraveling the principles of how respiratory infectious diseases spread requires a detailed understanding of 
human contact networks. Briefly, a human contact network consists of nodes representing individuals, as well as 
edges representing close proximity interactions (CPIs) among individuals4. Respiratory infectious diseases are 
predominantly transmit via air-borne droplets or aerosol among individuals with close proximity interactions; 
thus, the topological structure of CPI networks crucially affects transmission of respiratory diseases5.

Due to the lack of real CPI data, idealized models of human contact networks are commonly employed to 
study epidemic behavior. For instance, one such model, the homogeneous network, assumes any individual to 
interact with a fixed number of partners1,5. This assumption of uniform spread pattern was implicitly adopted by 
the classical differential-equation approach6. Another model is the heterogeneous network, such as small-world 
or scale-free network, which was introduced to capture the fact that in real life, some people are more socially 
connected than others7,8. However, these idealized models were not fully examined on the basis of real CPI data.

With the recent development of portable wireless technologies, such as Bluetooth, it is now possible to acquire 
real CPI data in an accurate and direct manner. For instance, two individuals wearing Bluetooth-enabled mobile 

1Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 
Beijing, China. 2University of Chinese Academy of Sciences, Beijing, China. 3City University of Hong Kong, China. 
4School of Mathematical Sciences, Center of Quantitative Biology, Center of Statistical Sciences, Peking University, 
Beijing, China. 5Chinese Center for Disease Control and Prevention, Beijing, China. 6State Key Laboratory of 
Theoretical Physics, Chinese Academy of Sciences, Beijing, China. * These authors contributed equally to this 
work. Correspondence and requests for materials should be addressed to Y.Z. (email: zhaoyanlin@chinatb.org) or  
D.B. (email: dbu@ict.ac.cn)

received: 03 March 2016

Accepted: 19 July 2016

Published: 16 August 2016

OPEN

mailto:zhaoyanlin@chinatb.org
mailto:dbu@ict.ac.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:31484 | DOI: 10.1038/srep31484

phones can detect each other if the distance between them is within 10 meters, which also indicates a physically 
close proximity interaction between them. This CPI data acquisition approach is reasonable due to two aspects 
of the similarity between Bluetooth signal detection and respiratory disease spreading. First, airborne droplets, 
the major respiratory disease carrier, can travel for more than 6 meters (while coughing or sneezing)9, which is 
close to the detection range of Bluetooth signals. Second, both airborne droplets and Bluetooth signals are prone 
to be blocked by intermediate obstacles such as walls. Recently, several studies have been performed to probe real 
CPI patterns in US and French schools10–12 and residential communities13 using Bluetooth or similar wireless 
techniques.

CPI patterns have been reported to be highly related with lifestyle and demographics of human communi-
ties10. Thus, Chinese colleges might exhibit distinct CPI patterns, as these colleges exhibit a highly organized life-
style of their student communities. Specifically, Chinese college students are organized into classes, and students 
within one class are also enrolled in identical courses. In addition, unlike schools in the US, most Chinese colleges 
are boarding schools, where undergraduate students live in neighboring dormitories on the same campus, and 
usually have their meals in large-capacity canteens.

To understand the disease spreading principles within Chinese colleges, we designed a mobile phone applica-
tion called PEARL (Probing Entity Aggregation in Real Life) to collect CPIs through Bluetooth signal detection. 
Using this application, we acquired real CPI data among undergraduate volunteers in two representative Chinese 
colleges. Subsequently, we validated the acquired CPI networks by simulating the transmission of influenza and 
comparing the results with real influenza records. As applications of the real CPI networks, we investigated the 
disease spreading behavior in Chinese colleges. We also evaluated a variety of disease control strategies, with 
emphasis on class-cancelation strategy, which was widely applied in Chinese colleges during the SARS outbreak 
in 200314.

Methods
Real CPI data collection. Using the PEARL application, we collected real CPI data amongst 174 under-
graduates for 28 days (between October 31 and November 27, 2011) in a typical college in southern China 
(South China Agricultural University, or SCAU). To mitigate potential bias rooted at geographical locations, 
this data-gathering program was also carried out at a college in northern China (University of Science and 
Technology of Beijing, or USTB) to collect real CPI data from 87 undergraduates for 28 days (between October 
24 and November 20, 2011). On the mobile phone of each volunteer, a PEARL client was installed to scan nearby 
PEARL clients via Bluetooth technique every 5 minutes. The detected Bluetooth addresses and scan time were 
recorded. Thus, in every 5 minutes, the CPI data was obtained among the individuals, from which a basic net-
work was reconstructed with every node representing an individual, and every edge representing a 5-minute CPI 
among two individuals. The summation of all 288 (24 ×  60/5 =  288) basic networks in a certain day formed a daily 
aggregation of CPI networks, where edge weights denote the aggregate CPI duration in the entire day. The PEARL 
CPI data sets are accessible via http://bioinfo.ict.ac.cn/pearl/.

Real influenza records were also collected from the SCAU undergraduate volunteers who participated in the 
PEARL program. In particular, all the volunteers were required to report their health condition from September 
25 to October 21, 2011. Due to the memory loss, only 76 out of the total 174 volunteers reported this information. 
Among these volunteers, 13 were infected by influenza, but only 8 could remember the exact dates. Thus on a 
certain day, the number of volunteers who reported to be infected, denoted as #infected, can be calculated as

= × × .infected infected ratio recall ratio# 76 (1)

Here, recall ratio denotes the ratio of the infected volunteers who can recall the exact dates of infection. As men-
tioned above, recall ratio can be estimated as 8/13. Thus, the infected ratio  was estimated as 

= ×infected ratio infected#
76

13
8

 (Supplementary Table S1).
All data collection protocols were approved by Institute of Computing Technology, Chinese Academy of 

Sciences. Written informed consents were obtained from all participating volunteers. The methods were carried 
out in accordance with the approved guidelines.

Simulating disease spread using SEIR model. The spreading process of respiratory infectious diseases 
was simulated using SEIR model6. SEIR model describes disease transmission processes where individuals transit 
step by step among four possible disease states, namely, susceptible (S), exposed/latent (E), infectious (I), and 
recovered (R).

At every step of epidemic simulation, every exposed individual becomes infectious with probability δ, while 
every infectious one causes each susceptible neighbor in the contact network (having interaction with the infec-
tious one at that step) to be exposed with probability β, and infectious ones recover with probability γ.

The probabilities express how likely an individual changes its states at a step, and thus highly depend on how 
long a step takes (called unit time t). These probabilities were calculated as below.

β β= − −1 (1 ) (2)t t
0

( / )0

δ δ= − −1 (1 ) (3)t t
0

( / )0

γ γ= − −1 (1 ) (4)t t
0

( / )0

Here, the parameters β0, δ0, and γ0 denote respective probabilities within time t0.

http://bioinfo.ict.ac.cn/pearl/
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Intuitively, δ −0
1 measures the duration of latent period, γ −0

1 measures the duration of infectious period, and 
β0 measures how often a susceptible-infected contact results in a new exposure. The larger β0, the more rapidly 
diseases spread. Previous studies utilized different parameter settings for SEIR model. In ref. 15, δ = .− 3 5 days0

1 , 
and γ =− 3 days0

1 ; In ref. 16, δ −0
1 ranges over [1, 4] days, and γ−0

1 ranges over [3, 5] days; In ref. 17, δ −0
1 ranges over 

[1, 2] days, and γ−0
1 ranges over [1.5, 4] days; In ref. 4, β0 =  1.5 ×  10−4 sec−1; In ref. 18, β0 was set as 1.5 ×  10−4 sec−1 

or 1.5 ×  10−4 sec−1; In ref. 19, β0 was set as 2.8 ×  10−4 sec−1 or 6.9 ×  10−4 sec−1. Based on these studies, we set the 
parameter ranges as β0 in [0.1, 7.0] ×  10−4 sec−1, δ −0

1 in [1, 4] days, and γ−0
1 in [1.5, 5] days in this study.

The real CPI networks are usually constructed at a specific time resolution, as CPIs among individuals are 
dynamic. To simulate disease spread on dynamic CPI networks, the unit time of simulation was set according 
to time resolution. For example, the SCAU networks were constructed through Bluetooth scan every 5 minutes; 
thus, the unit time was set as 5 minutes accordingly for epidemic simulation. The unit time for other CPI networks 
used in this study are listed in Supplementary Table S2.

Our simulation starts with one of the individuals (called index individual) being exposed and the others being 
susceptible, and stops when no individuals are exposed or infectious. To remove the potential biases in index 
selection and state transition, a total of 10,000 simulations were performed with index individuals selected at 
random.

We considered the following four statistics of the simulation results: (1) The total infected percentage describes 
the percentage of individuals infected during the whole spreading process; (2) R0, also known as the basic repro-
ductive number, represents the number of individuals infected directly by the index individual6. Epidemic out-
break occurs only when R0 >  15. In this study, R0 is approximated as the average number of individuals infected by 
index individuals that are selected at random; (3) the peak epidemic time denotes when the number of infected 
individuals reaches its maximum value; and (4) the epidemic duration describes the duration of the disease 
spread.

Evaluating disease control strategies. At present, the popular approaches to control the transmission 
of respiratory infectious diseases are targeted quarantine/vaccination, i.e., selecting a collection of individuals for 
quarantine or vaccination. The percentage of individuals selected is denoted as quarantine/vaccination coverage. 
A variety of network-based selection strategies have been proposed according to individual’s characteristics cal-
culated based on CPI networks, including degree (contact number), strength, betweenness, clustering coefficient 
(CC), and the primary eigenvector4. In this study, the disease control strategies were simulated by removing the 
selected individuals from the CPI network followed by running the SEIR models. We evaluated the following 
network-based strategies for disease control, including degree strategy, strength strategy, CC strategy, between-
ness centrality strategy, and eigenvector centrality strategy (Supplementary Methods).

Besides these network-based strategies, class cancelation is also commonly applied as a disease control strat-
egy in boarding schools14. During class cancelation period in boarding schools, all students are ordered to stay 
within the campus, with all classes cancelled, thus showing a CPI pattern nearly identical to that at weekends. 
In our study, class cancelation was simulated by simply replacing the CPI networks at weekdays with the CPI 
networks at weekends.

The platform for disease spread simulating and quarantine/vaccination strategies evaluating are accessible via 
http://bioinfo.ict.ac.cn/pearl/.

Results
Analyzing real CPI networks in two representative Chinese colleges. Using the PEARL application, 
we collected real CPI data from two representative Chinese colleges, namely, SCAU, and USTB. Figure 1 shows 
two examples of the SCAU CPI networks acquired on October 31, 2011 (weekday, denoted as SCAU1031) and 
November 5, 2011 (weekend, denoted as SCAU1105), where nodes represent students and edges represent CPIs, 
with line width proportional to the aggregate interaction duration during one day. Supplementary Fig. S2 shows 
two examples of USTB CPI networks in the same manner.

In fact, the real CPIs can be divided into two categories according to interaction duration, namely, transient 
CPIs formed by purely random interactions, and regular CPIs representing meaningful interactions among 
students4. We therefore employed a mixture statistical model to describe the CPI durations (Supplementary 
Methods S1), and determined the optimal duration threshold to distinguish these two categories as 30 minutes 
(Supplementary Fig. S3). To remove the biases in network statistics introduced by purely random CPIs, the CPIs 
with an aggregate duration of less than 30 minutes were filtered out before calculating network statistics.

To understand the detailed characteristics of real CPI networks, a collection of idealized CPI networks was 
constructed for comparison, including small-world (SW) networks generated using the Newman-Watts model, 
scale-free (SF) networks generated using the Barabási-Albért model, and uniformly-random (UR) networks gen-
erated using the Erdös-Rényi model20. For unbiased comparison, all the idealized CPI networks were generated 
with identical numbers of individuals and CPIs to counterpart real CPI networks (Supplementary Methods). To 
understand the distinct characteristics of CPI networks in Chinese colleges, we compared them with the real CPI 
networks acquired using Bluetooth and similar wireless techniques from a US undergraduate dormitory (denoted 
as USD)11, a US high school (denoted as USHS)4, and a French primary school (denoted as FRPS)12. For both real 
and idealized CPI networks, a variety of descriptive statistics were calculated, including degree distribution, CC, 
efficiency, modularity, and periodicity (see Supplementary Methods for detailed definitions).

It is worth pointed out that the generated idealized networks are un-weighted, and the network statistic cal-
culations are applicable only to un-weighted networks, too. For fair comparison, un-weighted version of real CPI 
networks should be employed. A straightforward strategy to achieve this objective is to simply ignore the duration 
of real CPIs, no matter how strong or weak they are. However, this strategy might lead to deviation in calculation 
of network statistics, as CPIs greatly vary in durations (Figs 1 and S2). In fact, the CPI durations can be perfectly 
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fitted by the mixture of a Poisson distribution and a truncated Gaussian distribution (Supplementary Methods 
and Supplementary Fig. S3). These two distributions were used to describe transient CPIs formed by purely ran-
dom interactions, and regular CPIs representing meaningful interactions among students, respectively. Based on 
the intersection point of these two distributions, a threshold to separate transient and regular CPIs can be reason-
ably determined as 30 minutes, i.e., CPIs with duration no more than 30 minutes were treated as transient. Here, 
only regular CPIs were considered in calculations of network statistics, and idealized networks were generated 
with same size to the real CPI networks with transient CPIs removed.

The analysis of network statistics are described as below.

•	 Degree distribution: In a CPI network, the degree of an individual refers to the number of partners that have 
interactions with this individual. It is well known that a uniformly random network approximates a Poisson 
degree distribution, and that a scale-free network is featured by its power-law degree distribution; thus, degree 
distribution is commonly used as a criterion to judge whether a network is scale-free or uniformly random20.
 As shown in Fig. 2, the SCAU1031 network has a degree distribution that is significantly different from both 
the Poisson distribution and power-law distribution. Thus, the CPI networks acquired on weekdays are nei-
ther uniformly random nor scale-free. However, SCAU1105, a CPI network acquired on a weekend, exhibits 
a typical power-law degree distribution. This observation is consistent with the viewpoint that on weekends, 
CPI networks are mainly determined by friendship among students10, and friendship networks usually exhibit 
a power-law degree distribution21. Similar observations were made from other real CPI networks in SCAU 
(shown in Supplementary Fig. S4).

•	 CC and efficiency: These two features are commonly used to quantify the small-world behavior of networks. 
Specifically, CC describes the extent to which nodes in a network tend to cluster, and efficiency measures the 
speed at which bacteria or viruses spread across a human contact network. In general, a small-world network 
has a high CC but low efficiency; thus, CC and efficiency are commonly used as criteria to judge whether a 
network is small-world or not20.
 As shown in Fig. 3A, our SCAU networks on weekdays from October 31 to November 4, 2011 have a CC of 
~0.70 while the CC of the counterpart small-world networks has a maximum of 0.55. Furthermore, the CC of 
SCAU networks on the weekends (November 5 and 6, 2011) are at least 0.60, which are substantially higher 
than that of the counterpart small-world networks (less than 0.1). However, the efficiency of SCAU networks 
were found to be lower than that of the corresponding small-world networks, especially those on weekends. 
Together, these statistics demonstrated that SCAU networks are not small-world networks.
 Our SCAU networks also exhibited higher CC than that in the US and French schools. The SCAU CPI net-
works displayed a lower efficiency than that studied in the US schools, but higher than that observed in the 
French school. Interestingly, the USTB networks exhibited a similar pattern to that of SCAU networks except 
for the larger deviations of CC as well as efficiency.

•	 Modularity: As shown in Supplementary Fig. S5, the network SCAU1031 consists of a set of tightly inter-
acting modules. This observation was confirmed by quantitative analysis of modularity, which measures the 
degree that a network can be separated into disconnected communities. There, the SCAU networks possess 
an average modularity of ~0.82, which is considerably higher than that of the counterpart small-world (0.62), 
scale-free (0.23), and uniformly-random networks (0.25). Supplementary Fig. S5 also reveals the complicated 
dynamics of communities, including community merging and diversification. Therefore, it is not sufficient to 
understand CPI patterns merely based on the CPI network acquired on a single day.

Figure 1. Real CPI networks acquired on October 31 (Monday) and November 5 (Saturday), 2011 in SCAU, 
denoted as (A) SCAU1031 and (B) SCAU1105, respectively. Here, a node represents an individual student.  
If there is a CPI between two students, an edge is drawn between the two corresponding nodes with line width 
proportional to the aggregate CPI duration in the entire day. The two CPI networks are shown as examples 
since the CPI networks on weekdays exhibit nearly identical characteristics, and so do those on weekends 
(Supplementary Fig. S1).
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 In addition to the comparison with idealized networks, SCAU networks were also compared with real CPI 
networks acquired in the US and French schools. As shown in Table 1, the SCAU CPI networks exhibit an 
average modularity (0.78) that is significantly higher than USD (0.49) and USHS (0.43) networks.

•	 Periodicity: A strong periodicity of CPI networks was expected according to the weekly school schedule of 
college students. However, similarity analysis of the daily CPI networks from October 31 to November 27, 
2011 shows that this periodicity is weak (Supplementary Fig. S6), highlighting the necessity of investigating 
long-term real CPI data.

In summary, our analysis provided us with two main insights into the statistics of real CPI networks. First, the 
CPI networks in the two representative Chinese colleges are different from the CPI networks acquired from the 
US as well as French schools. One explanation is that Chinese college students commonly have highly organized 
lifestyle, such as living in neighboring dormitories on the same campus, having meals in large-capacity canteens 
altogether, and being organized into classes for taking identical courses. This highly organized lifestyle is reflected 
in the formation of a set of small but tightly-interacting communities. Second, the SCAU CPI networks acquired 
on weekdays are neither scale-free, small-world, nor uniformly random. This challenges the basic assumption of 
idealized CPI networks adopted in traditional approaches to epidemic research5–8. Such assumption might result 
in a large deviation in disease dynamics, which has been confirmed by the difference in epidemic dynamics across 
real CPI networks with that across idealized CPI networks (shown below).

Simulating influenza spread across real CPI networks. Using a SEIR model, we simulated the spread 
of influenza across the acquired CPI networks, and compared with real influenza records4,6. Unlike the calculation 
of network statistics, all CPIs, including both transient and regular ones, were considered in epidemic simulation. 
In fact, simply ignoring transient CPIs would lead to deviations in epidemic behavior (Supplementary Fig. S7).

Among the widely-used ranges of SEIR parameters4,15–19, the parameter setting that best fit the real SCAU 
infection data was determined as β0 =  2.5 ×  10−4 sec−1, δ =− 2 days0

1 , γ = .− 1 5 days0
1 . As shown in Fig. 4, the 

disease prevalence prediction using SCAU CPI networks is in good accordance with real influenza records of the 

Figure 2. Degree distribution of SCAU1031 network (panels A,B) and SCAU1105 network (panels C,D). 
Panels A and C are shown in linear scale, while panels B and D are shown in log-log scale. As shown in panel 
A, the degree distribution of the SCAU1031 network can be well fitted by applying a mixture of two Gaussian 
distributions (blue line), which significantly deviates from the idealized Poisson distribution of the counterpart 
uniformly-random network with the same number of nodes and edges (red line). As shown in panel B, the 
SCAU1031 network exhibits a degree distribution significantly different from the power-law distribution. Thus, 
the CPI data acquired on weekdays are neither uniformly random nor scale-free. In contrast, SCAU1105, a CPI 
network acquired on a weekend, exhibits a typical power-law degree distribution (panels C,D).
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SCAU undergraduate volunteers. Using the same setting of SEIR model parameters, we repeated the disease 
spread simulation across the USHS CPI networks4. Similarly, we observed that the disease prevalence prediction 
using USHS CPI networks is in good accordance with the real influenza records in USHS. These results justified 
both parameter setting and epidemic simulation for studying epidemic dynamics of respiratory infectious 
diseases.

To investigate whether idealized CPI networks can also be used to study disease transmission, we com-
pared real CPI network from different regions as well as idealized CPI networks in term of epidemic behavior.  
Surprisingly, idealized CPI networks substantially differ from the real SCAU CPI networks in simulating spread-
ing of influenza as well as infectious diseases that transmit relatively slowly (Fig. 5). Specifically, in the simulation 
of influenza spreading using idealized small-world networks, almost all individuals were found to be infected, 
and the basic reproductive number R0 was estimated to be as high as 9.5. In contrast, the percentage of individu-
als infected is only 55%, and R0 is only 3.8 when real SCAU CPI networks were used for simulation (Fig. 5A,B). 
Furthermore, the epidemic dynamics of infectious diseases that transmit relatively slowly was simulated by set-
ting relatively small parameter β0 ≤  1.0 ×  10−4 sec−1. As shown in Fig. 5A, all individuals are infected in the sim-
ulations using idealized CPI networks; however, the percentage of infected individuals is less than 35% in the 
simulations using real SCAU CPI networks. In addition, the disease spreading across real SCAU CPI networks 
shows early peak epidemic time but short epidemic duration (Fig. 5C,D). These results reveal the potential risk 
of overestimating disease prevalence when simply using scale-free, small-world, or uniformly random networks 
in epidemic simulations.

Furthermore, in order to understand the effects of CPI patterns on influenza spreading behavior, we repeated 
the epidemic simulation using the CPI networks acquired from the US and French schools4,11,12, and compared 
the simulation results with that in Chinese colleges. Figure 5 clearly shows the differences of these schools in 
disease spreading behavior. First, in both the simulations of influenza and the simulations of the diseases that 
transmit relatively slowly, the percentages of total individuals infected in SCAU and FRPS are less than half of 
those of the US schools. Second, the simulations across SCAU and FRPS networks show a R0 of less than 3, which 

Figure 3. Clustering coefficient and efficiency of real and idealized CPI networks. (A) SCAU CPI networks 
and the counterpart scale-free (SF), small-world (SW), uniformly random (UR) networks of identical size.  
The SCAU CPI networks on weekdays are substantially different from the idealized CPI networks, and so do 
the networks on weekends. (B) Real CPI networks acquired from SCAU, USTB, the US and French schools. The 
SCAU and USTB CPI networks are different from the CPI networks acquired from the schools in the US and 
France. Here, only results from one typical week of SCAU networks (between October 31 and November 6, 2011) 
and USTB networks are shown.

CPI Network Sources Population size Duration Modularity

USD An undergraduate dormitory in the US11 70 2008.10–2009.5 0.491 (± 0.068)

USHS A high school in the US4 788 a typical school day 0.431

FRPS A primary school in France12 242 2 days in October, 2009 0.676 (± 0.002)

USTB A college in northern China 87 28 days (2011) 0.623 (± 0.081)

SCAU A college in southern China 174 28 days (2011) 0.784 (± 0.031)

Table 1.  Real CPI networks collected from a US undergraduate dormitory (USD), a US high school 
(USHS), a French primary school (FRPS), a college in northern China (USTB), and a college in southern 
China (SCAU).
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is substantially smaller than that in USD and USHS CPI networks (USD: 6.5, USHS: 9.4). This small R0 implies a 
relatively slow transmission in SCAU and FRPS. Third, for the diseases that transmit relatively slowly, a delayed 
peak epidemic time is observed in US schools compared to those in SCAU and FRPS. Similar observations were 
also obtained when the SCAU networks are replaced with the USTB networks, implying that these observations 
are general to Chinese colleges (Supplementary Fig. S8).

In fact, the influenza spreading behavior can be clearly divided into two categories: (1) in the US schools, 
disease outbreak appears to be relatively strong (peak prevalence: 0.20) and early (peak time: ~2 days); (2) in the 
schools of SCAU, USTB as well as FRPS, a considerably low transmission (peak prevalence: 0.06) was observed 
(Fig. 6).

It is worth pointed out that epidemic simulation of respiratory infectious diseases requires a sequence of 
daily CPI networks, as disease transmission usually lasts for several days. Due to the lack of long-term CPI data, 
previous studies were required to construct a sequence of CPI networks whereby a CPI network acquired on a 
particular day was simply repeated. In contrast, we gathered 28-day real CPI data in two representative Chinese 
colleges, allowing an examination of the previously-used network construction strategies. Our experimental 
results reveal that the previously-used strategy of network construction results in a substantial deviation from 
the 28-day CPI real networks in epidemic simulation (Supplementary Fig. S9). One underlying reason for this 
observation is related to the fact that by simply repeating a single day’s CPI network, the community dynamics, 
such as merging, vanishing or expansion of network communities during the evolving process of long-term CPI 
networks, cannot be captured (Supplementary Fig. S5). Therefore, a CPI network acquired on any single day 
may not be representative of the entire CPI network sequence. Our study also reveals that the CPI network data 
obtained in seven consecutive days yielded simulation results close to that of the entire 28-day CPI networks, 
indicating the CPI data obtained for seven days can be used for epidemic research of disease spreading in schools 
(Supplementary Fig. S9).

Together, the real CPI networks acquired in the two Chinese colleges show different epidemic dynamics 
from both idealized networks and real CPI networks acquired in the US schools. This difference might be attrib-
uted to the strong modularity of undergraduates in Chinese colleges, since disease spreading is usually limited 
within communities. Due to this difference, it cannot be assumed that the nature of CPI networks is scale-free, 
small-world, or uniformly random networks in epidemic analysis; furthermore, using CPI networks acquired 
from a certain region as a universal contact model should be avoided when studying epidemic behavior.

Applying the real CPI networks to evaluate disease control strategies. The success of applying real 
CPI networks in epidemic simulations allowed for an evaluation of various strategies for disease control. The class 
cancellation strategy, as well as a total of five network-based strategies (degree, strength, betweenness, CC, and the 
primary eigenvector), were evaluated, and the evaluation results are described as below. As shown in Fig. 7, most 
network-based strategies exhibit nearly identical power in mitigating disease spread. Specifically, as quarantine/
vaccination coverage increases, the total number of individuals infected generally decreases in a linear pattern.  

Figure 4. Simulation results of respiratory infectious disease spreading across (A) SCAU CPI networks and  
(B) USHS CPI networks correspond to the records of real influenza outbreaks. The x-axis represents days from 
the first infection event, and the y-axis represents the percentage of the infected population. We used the same 
setting of SEIR parameters for simulations in both SCAU and USHS (β0 =  2.5 ×  10−4 sec−1, δ =− 2 days0

1 , 
γ = .− 1 5 days0

1 ). In SCAU, the influenza epidemic occurred in two waves: the first wave (green) occurred 
between September 29 and October 9, and the second wave (blue) occurred between October 9 and October 21, 
2011. The two waves were aligned to put the disease onset date at the point of origin. In USHS, the influenza 
records were derived from absentee data4. As shown in panels A and B, the simulation results are in good 
accordance with the real influenza records in both SCAU and USHS. In panel B, the incomplete blue line 
corresponds to a gap in the original absentee data4.
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Figure 5. Comparison of SEIR simulations over real CPI networks (including USD, USHS, FRPS, and 
SCAU CPI networks), and idealized CPI networks (including scale-free, small-world, and uniformly 
random networks). The comparisons include terms of (A) total infected population ratio, (B) R0, i.e. the 
expected number of cases infected directly from the index case, (C) peak time, i.e. the time when the number of 
infected cases reached its maximum, and (D) epidemic duration, i.e., the duration from the introduction of the 
index case until the recovery of the last case. SEIR parameters: δ =− 2 days0

1 , γ = .− 1 5 days0
1 , and β0 ranges 

from 0.1 to 7.0 ×  10−4 sec−1.

Figure 6. Percentage of the infected population reported by SEIR simulations over real CPI networks in 
USD, USHS, FRPS, SCAU, and USTB. Here, the x-axis denotes the time starting from the index individual 
being set as infected, and y-axis denotes the ratio of infected individuals. Here the SEIR parameters 
β0 =  2.5 ×  10−4 sec−1, δ =− 2 days0

1 , γ = .− 1 5 days0
1  were used to simulate influenza spreading.
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In order to avoid the biases rooted in parameter setting, a second setting of SEIR model parameter 
β0 =  1.0 ×  10−4 sec−1, δ =− 2 days0

1 , γ =− 3 days0
1  was also evaluated, with similar observations obtained 

(Supplementary Fig. S10).

Figure 7. Mitigating power of various quarantine/vaccination strategies over (A) uniformly random, (B) scale-
free, (C) small-world, (D) USD, (E) USHS, (F) FRPS, and (G) SCAU CPI networks. Here, the x-axis denotes 
vaccination coverage, and the y-axis denotes the total population infected. As quarantine/vaccination coverage 
increases, the total number of individuals infected drops in a linear pattern (the slopes are − 1.0, − 1.3, − 0.9,  
and − 1.2 for uniformly random, scale-free, small-world, and SCAU CPI networks, respectively). In addition, 
the targeted vaccination strategies were found to be extremely effective in SCAU and FRPS than in the US schools. 
Remarkably, class cancelation, though simple, is ranked as the most effective strategy for disease control as it 
shows a mitigating power equal to quarantine/vaccination applied on ~25% of college students. Here the SEIR 
parameters β0 =  2.5 ×  10−4 sec−1, δ =− 2 days0

1  and γ = .− 1 5 days0
1  were used to simulate influenza spreading.
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Figure 7D–G suggest that the effectiveness of targeted quarantine/vaccination strategies is CPI-dependent. 
Specifically, the targeted quarantine/vaccination strategies are extremely effective in SCAU and FRPS relative to 
that in the US schools. For example, by applying the betweenness centrality selection strategy on the SCAU CPI 
networks, the ratio of population infected drops from 0.52 to 0.39 under the quarantine/vaccination coverage of 
10%, and further drops to 0.27 under the quarantine/vaccination coverage of 20%. On FRPS networks, the ratio 
of population infected is observed to be as small as 0.05 under a quarantine/vaccination coverage of 20%. In con-
trast, the ratio of population infected remains higher than 0.50, even at a quarantine/vaccination coverage as high 
as 30% in both USD and USHS.

Remarkably, the class-cancelation strategy shows a significant mitigating power of reducing the ratio of pop-
ulation infected by approximately 70% (Fig. 7G). This mitigating power is better than all the five network-based 
quarantine/vaccination strategies even when the quarantine/vaccination coverage is as high as 25%. Class can-
celation was one of the most frequently used control strategies against the outbreak of SARS in China in 200314; 
however, the power of class cancellation has never been thoroughly evaluated. The simulation presented here 
provides quantitative supports for the success of this strategy.

Discussion
Here we present long-term real CPI data acquired from two representative Chinese colleges, and compare them 
with the real CPI networks acquired from the schools in US and France. These real CPI networks, together with 
epidemic simulations, showed the distinct transmission pattern of respiratory infectious diseases in Chinese col-
leges, and quantitatively characterized mitigating power of the class cancelation strategy. Specifically, our findings 
can be summarized as below:

•	 Real CPI networks have different characteristics from idealized CPI networks. In addition, the real CPI net-
works acquired from Chinese colleges are significantly different from those acquired from the schools in the 
US and France, which is possibly caused by the highly organized lifestyle of Chinese college students.

•	 Simulated epidemic spread on real CPI networks is different from that on idealized networks, usually gener-
ating less infection cases. Real CPI networks from different settings, such as schools in China and the US, also 
showed different epidemic behavior.

•	 Class cancelation, though simple, is considered as an effective quarantine strategy for Chinese colleges.

In addition, realistic long-term CPI networks cannot be accurately constructed by simply repeating 1-day’s CPI 
data. On the contrary, repeating 7-day’s CPI data is probably adequate, which is consistent with the weekly school 
schedule.

Apart from these new insights into the CPI pattern within Chinese colleges, there are several limitations of 
our study to be taken into consideration. First, the CPI data was gathered from 174 volunteers, which covered 
only ~15% of the entire undergraduate community in the Information School of SCAU. On one hand, we demon-
strated, theoretically and experimentally, that the network characteristics CC and degree density are insensitive 
to the coverage of CPI data gathering (Supplementary Methods, and Fig. S11). In addition, epidemic simulations 
across the acquired CPI networks are in good agreement with real influenza outbreak records (Fig. 4). On the 
other hand, such small coverage might affect the calculation of some network statistics22, and a large-scale data 
collection program would help clarifying the extent to which the coverage of CPI data gathering affects estimation 
of network statistics.

Another limitation lies at the low recall rate of infections and additional uncertainty of infection dates. In our 
study, only 76 out of 174 volunteers reported their health condition, reaching a recall rate of 44%. Another dataset 
of CPI networks along with epidemic records would facilitate our understanding of epidemic behavior across CPI 
networks.

In addition, our study was built on the hypothesis that air-borne droplets and Bluetooth signals share com-
parable transmission distances. It is assumed that Bluetooth signal travels up to ~10 meters23; in contrast, the 
transmission distance of air-borne droplets is based on estimation only, with no exact data available at present9. 
A detailed investigation, together with improved measuring techniques, will help clarifying the transmission 
distance of air-borne droplets in the future.

Together, our study presents real CPI data in representative Chinese colleges, and reports how the special CPI 
pattern affects respiratory disease transmission and disease control. Our findings should greatly facilitate the 
prediction of epidemic prevalence in colleges as well as other human communities, and thus allow for designing 
more effective disease control strategies than those available at present.
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