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A multi-similarity spectral 
clustering method for community 
detection in dynamic networks
Xuanmei Qin1, Weidi Dai2, Pengfei Jiao2, Wenjun Wang2 & Ning Yuan3

Community structure is one of the fundamental characteristics of complex networks. Many methods 
have been proposed for community detection. However, most of these methods are designed for static 
networks and are not suitable for dynamic networks that evolve over time. Recently, the evolutionary 
clustering framework was proposed for clustering dynamic data, and it can also be used for community 
detection in dynamic networks. In this paper, a multi-similarity spectral (MSSC) method is proposed as 
an improvement to the former evolutionary clustering method. To detect the community structure in 
dynamic networks, our method considers the different similarity metrics of networks. First, multiple 
similarity matrices are constructed for each snapshot of dynamic networks. Then, a dynamic co-training 
algorithm is proposed by bootstrapping the clustering of different similarity measures. Compared with a 
number of baseline models, the experimental results show that the proposed MSSC method has better 
performance on some widely used synthetic and real-world datasets with ground-truth community 
structure that change over time.

Complex networks have been studied in many domains, such as genomic networks, social networks, communica-
tion networks and co-author networks1. The community structure has revealed important structure in these com-
plex networks2–6. A great deal of research has been devoted to detecting communities in complex networks, such 
as graph partitioning7,8, hierarchical clustering9, modularity optimization10, spectral clustering11,12, label propa-
gation, game theory and information diffusion13, a detailed review is available in the literature14. However, most 
existing methods are designed for static networks, and not suitable for real-world data networks with dynamic 
characteristics. For example, the interactions among users in the blogosphere or circles of friends are not station-
ary because some interactions disappear, and some new ones appear each day.

Recently, some methods have been proposed to find community structures and their temporal evolution in 
dynamic networks. An intuitive idea is to divide the network into discrete time steps and to use static methods to 
the snapshot networks15–22. The so-called two-stages methods, analyse the community extraction and the com-
munity evolution in two separated stages. In other words, the communities are extracted at a given snapshot while 
ignoring the changing trends among and within communities of the dynamic networks. These two-stage methods 
are extremely noise-sensitive and produce unstable clustering results. For example, nodes or links disappear or 
emerge in the subsequent snapshot, which is impossible to detect using the two-stage methods. A better choice 
is to consider multiple time steps as a whole and the evolutionary clustering algorithm is proposed23, which can 
detect communities of the current snapshot by joining with the community structure of the previous snapshot.

In fact, evolutionary clustering algorithm enables one to detect current communities using community struc-
tures from the previous steps by introducing an item called the temporal smoothness. The general framework for 
evolutionary clustering was first formulated by Chakrabarti et al.23. In this framework, they proposed heuristic 
solutions to evolutionary hierarchical clustering and k-means clustering. The framework FacetNet, which was 
proposed by Lin et al.24, relies on non-negative matrix factorization. A density-based clustering method, which 
was proposed by Kim and Han25, and uses a cost embedding technique and optimal modularity, can efficiently 
find temporally smoothed local clusters of high quality.

The existing evolutionary clustering methods that are most similar to MSSC are the PCQ (preserving cluster 
quality) and PCM (preserving cluster membership) methods26. PCQ and PCM are two proposed frameworks that 
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incorporate the temporal smoothness in spectral clustering. In both frameworks, a cost function is defined as the 
sum of the traditional cluster quality cost and the temporal smoothness item. Our method follows the evolution-
ary clustering strategy, but with one major difference. The intuitive goal of spectral clustering is to detect latent 
communities in networks such that the points are similar in the same community and different in different com-
munities. There are several similarity measurements to evaluate the similarities between two vertices. A common 
approach is to encode prior knowledge about objects using a kernel, such as the linear kernel, Gaussian kernel and 
Fisher kernel. A large proportion of existing spectral clustering algorithms use only one similarity measurement. 
However, there is a problem in that the clustering results based on different similarity matrices may be notably 
different11,27. Here, we introduce a multi-similarity method to the evolutionary spectral clustering algorithm, 
which simultaneously considers multiple similarity matrices.

Inspired by Abhishek Kumar et al.28, we propose a multi-similarity spectral clustering (MSSC) method and a 
dynamic co-training algorithm for community detection in dynamic networks. The proposed method preserves 
the evolutionary information of community structure by combining the current data and historic partitions. The 
idea of co-training was originally proposed in semi-supervised learning for bootstrapping procedures where 
two hypotheses are trained in different views29. The cotraining idea assumes that the two views are conditionally 
independent and sufficient, i.e., each view can conditionally independently give the classifiers and be sufficient 
for classification on its own. Then the classification is restricted in one view to be consistent with those in other 
views. Co-training has been used to classify web pages using the text on the page as one view and the anchor text 
of hyperlinks on other pages that point to the page as the other views30. In another words, the text in a hyperlink 
on one page can provide information about the page to which it links. Similarity to semi-supervised learning, the 
clustering, which is based on different similarity measures, is obtained using information from one another by 
co-training in the proposed dynamic co-training approach. This process is repeated in a pre-defined number of 
iterations.

Moreover, the problem of how to determine the weight of the temporal penalty to the historic partitions, 
which reflects the user preferences on the historic information, remains. In many cases, this parameter depends 
on the users’ subjective preference26, which is undesirable. We propose an adaptive model to dynamically tune the 
temporal smoothness parameter.

In summary, we introduce multiple similarity measures in the evolutionary spectral clustering method. We 
propose a dynamic co-training method, which accommodates multiple similarity measures and regularizes cur-
rent communities according to the temporal smoothness of historic ones. Then, an adaptive approach is pre-
sented to learn the change in weight of the temporal penalty over time. Based on these ideas, a multi-similarity 
evolutionary spectral clustering method is presented to discover communities in dynamic networks using the 
evolutionary clustering23 and dynamic co-training method. The performance of the proposed MSSC method is 
demonstrated on some widely used synthetic and real-world datasets with ground-truths.

Results
To quantitatively compare our algorithm and others, we compare the values of the normalized mutual informa-
tion (NMI)31 and the sum of squares for error (SSE)32 for various networks from the literature. The NMI is a well 
known entropy measure in information theory, which measures the similarity of two clusters (in this paper, 
between the community structures Ĝ obtained using our method and G obtained from the ground truth). Assume 
that the i–th row of Ĝ indicates the community membership of the i–th node (i.e., if the ith node belongs to the 
k-th community, then =ĝ 1ik  and =′ĝ 0ik  for k ≠  k′ ). NMI can be defined as =

+

ˆ
ˆNMI 2 I G G

H G H G
( ; ) )
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normalization of mutual information ˆI G G( ; ) by the average of two entropies ˆH G( ) and H(G). The NMI value is 
a quantity between 0 and 1, a higher NMI indicates higher consistency, and NMI =  1 corresponds to being iden-
tical. SSE can be defined as −‖ ˆ ˆ ‖GG GG

T T
F
2 , which measures the distance between the community structure rep-

resented by Ĝ and that represented by G. A smaller SSE, indicates a smaller difference between the prediction 
values and the factual values.

We compare the accuracy against three previously published spectral clustering algorithms for detecting com-
munities in dynamic networks: the preserving cluster quality method (PCQ)26, the preserving cluster member-
ship method (PCM)26 and the traditional two-stage method. PCQ and PCM are two proposed frameworks that 
incorporate temporal smoothness in spectral clustering. In both frameworks, a cost function is defined as the sum 
of the traditional cluster quality cost and a temporal smoothness one. Although these two frameworks have sim-
ilar expressions for the cost function, the temporal smoothness cost in PCQ is expressed as how well the current 
partition clusters historic data, which makes the clusters depend on both current data and historic data, whereas 
the temporal cost in PCM is expressed as the difference between the current partition and the historic partition, 
which prevents the clusters from dramatically deviating from the recent history. The traditional two-stage method 
divides the network into discrete time steps and performs static spectral clustering11 at each time step. Each 
approach is repeated for 10 times, and the average result and variance are presented. The parameter for PCQ and 
PCM is α =  0.9. We begin by inferring communities in three synthetic datasets with known embedded commu-
nities. Next, we study two real-world datasets, where communities are identified by human domain experts. For 
concreteness and simplicity, we restrict ourselves in this paper to the case of two similarity measures. The pro-
posed method can be extended for more than two similarity matrices. We choose to use the Gaussian kernel and 
linear kernel as the similarity measures among different data points. Then, the similarity matrices are 

= σ− − ‖ ‖W i j e( , )t
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2 2
 and =  W v vt i

T
j

(2) , where vi and vj represent the m-dimensional feature vectors and 
i ≠  j. In our experiments, vi is a column vector of the adjacency matrix A at snapshot t, which is represented by At. 
In other words, vi is an n-dimensional feature vector. The σ is taken equal to the median of the pair-wise Euclidean 
distances between the data points.
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Synthetic Datasets. GN-benchmark network #1. The first dataset is generated according to the description 
by Newman et al.33. This dataset contains 128 nodes, which are divided into 4 communities, each of which has 
32 nodes. We generate data for 10 consecutive snapshots. In each snapshot from 2 to 10, the dynamics are intro-
duced as follows: from each community we randomly select certain members to leave their original community 
and randomly join the other three communities. Pairs of nodes are randomly linked with a higher probability pin 
for within-community edges and a lower probability pout for between-community edges. Aloughth pout is freely 
varied, the value of pin is selected to maintain the expected degree of each vertex as a constant. When the average 
degree for the nodes is fixed, parameter z, which represents the mean number of edges from a node to the nodes 
in other communities, is sufficient to describe the data. With the increase in z, the community structure becomes 
indistinct. We consider three values (4, 5 and 6) for z; the average degree of each node is 16 and 20 at each snap-
shot. We randomly select 1, 3 and 6 nodes to change their cluster membership. The performance is significantly 
improved, as shown in Table 1, where Cn is the number of changed nodes. In general, our method has a higher 
NMI and a smaller SSE in most situations except when z =  4 (the average degree is 16) and z =  5 (the average 
degree is 20), where the NC-based PCM outperforms the MSSC method. Because space is limited, the values of 
NMI and SSE are the average values from snapshot 1 to 10. In Fig. 1, we intuitively show the performance under 
the conditions that parameter z is 5, the average degree of each node is 16 and at each snapshot, 3 nodes change 
their cluster membership. Figure 1(a) shows that the MSSC method always outperforms the baselines, which 
indicates that our method has a better accuracy. In addition, Fig. 1(b) shows that the MSSC method has a lower 
error in cluster membership with respect to the ground truth from a general view. In both figures, our method sig-
nificantly improves the accuracy and reduces the error compared with PCQ, PCM and static spectral clustering.

GN-benchmark network #2. To compare the effectiveness as the number of communities varies, we use the sec-
ond dataset with two types of data sets, which were generated by Francesco Folino and Clara Pizzuti34: SYN-FIX 
with a fixed number of communities and SYN-VAR with a variable number of communities. For SYN-FIX, the 
data generating method is identical to the GN-benchmark network #1. The network consists of 128 nodes, which 

Cn

aveage degree =  16 aveage degree =  20

z =  4 z =  5 z =  6 z =  4 z =  5 z =  6

PCQ-NA

1 NMI
SSE

0.3562 ±   0.0455
4224.38 ±  260.79

0.0393 ±  0.0178
6069.06 ±  81.79

0.0253 ±  0.0072
6101.72 ±  70.14

0.9111 ±  0.0311
813.00 ±   340.81

0.5383 ±  0.1074
3071.78 ±  827.96

0.1129 ±  0.0629
5636.56  ±  336.75

3 NMI
SSE

0.3333 ±  0.0437
4378.28 ±  289.09

0.0384 ±  0.0169
6076.68 ±  75.84

0.0252 ±  0.0076
6131.48 ±  84.28

0.9142 ±  0.0384
675.24 ±  263.41

0.5268 ±  0.1042
3133.74 ±  792.06

0.1055 ±  0.0552
5682.42 ±  298.19

6 NMI
SSE

0.3165 ±  0.0597
4470.96 ±  366.32

0.0400 ±  0.0138
6074.34 ±  86.10

0.0253 ±  0.0056
6119.46 ±  81.34

0.9256 ±  0.0389
556.82 ±  342.32

0.5084 ±  0.1072
3288.68 ±  766.29

0.1059 ±  0.0577
5686.82 ±  291.96

PCQ-NC

1 NMI
SSE

0.4059 ±  0.1443
3815.34 ±  995.63

0.0404 ±  0.0204
6001.10 ±  107.43

0.0274 ±  0.0105
6078.12 ±  91.28

0.9034 ±  0.0307
898.88 ±  298.82

0.5589 ±  0.1128
2827.82 ±  838.13

0.1106 ±   0.0476
5615.80 ±  250.09

3 NMI
SSE

0.3921 ±  0.1405
3898.54 ±  967.97

0.0394 ±  0.0194
5999.10 ±  106.08

0.0290 ±  0.0099
6053.18 ±  88.14

0.9288 ±  0.0346
503.94 ±  211.46

0.5349 ±  0.1262
3002.60 ±  943.07

0.1031 ±  0.0428
5672.86 ±  240.05

6 NMI
SSE

0.3670 ±  0.1218
4021.20 ±  858.63

0.0394 ±  0.0177
6010.98 ±  88.34

0.0267 ±  0.0098
6071.34 ±  70.74

0.9137 ±  0.0316
646.28 ±  219.35

0.4958 ±  0.1084
3295.12 ±  783.13

0.0966 ±  0.0424
5710.98 ±  210.87

PCM-NA

1 NMI
SSE

0.3116 ±  0.0621
4539.50 ±  394.25

0.0412 ±  0.0158
6053.88 ±  104.21

0.0257 ±  0.0056
6121.96 ±  71.94

0.8999 ±  0.0387
810.52 ±  390.29

0.4974 ±  0.1133
3358.52 ±  784.04

0.1054 ±  0.0568
5680.16 ±  305.19

3 NMI
SSE

0.3109 ±  0.0709
4545.74 ±  419.80

0.0395 ±  0.0164
6057.90 ±  93.30

0.0251 ±  0.0072
6126.38 ±  83.91

0.8877 ±  0.0344
948.72 ±  312.82

0.4980 ±  0.1169
3346.96 ±  797.57

0.1039 ±  0.0542
5682.32 ±  278.17

6 NMI
SSE

0.3098 ±  0.0656
4550.38 ±  380.21

0.0403 ±  0.0144
6073.36 ±  81.51

0.0239 ±  0.0052
6126.62 ±  70.79

0.9294 ±  0.0323
467.30 ±  173.87

0.4945 ±  0.1149
3386.82 ±  824.11

0.1058 ±  0.0559
5683.04 ±  293.82

PCM-NC

1 NMI
SSE

0.6412 ±  0.1278
2155.12 ±  935.50

0.0392 ±  0.0191
6012.28 ±  114.99

0.0314 ±  0.0125
6049.72 ±  83.70

0.9004 ±  0.0484
889.90 ±  396.37

0.7819 ±  0.1129
1286.42 ±  812.42

0.1197 ±  0.0370
5578.26 ±  257.97

3 NMI
SSE

0.4307 ±  0.0931
3550.10 ±  735.88

0.0408 ±  0.0197
5984.40 ±  107.92

0.0267 ±  0.0057
6046.64 ±  40.66

0.8737 ±  0.0461
860.80 ±  290.84

0.5893 ±  0.0993
2407.00 ±  657.48

0.0852 ±  0.0242
5789.26 ±  122.49

6 NMI
SSE

0.2804 ±  0.0525
4627.50 ±  341.80

0.0402 ±  0.0188
6007.58 ±  77.13

0.0233 ±  0.0067
6080.16 ±  38.87

0.8951 ±  0.0400
701.52 ±  251.36

0.3785 ±  0.0931
4026.64 ±  570.82

0.0609 ±  0.0239
5915.96 ±  158.57

StaticSpectral

1 NMI
SSE

0.3741 ±  0.1315
3971.22 ±   924.64

0.0396 ±  0.0170
6012.54 ±  98.31

0.0284 ±  0.0107
6068.14 ±  108.58

0.9166 ±  0.0289
619.68 ±  274.70

0.4940 ±  0.1198
3305.72 ±  880.41

0.0992 ±  0.0456
5667.04 ±  268.22

3 NMI
SSE

0.3732 ±  0.1316
3988.72 ±  933.37

0.0394 ±  0.0176
6005.98 ±  88.83

0.0263 ±  0.0104
6083.30 ±  106.78

0.9117 ±  0.0349
674.82 ±  338.08

0.5000 ±  0.1159
3260.94 ±  822.32

0.0985 ±  0.0454
5688.84 ±  235.99

6 NMI
SSE

0.3771 ±  0.1300
3964.94 ±  928.45

0.0421 ±  0.0186
5997.50 ±  96.17

0.0264 ±  0.0112
6086.88 ±  106.90

0.9080 ±  0.0483
704.44 ±  421.43

0.4898 ±  0.1156
3351.84 ±  848.26

0.0995 ±  0.0451
5687.16 ±  233.97

MSSC

1 NMI
SSE

0.4684 ±  0.0597
3461.16 ±  471.45

0.0623 ±  0.0248
5915.66 ±  132.83

0.0396 ±  0.0094
5996.36 ±  57.92

0.9806 ±  0.0144
100.40 ±  78.85

0.6462 ±  0.1311
2284.44 ±  969.86

0.1352 ±  0.0669
5484.36 ±  363.86

3 NMI
SSE

0.4108 ±  0.0747
3840.66 ±  526.34

0.0562 ±  0.0200
5957.56 ±  86.20

0.0378 ±  0.0099
6018.72 ±  80.61

0.9693 ±  0.0238
154.56 ±  120.58

0.5639 ±  0.1142
2836.34 ±  844.02

0.1257 ±  0.0571
5560.14 ±  319.88

6 NMI
SSE

0.3727 ±  0.0702
4059.82 ±  471.45

0.0551 ±  0.0183
5959.74 ±  113.17

0.0405 ±  0.0089
6013.50 ±  81.21

0.9641 ±  0.0276
182.72 ±  140.66

0.5428 ±  0.1113
3063.80 ±  831.10

0.1265 ±  0.0594
5548.00 ±  336.35

Table 1.  The performance in different GN-benchmark networks. When parameter z =  4, 5 and 6, the average 
degree of each node is 16 and 20 at each snapshot, we randomly select 1, 3 and 6 nodes change their cluster 
membership, respectively. Notice that the value of NMI and SSE is the average for 10 snapshots.
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are divided into four communities of 32 nodes. Every node has an average degree of 16 and shares z links with 
other nodes of the network. Then, 3 nodes are randomly selected from each community and randomly assigned 
to the other three communities. For SYN-VAR, the generating method for SYN-FIX is modified to introduce the 
forming and dissolving of communities and the attaching and detaching of nodes. The initial network contains 
256 nodes, which are divided into 4 communities of 64 nodes. Then, 10 consecutive networks are generated by 
randomly choosing 8 nodes from each community, and a new community is generated with these 32 nodes. This 
process is performed for 5 timestamps before the nodes return to the original communities. Every node has an 
average degree of 16 and shares z links with the other nodes of the network. A new community is created once 
at each timestamp between 2 ≤  t ≤  5. Therefore, the numbers of communities between 1 ≤  t ≤  10 are 4, 5, 6, 7, 8, 
8, 7, 6, 5, and 4. At each snapshot, 16 nodes are randomly deleted, and 16 new nodes are added to the network 
for 2 ≤  t ≤  10. Table 2 shows the accuracy and error of the community membership that are obtained by the four 
algorithms for SYN-FIX and SYN-VAR with z =  3 and z =  5. Table 2 shows that the MSSC method can handle 
dynamic networks well when the number of community varies, and when z =  3, the community structure is easy 
to detect because there is less noise. Hence, although MSSC does not perform well in NMI, it has a lower error 
for SYN-FIX.

Synthetic dataset #3. The third synthetic dataset is used to study the MSSC method in dynamic networks, where 
the number of nodes changes. Greene et al.31 developed a set of benchmarks based on the embedding of events in 

Figure 1. The performance of different methods in synthetic networks. (a,b) Normalized mutual 
information and the sum of the squared errors of different methods at 10 snapshots in synthetic networks, 
where the parameter z is 5, the average degree of each node is 16 and at each snapshot, 3 nodes change their 
cluster membership. (c,d) Performance for a single contraction event with 1000 nodes over 10 snapshots; 
the nodes have a mean degree of 15, a maximum degree of 50, and a mixing parameter value of μ =  0, which 
controls the overlapping among communities. Notice that the x-axes show the snapshots.

z

syn-fix syn-var

NMI SSE NMI SSE

PCQ-NA 3
5

0.6028 ±  0.2033
0.6069 ±  0.2016

9640.60 ±  4779.74
9340.80 ±  4642.21

0.6132 ±  0.1862
0.6116 ±  0.1928

9259.42 ±  3910.06
9174.40 ±   4197.49

PCQ-NC 3
5

0.6133 ±  0.1840
0.6054 ±  0.1884

9319.38 ±  4134.37
9466.48 ±  4214.53

0.6002 ±  0.1798
0.5984 ±  0.1922

9841.54 ±  3830.96
9656.26 ±  4299.85

PCM-NA 3
5

0.5963 ±  0.1996
0.5993 ±  0.1978

9460.58 ±  4666.48
9304.36 ±  4568.22

0.5926 ±  0.1872
0.5834 ±  0.1928

9720.78 ±  3991.91
9855.60 ±   4235.54

PCM-NC 3
5

0.5978 ±  0.1862
0.6109 ±  0.1943

9916.08 ±  4193.82
9271.82 ±  4401.95

0.6070 ±  0.1854
0.6139 ±  0.1907

9536.20 ±  3861.53
9123.94 ±  4136.11

StaticSpectral 3
5

0.5835 ±  0.1954
0.5781 ±  0.2052

9668.48 ±  4259.43
9755.16 ±  4679.10

0.5863 ±  0.1896
0.5812 ±  0.1862

9482.16 ±  3893.93
9659.56 ±   3723.53

MSSC 3
5

0.5852 ±  0.2052
0.6091 ±  0.2094

2340.58 ±  1232.92
2171.14 ±  1246.76

0.6458 ±  0.1805
0.6475 ±  0.1747

8261.06 ±  4294.08
8263.74 ±  4162.19

Table 2.  The performance in different GN-benchmark networks #2. The performance for SYN-FIX and 
SYN-VAR with z =  3 and z =  5, respectively. For SYN-FIX, the number of communities is fixed. For SYN-VAR, a 
new community is created once at each timestamp between 2 ≤  t ≤  5.
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synthetic graphs. Five dynamic networks are generated without overlapping communities for five different event 
types: birth and death, expansion, contraction, merging and splitting, and switch. A single birth event occurs 
when a new dynamic community appears, and a single death event occurs when an old dynamic community 
dissolutions. A single mergeing event occurs if two distinct dynamic communities observed at snapshot t −  1 
match to a single step community at snapshot t and a single splitting event occurs if a single dynamic community 
at snapshot t −  1 is matched to two distinct step communities at snapshot t. The expansion of a dynamic com-
munity occurs when its corresponding step community at snapshot t is significantly larger than the previous one 
and the contraction of a dynamic community occurs when its corresponding step community at snapshot t is 
significantly smaller than the previous one. The switch event occurs when the nodes move among the communi-
ties. The performance of a small example dynamic graph produced by the generator is shown in Fig. 1(c,d), which 
involves 1000 nodes, 17 embedded dynamic communities and a single contraction event. To evaluate methods, 
we constructed five different synthetic networks for five different event types, which covered 1000 nodes over 
10 snapshots. In each of the five synthetic datasets, 20% of node memberships were randomly permuted at each 
snapshot to simulate the natural movement of users among communities over time. The snapshot graphs share 
a number of parameters: the nodes have a mean degree of 15, a maximum degree of 50, and a mixing parameter 
value of μ =  0, which controls the overlap between communities. The number of communities were constrained 
to have sizes in the range of [20, 100]. In each of the five synthetic datasets, the node memberships were randomly 
permuted at each step to simulate the natural movement of users among communities over time. Table 3 shows 
the performance of five different methods in different events. We also find that the standard deviation for MSSC 
is smaller, which implies that the clustering results are more stable.

Real-World Datasets. NEC Blog Dataset. The blog data were collected by an NEC in-house blog crawler. 
Given seeds of manually picked highly ranked blogs, the crawler discovered blogs that were densely connected 
with the seeds, which resulted in an expanded set of blogs that communicated with each other. The NEC blog 
dataset has been used in several previous studies on dynamic networks24,26,35. The dataset contains 148, 681 
entry-to-entry links among 407 blogs crawled during 15 months, which start from July 2005. First, we construct 
an adjacency matrix, where the nodes correspond to blogs, and the edges are interlinks among the blogs (obtained 
by aggregating all entry-to-entry links). In the blog network, the number of nodes changes in different snapshots. 
The blogs roughly form 2 main clusters, the larger cluster consists of blogs with technology focuses and the 
smaller cluster contains blogs with non-technology focuses (e.g., politics, international issues, digital libraries). 
Therefore, in the following studies, we set the number of clusters to be 2. Figure 2 shows the performance. Because 
the edges are sparse, we take 4 weeks as a snapshot and aggregate all edges in every month into an affinity matrix 
for that snapshot. Figure 2(a) shows that although MSSC does not perform as well as NA-based PCQ and PCM 
in the first few snapshots, MSSC begins to outperform NA-based PCQ and PCM as time progresses. In addition, 
MSSC retains a lower variance than NA-based PCQ and PCM. This result suggests that the benefits of MSSC 
accumulate more over time than those of NA-based PCQ and PCM. Furthermore, Fig. 2(b) shows that MSSC has 
lower errors although it does not outperform the baselines in NMI at few snapshots.

KIT E-mail Dataset. Furthermore, we consider a large number of snapshots of the e-mail communication net-
work in the Department of Informatics at KIT36. The network of e-mail contacts at the department of computer 
science at KIT is an ever-changing graph during 48 consecutive months from September 2006 to August 2010. 
The vertices represent members, and the edges correspond to the e-mail contacts weighted by the number of 
e-mails sent between two individuals. Because the edges are sparse, we construct the adjacency matrix among 231 
active members. In the E-mail network, the clusters are different departments of computer science at KIT. The 
number of clusters is 14, 23, 25, 26, and 27, for the snapshots of 1, 2, 3, 4, and 6 months, respectively, because the 
smaller divided intervals correspond to more data points that are treated as isolated points. Therefore, when we 
take one month as a snapshot, the number of clusters is the smallest. Because of limited space, we show the NMI 
scores and SSE values for the 8 snapshots situation (each snapshot is six months) in Fig. 2(c,d). We observe that 
MSSC outperforms the baseline methods. To study the effect of considering historic information, Table 4 takes 
1, 2, 3, 4, and 6 months as a snapshot. We observe that the more snapshots, correspond to more know historic 

birthdeath expand contraction mergesplit switch

PCQ-NA NMI
SSE

0.8398 ±  0.0118
74170.32 ±  18518.48

0.8485 ±  0.0122
90065.30 ±  13012.11

0.8365 ±  0.0175
94808.78 ±  19132.44

0.8515 ±  0.0096
84288.78 ±  8577.71

0.8381 ±  0.0187
101091.10 ±  20912.82

PCQ-NC NMI
SSE

0.8504 ±  0.0247
68511.50 ±  20307.64

0.8457 ±  0.0176
92582.98 ±  14792.11

0.8430 ±  0.0143
89217.64 ±  15869.03

0.8373 ±  0.0160
94506.46 ±  15785.94

0.8432 ±  0.0143
97056.32 ±  16190.39

PCM-NA NMI
SSE

0.8356 ±  0.0129
77350.20 ±  21198.80

0.8368 ±  0.0175
99648.56 ±  16180.79

0.8316 ±  0.0175
97976.98 ±  17861.72

0.8374 ±  0.0188
90110.12 ±  14109.52

0.8446 ±  0.0117
93093.64 ±  13556.13

PCM-NC NMI
SSE

0.8419 ±  0.0168
74547.64 ±  16656.38

0.8369 ±  0.0193
101543.20 ±  17771.21

0.8469 ±  0.0172
83593.96 ±  18388.87

0.8407 ±  0.0190
90853.56 ±  12056.83

0.8359 ±  0.0153
101398.38 ±  15773.68

StaticSpectral NMI
SSE

0.8548 ±  0.0176
52299.48 ±  12337.69

0.8574 ±  0.0154
70764.06 ±  8715.67

0.8540 ±  0.0219
70587.36 ±  12970.81

0.8477 ±  0.0160
75613.28 ±  9825.15

0.8480 ±  0.0193
101398.38 ±  12010.70

MSSC NMI
SSE

0.9335 ±  0.0076
18842.36 ±  5317.05

0.9303 ±  0.0046
26923.20 ±  2996.34

0.9284 ±  0.0076
27066.20 ±  5976.27

0.9306 ±  0.0082
25206.58 ±  3995.91

0.9360 ±  0.0084
24462.02 ±  4547.29

Table 3.  The performance for five dynamic networks. Dynamic networks for five different event type: birth 
and death, expansion, contraction, merging and splitting, switch nodes.
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information and smaller error. Therefore the SSE is smallest when the dynamic networks are considered as 48 
snapshots.

Discussion
In this paper, to find a highly efficient spectral clustering method for community detection in dynamic networks, 
we propose an MSSC method by considering different measures together. We first construct multiple similarity 
matrices for each snapshot of dynamic networks and present a dynamic co-training method that bootstrapping 
the clustering of different similarity measures using information from one another. Furthermore, the proposed 
dynamic co-training method, which considers the evolution between two neighbouring snapshots can preserve 
the historic information of community structure. Finally, we use a simple but effective method to adaptively esti-
mate the temporal smoothing parameter in the objective.

We have evaluated our MSSC method on both synthetic and real-world networks with ground-truths, and 
compared it with three state-of-the-art spectral clustering methods. The experimental results show that the 
method effectively detects communities in dynamic networks for most analysed data sets with various network 
and community size.

In all of our experiments, we observe that the major improvement in performance is obtained in the first 
iteration. The performance varies around that value in subsequent iterations. Therefore, in this paper, we show 
the results after the first iteration. In general, the algorithm does not converge, which is also the case with the 
semi-supervised co-training algorithm28.

However, the number of clusters or communities must be pre-designed in each snapshot. Determining the 
number of clusters is an important and difficult research problem in the field of model selection. There is cur-
rently no good resolution method for this problem. Some previously suggested approaches to this problem are 

Figure 2. The performance for real-world dataset. (a,b) This NEC blog dataset contains 407 blogs crawled 
during 15 consecutive months, which begin from July 2005, where each month is a snapshot. (c,d) The network 
of e-mail contacts at the department of computer science at KIT is an ever-changing network during 48 
consecutive months, where the snapshot is six months.

T =  48 T =  24 T =  16 T =  12 T =  8

PCQ-NA NMI
SSE

0.7567 ±  0.0365
369.70 ±  58.83

0.7850 ±  0.0398
1259.69 ±  265.12

0.7760 ±  0.0396
1915.06 ±  463.29

0.7479 ±  0.0360
2766.32 ±  581.48

0.7362 ±  0.0416
3892.13 ±  1007.15

PCQ-NC NMI
SSE

0.8120 ±  0.0401
253.33 ±  60.63

0.8105 ±  0.0284
924.83 ±  156.76

0.7933 ±  0.0287
1371.71 ±  202.50

0.7807 ±  0.0292
1862.48 ±  215.96

0.7736 ±  0.0215
2476.00 ±  224.26

PCM-NA NMI
SSE

0.7466 ±  0.0433
382.39 ±  69.97

0.7773 ±  0.0386
1290.58 ±  258.89

0.7680 ±  0.0434
1949.60 ±  462.78

0.7378 ±  0.0398
2856.55 ±  628.81

0.7326 ±  0.0400
3954.75 ±  1018.30

PCM-NC NMI
SSE

0.8290 ±  0.0345
232.27 ±  58.91

0.8150 ±  0.0214
924.99 ±  109.74

0.8076 ±  0.0248
1296.94 ±  174.63

0.7796 ±  0.0317
1884.85 ±  230.36

0.7680 ±  0.0203
2686.10 ±  152.40

StaticSpectral NMI
SSE

0.8018 ±  0.0398
265.45 ±  56.69

0.8059 ±  0.0249
933.73 ±  135.10

0.7871 ±  0.0284
1418.89 ±  226.12

0.7795 ±  0.0287
1848.40 ±  201.88

0.7674 ±  0.0212
2518.20 ±  224.53

MSSC NMI
SSE

0.8333 ±  0.0214
241.52 ±  28.73

0.8448 ±  0.0206
846.61 ±  77.28

0.8271 ±  0.0273
1297.94 ±  177.73

0.8086 ±  0.0270
1676.28 ±  226.60

0.8021 ±  0.0196
2328.38 ±  177.97

Table 4.  The performance for the KIT E-mail Dataset. The e-mail networks taking 1, 2, 3, 4, 6 months as a 
snapshot, respectively.
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cross-validation37, minimum description length methods that use two-part or universal codes38, and maximiza-
tion of a marginal likelihood39. Our algorithms can use any of these methods to automatically select the number 
of cluster k because our algorithm still uses the fundamental spectral clustering algorithm. Additionally, as a 
spectral clustering method, MSSC must construct an adjacency matrix and calculate the eigen-decomposition of 
the corresponding Laplacian matrix. Both steps are computationally expensive. For a data set of n data points, 
these two steps have complexities of O(n2) and O(n3), which are unbearable burdens for large-scale applications40. 
There are some options to accelerate the spectral clustering algorithm, such as landmark-based spectral clustering 
(LSC), which selects p n( ) representative data points as the landmarks and represents the remaining data points 
as the linear combinations of these landmarks41,42. Liu et al.43 introduced a sequential reduction algorithm based 
on the observation that some data points quickly converge to their true embedding, so that an early stop strategy 
will speed up the decomposition. Yan, Huang, and Jordan44 also provided a general framework for fast approxi-
mate spectral clustering.

Methods
Traditional spectral clustering. In this section, we review the traditional spectral clustering approach11. 
The basic idea of spectral clustering is to cluster based on the spectrum of a Laplacian matrix. Given a set of data 
points {x1, x2, … , xn}, the intuitive goal of clustering is to find a reasonable method to divide the data points into 
several groups, with greater similarity in each group and dissimilarity among the groups. From the view of graph 
theory, the data can be represented as a similarity-based graph G =  (V, E) with vertex set V and edge set E. Each 
vertex vi in this graph represents a data point xi, and the edge between vertices vi and vj is weighted by similarity 
Wij. For any given similarity matrix W, we can construct the unnormalized Laplacian matrix by L =  D −  W and 
the normalized Laplacian matrix by  = − − −I D WD1/2 1/2, where the degree matrix D is defined as a diagonal 
matrix with elements = ∑ =d Wii j

n
ij1 . The adjacency matrix is a square matrix A, such that its element Aij is one 

when there is an edge from vertex vi to vertex vj and is zero when there is no edge. Two common variants of spec-
tral clustering are average association and normalized cut45. The two partition criteria that maximize the associa-
tion with the group and minimize the disassociation among groups are identical (the proof is provided in the 
literature45). Unfortunately, each variant is associated with an NP-hard problem. The relaxed problems can be 
written as11,26,45

 =
∈ ×
min tr Z Z subject to Z Z I( )

(1)Z R

T T
n k

In our algorithm, we will use the normalized cut as the partition criteria. The optimal solution to this problem 
is to set Z to be the eigenvectors that correspond to the k smallest eigenvalues of . Then, all data points are pro-
jected to the eigen-space and the k-means algorithm is applied to the projected points to obtain the clusters. The 
focus of our work is the definition of the similarity matrix in the spectral clustering algorithm, i.e. computing the 
relaxed eigenvectors Zs with different similarity measurements.

Different similarity measures. In spectral clustering, a similarity matrix should be constructed to quantify 
the similarity among the data points. The performance of the spectral clustering algorithm heavily depends on the 
choice of similarity measures46. There are several constructions to transform a given set of data points into their 
similarities. A common approach in machine learning is to encode prior knowledge about the data vertices using 
a kernel27. The linear kernel which is given by the inner products between implicit representations of data points, 
is the simplest kernel function. Assume that the ith node in V can be represented by an m-dimensional feature 
vector ∈

v Ri
m, and the distance between the ith and jth nodes in V is − ‖ ‖v vi j , which is the Euclidean distance. 

The linear kernel can be used as a type of similarity measure, i.e., similarity matrix W can be solved by =  W v vij i
T

j. 
The Gaussian kernel function is one of the most common similarity measures for spectral clustering11, which can 
be written as = σ− − ‖ ‖W eij

v v{ /(2 ) }i j
2 2

, where the standard deviation of the kernel σ is equal to the median of the 
pair-wise Euclidean distances between the data points.

There are also some specific kernels for the similarity matrix. Fischer and Buhmann47 proposed a path-based 
similarity measure based on a connectedness criterion. Chang et al.48 proposed a robust path-based similarity 
measure based on the M-estimator to develop the robust path-based spectral clustering method.

Different similarity measures may reveal similarity between data points from different perspectives. For exam-
ple, the Gaussian kernel function is based on Euclidean distances between the data points, whereas the linear 
kernel function is based on the inner products of the implicit representations of data points. Most studies of 
spectral clustering are based on one type of similarity measure, and notably few works consider multiple similar-
ity measures. Therefore, we propose a method to consider multiple similarity measures in spectral clustering. In 
other words, our goal is to find a spectral clustering method based on multiple similarity matrice.

Multi-similarity spectral clustering. First, we introduce basic ideas on multi-similarity spectral clustering 
in the dynamic networks. We assume that the clustering from one similarity measurement should be consistent 
with the clustering from the other similarity measurements, and we bootstrapping the clustering of different 
similarities using information from one another by a dynamic co-training. The dynamic co-training method 
based on the idea of evolutionary clustering can preserve historic information of community structure. After a 
new similarity matrix is obtained by the dynamic co-training, we follow the standard procedures in traditional 
spectral clustering and obtain the clustering result. Figure 3 graphically illustrate the dynamic co-training process.

Specifically, we first compute the similarity matrices with different similarity measures at snapshot t, and the 
pth similarity matrix is denoted by Wt

p( ). Following most spectral clustering algorithms, a solution to the problem 
of minimizing the normalized cut is the relaxed cluster assignment matrix Zt

p( ) whose columns are the eigenvec-
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tors associated with the first k eigenvalues of the normalized Laplacian matrix t
p( ). Then all data points are pro-

jected to the eigen-space, and the clustering result is obtained usin the k-means algorithm. For a Laplacian matrix 
with exactly k connected components, its first k eigenvectors are are the cluster assignment vectors, i.e., these k 
eigenvectors only contain discriminative information among different clusters, while ignoring the details in the 
clusters11. However, if the Laplacian matrix is fully connected, the eigenvectors are no longer the cluster assign-
ment vectors, but they contain discriminative information that can be used for clustering. From the co-training, 
we can use the eigenvectors from one similarity matrix to update the other one. The updated similarity matrix on 
the pth similarity measure at snapshot t can be defined as

∑=






















≠
S sym Z Z W

(2)
t

p

q p
t

q
t

q
t

p( ) ( ) ( ) ( )T

= +sym Y Y Y( ) ( )/2 (3)T

where Zt
q( ) denotes the discriminative eigenvector in the Laplacian matrix from the qth similarity measure, p, 

q =  1, 2, 3, …  s and p ≠  q. Equation (3) is the symmetrization operator to ensure that the projection of similarity 
matrix Wt

p( ) onto the eigenvectors is a symmetric matrix. Then, we use St
p( ) as the new similarity matrix to com-

pute the Laplacians and solve for the first k eigenvectors to obtain a new cluster assignment matrix Zt
p( ). After the 

co-training procedure is repeated for a pre-selected number of iterations, matrix =V Zt
p( ) is constructed, where 

p is considered the most informative similarity measure in advance. Alternatively, if there is no prior knowledge 
of the similarity informativeness, matrix V can be set to be the column-wise concatenation of all Z st

p( ) . For exam-
ple, we generate two cluster assignment matrices Zt

(1) and Zt
(2), which are combined to form =V Z Z[ ]t t

(1) (2) . 
Finally, the clusters are obtained using the k-means algorithm on V.

As descibed, we can solve the problem to accommodate multiple similarities. A further consideration is to 
follow the evolutionary clustering strategy to preserve the historic information of the community structure based 
on the co-training method. A general framework for evolutionary clustering was proposed by a linear combina-
tion of two costs26:

α α= ⋅ + − ⋅Cost CS CT(1 ) (4)

where CS measures the snapshot quality of the current clustering result with respect to the current data features, 
CT measures the goodness-of-fit of the current clustering result with respect to either historic data features or 
historic clustering results.

Here, we assume that the clusters at any snapshot should mainly depend on the current data and should not 
dramatically shift to the next snapshot. Then, a better approximation to the inner product of the feature matrix 
and its transposition is define as

α α= + − − −Z Z Z Z Z Z(1 ) (5)t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q( ) ( ) ( ) ( ) ( ) ( )

1
( )

1
( )T T T

where α≤ ≤0 1t
q( ) , and αt

q( ) is the temporal penalty parameter that controls the weight on the current informa-
tion and historic information. Notice that Z Zt

q
t

q( ) ( )T
 is determined by both current eigenvectors and historic 

eigenvectors, so the updated similarity St
p( ) defined in Equation (2), which considers the history, produces stable 

and consistent clusters. With the increase in αt
q( ), more weight is placed on the current information, and less 

weight is placed on the historic information. Algorithm 1 describes the MSSC algorithm in detail.

Figure 3. The graphical illustration of the dynamic co-training method. Wt represents the similarity matrix 
at snapshot t St

p( ) represents the new similarity matrix after the dynamic co-training. −Zt
p( ) denotes the 

discriminative eigenvector in the Laplacian matrix obtained from the 1, 2, 3 …  sth except for the pth similarity 
measures.
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Algorithm 1 multi-similarity spectral clustering algorithm

Input: multiple similarity matrices, =W{ }t
p

t
T( )

1 for p =  1, 2, … , s;

Output: Assignments to k clusters at time t;

 1: Initial: Computing Laplacian matrices  ={ }t
p

t
T( )

1;

 2: compute the original cluster assignment matrices

 3: = . . =
∈ ×

Z argmintr Z Z s t Z Z I( ) ;t
p

Z Rn k
t

p T
t
p

t
p

t
p T

t
p( ) ( ) ( ) ( ) ( ) ( )

 4: for t =  1 to T do

 5:   for i =  1 to iternum do

 6:    co-training to obtain the new similarity matrices α α=





∑ + −







≠ − − − −S sym Z Z Z Z W(1 )t

p
z p t

q
t i

q
t i

q T
t

q
t

q
t

q T
t

p( ) ( )
, 1
( )

, 1
( ) ( )

1
( )

1
( ) ( ) , 

q =  1, 2, … , s;

 7:    use St
p( ) as new similarity matrices to compute Laplacian matrices and solve for the first k eigenvectors Zt i

p
,
( );

 8:   end for

 9:   row-normalized . = ∑( )Z Y i j Z i j Z i j( , ) ( , )/ ( , )t
p

t
p

t
p

j t
p( ) ( ) 2 1/2

;

 10:   constructing =V Yt
p( ), where p considered the most informative similarity measure in advance. If there is no more prior 

knowledge on the informativeness, V can also be set as the column-wise concatenation of multiple feature matrices Y st
p( ) ;

 11:   apply the k-means algorithm to V to obtain the clusters;

 12: end for

Determining α. We have presented our proposed MSSC method. However, the temporal smoothing param-
eter αt

p( ) remains unknown, which prevents the clustering result at any snapshot from significantly deviating 
from the clustering result in the neighbouring snapshot. In many cases, the parameter depends on the subjective 
preference of the user. To work around this problem, Kevin S. Xu49 presented a framework that adaptively esti-
mated the optimal smoothing parameter using shrinkage estimation. In this section, we propose a different 
approach to adaptively estimate the parameter, which can be defined as

α = −
− −W W

W
1

(6)
t

p t
p

t
p

F

t
p

F

( )
( )

1
( )

( )

Note that αt
p( ) can be easily estimated because Wt

p( ) is known. In this model, more weight is placed on the current 
similarity, because the data should not dramatically shift to the neighbouring snapshot. Further more, a large 
difference in W indicates a small α, so it takes more information from the past.

Changing community numbers. We have assumed that the number of community k is fixed, which is a 
notably strong restriction to the application of our approach. In fact, our approach can handle variations in com-
munity numbers. When the community numbers are different at two neighbouring snapshots, the approximation 
in Equation (5) is free from the effect of changes in clusters, i.e., Z Zt

q
t

q( ) ( )T
 and − −Z Zt

q
t

q
1

( )
1

( ) T
 is independent of the 

community numbers.

Inserting and removing nodes. In many real-world networks, new nodes join or existing nodes leave the 
networks often. Assume that at time t, old nodes are removed from and new nodes are inserted into the network. 
We handle this problem by applying some heuristic solution to transform −Wt

p
1

( )  and −Zt
p

1
( )  to the same dimension as 

Wt
p( ) and Zt

p( ), respectively26. When old nodes are removed, we can remove the corresponding rows from −Zt
p

1
( )  in 

Equation (5) to obtain −
∼
Zt

p
1

( ) (assuming that −
∼
Zt

p
1

( )  is n1 ×  k). When new nodes are inserted, we must extend −
∼
Zt

p
1

( )  to 

−Ẑt
p

1
( )

, which has the identical dimension as Zt
p( )(assuming the dimension of Zt

p( ) is n2 ×  k). Then, −Ẑt
p

1
( )

 is defined as

=
















=−
−

−
− − −
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For Equation (6), when old nodes are removed, we can remove the corresponding rows and columns from −Wt
p

1
( )  

to obtain −
∼Wt

p
1

( )  (assuming that −
∼Wt

p
1

( )  is n1 ×  n1). When new nodes are inserted, we add the corresponding rows and 
columns to obtain −Ŵt

p
1

( )
, which has the identical dimension as Wt

p( )(assuming that the dimension of Wt
p( ) is 

n2 ×  n2). −Ŵt
p

1
( )

 can be defined as

=
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