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Topological spin and valley 
pumping in silicene
Wei Luo1, L. Sheng1,2, B. G. Wang1,2 & D. Y. Xing1,2

We propose to realize adiabatic topological spin and valley pumping by using silicene, subject to the 
modulation of an in-plane ac electric field with amplitude Ey and a vertical electric field consisting of an 
electrostatic component and an ac component with amplitudes Ez

0 and Ez
1. By tuning Ez

0 and Ez
1, 

topological valley pumping or spin-valley pumping can be achieved. The low-noise valley and spin 
currents generated can be useful in valleytronic and spintronic applications. Our work also 
demonstrates that bulk topological spin or valley pumping is a general characteristic effect of two-
dimensional topological insulators, irrelevant to the edge state physics.

Topological transport phenomena are generally protected by certain topological invariants, and exhibit univer-
sal properties that are immune to impurity scattering and insensitive to material details. Since the discovery of 
the integer quantum Hall (IQH) effect in two-dimensional (2D) electron systems1 in 1980, the first example of 
the topological transport phenomena, the fascinating characteristics of topological transport continue to be the 
primary focus of more and more research activities. Laughlin interpreted the precise integer quantization of the 
Hall conductivity in units of e2/h in the IQH effect in terms of an adiabatic quantum charge pump2. Thouless, 
Kohmoto, Nightingale, and Nijs established a relation between the quantized Hall conductivity and a topological 
invariant3, namely, the TKNN number or the Chern number. Thouless and Niu further related the amount of 
charge pumped in a charge pump to the Chern number4.

In recent years, the quantum spin Hall (QSH) effect, a spin analogue of the IQH effect, was proposed theoreti-
cally5,6, and realized experimentally in HgTe quantum wells7 and InAs/GaSb bilayers8. A QSH system, also called 
a 2D topological insulator (TI)9,10, is insulating in the bulk with a pair of gapless helical edge states11 at the sample 
boundary. In the ideal case, where the electron spin is conserved, a QSH system can be viewed as two independ-
ent IQH systems without Landau levels12, so that the topological properties of the system can be described by the 
opposite Chern numbers of the two spin species. In general, when the electron spin is not conserved, unconven-
tional topological invariants, either the Z2 index13 or spin Chern numbers14–16, are needed to describe the QSH 
systems. The time-reversal symmetry is considered to be a prerequisite for the QSH effect, which protects both 
the Z2 index and gapless nature of the edge states. However, based upon the spin Chern numbers, it was shown 
that the bulk topological properties remain intact even when the time-reversal symmetry is broken. This finding 
evokes the interest to pursue direct investigation and utilization of the robust topological properties of the TIs, 
besides using their symmetry-protected gapless edge states, which are more fragile in realistic environments.

Recently, Chen et al. proposed that a spin Chern pumping effect from the bulk of the 2D TI, a HgTe quantum 
well, can be realized by using time-dependent dual gate voltages and an in-plane ac electric field17, which paves a 
way for direct investigation and utilization of the bulk topological properties of the TIs. The work of Chen et al. is 
a generalization of the earlier proposals of topological spin pumps18–22, based upon 1D abstract models, to a real-
istic 2D TI material. The spin Chern pump is a full spin analogue to the Thouless charge pump, in the sense that 
it is driven by topological invariants alone, without relying on any symmetries. For example, it has been shown 
that magnetic impurities breaking both spin conservation and time-reversal symmetry only modify the amount 
of spin pumped per cycle in a perturbative manner17,22, being essentially distinct from the QSH effect. Wan and 
Fischer suggested to realize a topological valley resonance effect in graphene by using the time-dependent lattice 
vibration of optical phonon modes, which can pump out a noiseless and quantized valley current flowing into 
graphene leads23. This topological valley resonance effect is intimately related to the spin or valley Chern pump-
ing, as it is solely attributable to the valley Chern numbers, independent of the time-reversal symmetry23.

Silicene, the cousin of graphene, is a monolayer of silicon atoms instead of carbon atoms on a 2D honeycomb 
lattice. Recently, this material has been experimentally synthesized24–26 and theoretically explored27–30. Similar to 
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graphene, the energy spectrum of silicene has two Dirac valleys, around the K and K′​ points sited at opposite cor-
ners of the hexagonal Brillouin zone. Silicene has a much larger spin-orbit gap than graphene, favoring the QSH 
effect. As another prominent property distinguishing it from graphene, silicene has a buckled lattice structure, 
which allows us to control the Dirac masses at K and K′​ points independently, by applying an external vertical 
electric field29,31. This property also makes silicene be a natural candidate for valleytronics32–34.

In this paper, we propose an experimental scheme to achieve topological spin and valley pumping by applying 
in silicene an in-plane ac electric field with amplitude Ey and a vertical electric field comprising an electrostatic 
component and an ac component with amplitudes Ez

0 and Ez
1. The present proposal is more practicable experi-

mentally than the previous one17, because applying a vertical electric field in silicene has been much better under-
stood29,31 and is more practical than applying dual gate voltages in HgTe quantum wells. By using the spin-valley 
Chern numbers, it is shown that the system can be in the pure valley pumping regime, mixed spin and valley 
pumping regime, or trivial pumping regime, depending on the strengths Ez

0 and Ez
1 of the perpendicular electric 

field. The total amount of valley or spin quanta pumped per cycle, calculated from the scattering matrix formula, 
is fully consistent with the spin-valley Chern number description. It is proportional to the cross-section of the 
sample, and insensitive to the material parameters, a clear evidence that the pumping is a bulk topological effect, 
irrelevant to the edge states.

Results
Model Hamiltoinan.  Silicene consists of a honeycomb lattice of silicon atoms with two sublattices of A and 
B sites, as shown in Fig. 1. We consider a silicene sheet in parallel to the xy plane. Different from graphene, sili-
cene has a buckled structure, i.e., the two sublattice planes are separated by a small distance l ≃​ 0.44 Å along the z 
direction27. Silicene can be described by the tight-binding model

∑ ∑
λ

σ= − +
σ
σ σ

σσ
σ σσ σ

′
′ ′

† †H t c c i v c c
3 3

,
(1)i j

i j
i j

ij i
z

j0
,

SO

,

where σ
†ci  creates an electron with spin polarization σ =​ ↑​ or ↓​ at site i, and 〈​i, j〉​ and 〈​〈​i, j〉​〉​ run over all the 

nearest-neighbor and next-nearest-neighbor sites. The first term describes the nearest-neighbor hopping of the 
electrons with t =​ 1.6 eV. The second term represents the intrinsic spin-orbit coupling with λSO =​ 3.9 meV, where 
vij =​ 1 if the next-nearest-neighbor hopping is counterclockwise around a hexagon with respect to the positive z 
axis, and vij =​ −​1 if the hopping is clockwise.

For the following calculations, it is sufficient to use the low-energy continuum Hamiltonian, which can be 
obtained by expanding Hamiltonian (1) around the Dirac points K and K′​ to the linear order in the relative 
momentum

η τ τ λ ητ σ= + +ˆ ˆ ˆ ˆH v k k( ) , (2)x x y y z z0 F SO

where k =​ (kx, ky) is the relative momentum, η =​ ±​ correspond to the K and K′​ valleys, and =v atF
3

2
 is the Fermi 

velocity with the lattice constant a =​ 3.86 Å. To drive the quantum pumping, two time-dependent electric fields 
are applied to the system. One is along the z direction of the form ω= +E t E E t( ) cos ( )z z z

0 1  with Ez
0 and Ez

1 as the 
amplitudes of the electrostatic component and ac component, respectively. The other is an ac electric field along 
the negative y direction, Ey(t) =​ −​Ey cos (ωt). By taking the two electric fields into account, the Hamiltonian is 
rewritten as

η τ τ λ ητ σ ω τ= + − + − + .ˆ ˆ ˆ ˆ ˆH v k k eA t l E E t[ ( ( )) ] ( cos( )) (3)x x y y z z z z zP F SO
0 1

Here −​e is the electron charge, and A(t) =​ Ay sin (ωt) is the vector potential of the ac electric field along the nega-
tive y direction with Ay =​ Ey/ω and ω >​ 0 being assumed.

Figure 1.  (a) The honeycomb lattice and (b) buckled structure of silicene. Ey(t) and Ez(t) are the time-dependent 
electric fields along the y and z directions, respectively.
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Spin-valley Chern numbers.  Within the adiabatic approximation, for a bulk sample, one can obtain for the 
eigenenergies of Eq. (3) at any given time t

λ ηξ ω= + − + − +σE v k v k eA t l E E tk( ) { ( ( )) [ ( cos( ))] } , (4)x y z zF
2 2

F
2 2

SO
0 1 2 1/2

where ξ↑ =​ −​ξ↓ =​ 1. We note that E(k) depends on valley η and spin σ only through the product ηξσ, which has 
two possible values, ηξσ =​ ±​1. It is convenient to consider the whole system as consisting of two subsystems, one 
with ηξσ =​ 1 and the other with ηξσ =​ −​1. For the ηξσ =​ 1 subsystem (i.e., η =​ +​ and σ =​ ↑​, or η =​ −​ and σ =​ ↓​), if 

λ< −lE lEz z
1 0

SO , there always exists a finite energy gap between the conduction and valence bands. If 
λ≥ −lE lEz z

1 0
SO , at ω = λ −tcos ( ) lE

lE
z

z

SO
0

1
, the conduction and valence bands of the subsystem touch at kx =​ 0 and 

= +k ky y
c  or − +ky

c . Similarly, for the ηξσ =​ −1 subsystem (η =​ +​ and σ =​ ↓​, or η =​ −​ and σ =​ ↑​), if 
λ< +lE lEz z
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λ≥ +lE lEz z
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It has been established that the nontrivial topological properties of the system accounting for the spin or valley 
pumping can be well described by the spin-valley Chern numbers17. The topological pumping can be visualized 
as the quantized spectral flow of the spin-polarized Wannier functions, which originates from the nonzero 
spin-valley Chern numbers17. The spin-valley Chern numbers η

σC k( )y  can be defined in the standard way15,16, on 
the torus of the two variables kx ∈​ (−​∞​, ∞​) and t ∈​ [0, T) with T =​ 2π/ω as the period. In the present case, because 
electron spin σ̂z and valley η are conserved, the spin-valley Chern numbers are just the first Chern numbers of the 
occupied electron states of the individual spins and valleys. Specifically, we replace σ̂z with its eigenvalues ξ↑ =​ 1 
and ξ↓  =​ −1, and rewrite Hamiltonian (3), for given ξσ and η, into the form τ= ⋅ησ ησ ˆH hP , where 
=ησ ησ ησ ησh h hh ( , , )x y z  with  η=ησh v kx xF , = −ησh v k eA t( ( ))y yF , and  ηξ λ ω= − +ησ

σh l E E t( cos ( ))z z zSO
0 1 . 

For such a two-band Hamiltonian, the first Chern number of the occupied band is given by35 
= ⋅ ∂ × ∂η

σ
π

ησ ησ ησ
∬ ˆ ˆ ˆC dk dth h h( )x k t
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4 x

, where =
ησ ησ ησˆ hh h /  is a unit vector along the direction of hησ with 

= + +ησ ησ ησ ησh h h h( ) ( ) ( )x y z
2 2 2 . By substituting the expressions for hησ into this formula, one can obtain for 

the spin-valley Chern numbers

ηθ λ θ= − − − | |η
σ +C k lE lE k k E E( ) ( ) ( )sgn( ), (6)y z z y
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for ηξσ =​ 1, and

ηθ λ θ= − + − | |η
σ −C k lE lE k k E E( ) ( ) ( )sgn( ), (7)y z z y

c
y y z

1 0
SO

1

for ηξσ =​ −​1, where θ (x) is the unit step function.
The phase diagram of the spin-valley Chern numbers for ky =​ 0 on the Ez

1 versus Ez
0 plane is plotted in Fig. 2(a). 

This phase diagram is mainly determined by the first θ-function in Eqs (6 and 7), which sets four straight lines as 
the phase boundaries, and the second θ-function can be considered to be always equal to unity for ky =​ 0. The 
yellow region can be described by the inequations λ> −lE lEz z

1 0
SO  and λ> +lE lEz z

1 0
SO . The blue region is 

given by λ> −lE lEz z
1 0

SO  and λ< +lE lEz z
1 0

SO , or λ< −lE lEz z
1 0

SO  and λ> +lE lEz z
1 0

SO . The white 
region corresponds to λ< −lE lEz z

1 0
SO  and λ< +lE lEz z

1 0
SO . One may notice that on any of the phase 

boundaries, the band gap always closes at certain time.
A typical phase diagram on the ky versus Ez

0 plane for λ=lE 2z
1

SO is plotted in Fig. 2(b), where Ey is taken 
to be positive. The phase diagram can be understood as the superposition of those of the two subsystems of 
ηξσ =​ 1 and −​1, as indicated by Eqs (6 and 7). The phase diagram of the ηξσ =​ 1 subsystem is determined  
by the boundary = +k ky y

c , which can be rewritten into the standard form of an ellipse equation 
λ+ − =k eA lE lE/( ) ( ) /( ) 1y y z z

2 2 0
SO

2 1 2 , centered at λ =lE / 1z
0

SO  and ky =​ 0. The spin-valley Chern numbers of the 
subsystem take values = − =+

↑
−
↓C k C k E E( ) ( ) sgn( )y y y z

1  inside the ellipse, and vanish outside the ellipse. Similarly, 
the phase diagram of the ηξσ =​ −1 subsystem is determined by the boundary = −k ky y

c , which can be rewritten into 
the standard form of an ellipse equation λ+ + =k eA lE lE/( ) ( ) /( ) 1y y z z

2 2 0
SO

2 1 2 , centered at λ = −lE / 1z
0

SO  and 
ky =​ 0. The spin-valley Chern numbers of the subsystem take values = − =+

↓
−
↑C k C k E E( ) ( ) sgn( )y y y z

1  inside the 
ellipse, and vanish outside the ellipse.

For the convenience to relate the above phase diagram to the spin and valley pumping, we introduce the total 
valley Chern number η= ∑ησ η

σC k C k( ) ( )y yvalley  and total spin Chern number ξ= ∑ησ σ η
σC k C k( ) ( )y yspin . The 

total charge Chern number ∑ησ η
σC k( )y  always vanishes and will not be considered. For definiteness, we focus on 

the case where >E 0z
1 , corresponding to the upper half of the phase diagram Fig. 2(a). The opposite case where 

<E 0z
1 , corresponding to the lower half phase diagram, can be understood similarly. When the system is in the 

yellow region of Fig.  2(a), if =E 0z
0 , we have =+ −k ky

c
y
c ,  and the spin-valley Chern numbers 

= − −+
↑

+
↓

−
↑

−
↓C C C C( , ; , ) (1, 1; 1, 1) for | | < +k ky y

c  and (0, 0; 0, 0) for | | > +k ky y
c , as can be seen from Fig. 2(b). 

The total valley Chern number Cvalley(ky) =​ 4 for | | < +k ky y
c , and 0 for | | > +k ky y

c . The total spin Chern number 
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Cspin(ky) =​ 0 for any ky. The system is in the pure valley pumping regime, without pumping spin. If >E 0z
0 , as can 

be seen from Fig. 2(b), the spin-valley Chern numbers take values (1, 1; −​1, −​1) for | | < −k ky y
c , (1, 0; 0, −​1) for 

< | | <− +k k ky
c

y y
c , and (0, 0, 0, 0) for | | > +k ky y

c . As a result, the electron states with | | < −k ky y
c  have Cvalley(ky) =​ 4 

and Cspin(ky) =​ 0, and contribute to pure valley pumping, similar to the case for =E 0z
0 . The states with 

< | | <− +k k ky
c

y y
c  contribute to both valley and spin pumping, and pump an equal amount of valley and spin 

quanta per cycle, because Cvalley(ky) =​ Cspin(ky) =​ 2 in this region. The other states with | | > +k ky y
c  do not contrib-

ute to the pumping. Therefore, the system as a whole is in a regime of mixed spin and valley pumping. Each cycle, 
the system pumps more valley quanta than spin quanta. The case for <E 0z

0  can be analyzed similarly.
When the system is in the blue region of Fig. 2(a), by assuming >E 0z

0  for definiteness, the spin-valley Chern 
numbers equal to (1, 0; 0, −​1) for | | < +k ky y

c , and (0, 0; 0, 0) for | | > +k ky y
c . The corresponding total valley Chern 

number and spin Chern number are Cvalley(ky) =​ Cspin(ky) =​ 2 for | | < +k ky y
c , and vanish for | | > +k ky y

c . The system 
is in the spin-valley pumping regime. Different from the spin-valley pumping in the yellow region of Fig. 2(a), 
each cycle, the system pumps an equal amount of valley and spin quanta. When the system is in the white region 
of Fig. 2(a), the spin-valley Chern numbers all vanish for any ky, and the system is a trivial insulator.

Spin Pumping from The Scattering Matrix Formula.  The amount of spin and valley quanta pumped 
per cycle can be conveniently calculated by using the scattering matrix formula36,37. In the following, we show 
that the calculated result from the scattering matrix formula is consistent with the above topological description. 
The spin pumping is more interesting than valley pumping regarding practical applications, and we will focus on 
the amount of spin pumped per cycle. The valley pumping can be studied similarly by considering an electrode 
with natural valley degrees of freedom. We consider the pump is attached to a normal electrode, with a potential 
barrier in between. The total Hamiltonian of the system is taken to be

=









<
+ < < .

>
H

H x
H V x d
H x d

( 0)
(0 )
( ) (8)

P

E B

E

The Hamiltonian HP at x <​ 0 for the pump body is given by Eq. (3), and the electrode is taken to be a normal metal 
with a 2D parabolic Hamiltonian

= − +H E p
m2

, (9)E 0

2

where p =​ (px, py) is the 2D momentum, and E0 and m are constant model parameters. In the barrier region, the 
additional term τ= ˆV V zB 0  opens an insulating gap of size 2V0, which accounts for contact deficiencies between 
the pump and electrode.

The Hamiltonian in the pump is Dirac-like, while in the metal electrode, the Hamiltonian is parabolic. It is 
well-known that the wavefunction of a parabolic Hamiltonian can not be connected directly to that of a Dirac-like 
Hamiltonian. To overcome this problem, following Chen et al.17, we linearize the Hamiltonian Eq. (9) around the 
Fermi energy before proceeding. When E0 is sufficiently large, for a given py, we can linearize the effective 1D 

Figure 2.  (a) The phase diagram of the spin-valley Chern numbers on the normalized Ez
1 vs normalized Ez

0 
plane for ky =​ 0, and (b) the phase diagram on the ky vs Ez

0 plane for λ=lE 2z
1

SO. The numbers in the brackets are 
spin-valley Chern numbers, i.e., +

↑
+
↓

−
↑

−
↓C C C C( , ; , ). Ey is taken to be positive, and for negative Ey, all the spin-

valley Chern numbers in the phase diagrams will flip signs.
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Hamiltonian HE at the right and left Fermi points = ± ′p mv k( )x yF  with ′ = + −v k m E E k m( ) 2 ( ) /y yF F 0
2 . A 

Pauli matrix τ̂x is introduced to describe the right and left-moving branches. To be consistent with the form of the 
Hamiltonian of the pump and also preserve the time-reversal symmetry, we use τx =​ 1 and −​1, respectively, to 
represent the right-moving and left-moving branches for η =​ 1, and oppositely for η =​ −​1. As a result, the 
Hamiltonian of the electrode becomes

ητ= ′ ˆH v k , (10)x xE F

where ky =​ py and = ′
k p mv k( )x x yF  for the right and left-moving branches.

Strictly speaking, the operator τ̂x in the electrode has different physical meaning from that in the pump. We 
notice that in both the pump and electrode, the moving direction (left-moving or right-moving) of a propagating 
wave is determined by the product ητ̂x. Since when a propagating wave partially transmits across the interface 
between the pump and electrode, its moving direction does not change, τ̂x maybe regarded as being the same in 
the pump and electrode for the transmission process. On the other hand, the difference of the operator τ̂x in the 
pump and electrode alone will cause partial reflection of an incident wave at the interface, even if all the other 
factors in the pump and electrode match perfectly. Unfortunately, we do not have enough information to accu-
rately parametrize the transmission and reflection amplitudes. To simplify the parametrization, we will omit the 
difference of the operator τ̂x in the pump and electrode, which essentially neglects the reflection effect due to the 
difference of τ̂x. We assume that the reflection effect can be effectively accounted by the potential barrier. This 
simplification is reasonable, especially in the present system, where the spin pumped per cycle is independent of 
the material details of the electrode. The pumping effect is usually dominated by small ky, so that we can further 
approximate ′ ′ = ≡ ′

v k v k v( ) ( 0)y yF F F, with purpose to minimize the number of adjustable parameters in the 
model.

Calculation of the number of electrons pumped per cycle amounts to solving the scattering problem for an 
electron at the Fermi energy incident from the electrode. The Fermi energy will be set to be EF =​ 0, which is in the 
band gap of the pump. In this case, the incident electron will be fully reflected back into the electrode. In order to 
obtain the scattering amplitudes, we need to solve the wavefunctions in the three regions. For a spin σ electron 
incident from η valley, the wavefunction in the electrode is given by

η ηΨ = − + .ησ η
σ

( ) ( )x
r k

( ) 1
2

1 ( )
2

1
(11)

y
E

The wavefunctions in the potential barrier and in the pump can be written as
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where γ = ′V v/0 0 F , = +η
σ

η
σk x y v/x F

2 2 , ϕ = +η
σ

η
σ

η
σx iyarg[ ] with η ω= − −η

σx v k eA t[ sin ( )]y yF  and 
η ηξ λ ω= − −η

σ
σy lE lE t[ cos ( )]z zSO

0 1 . Matching the wavefunctions given in Eqs (11–13) at x =​ 0 and x =​ d by 
using the boundary conditions Ψ + = Ψ −ησ ησ+ +d d( 0 ) ( 0 )E B  and Ψ = Ψησ ησ+ −(0 ) (0 )B P , we can obtain for the 
reflection amplitudes

ϕ γ η ϕ γ

γ η ϕ γ
= −

+ +

+
.η

σ η
σ

η
σ

η
σr k

i d d
d d

( )
cos [sh(2 ) sin ch(2 )]
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y

0 0

0 0

The number of electrons of valley η and spin σ pumped per cycle at momentum ky is given by36,37

π
∆ = .η

σ
η
σ

η
σ∮ ⁎

n k
i

r k dr k( ) 1
2

( ) ( ) (15)y y y
T

Noting that | | ≡η
σr k( ) 1y  due to full reflection, one can easily identify ∆ η

σn k( )y  with the winding number of η
σr k( )y  

around the origin on the complex plane in a cycle. | | ≡η
σr k( ) 1y  also indicates that with changing the barrier strength 

γ0d, the trajectory of η
σr k( )y  will never sweep through the origin, and so the winding number is invariable. As a result, 

∆ η
σn k( )y  is independent of the barrier strength γ0d. Thus, we can calculate ∆ η

σn k( )y  simply by setting γ0d =​ 0, and the 
result is valid for any barrier strength. For γ0d =​ 0, ϕ η ϕ= − + =η

σ
η
σ

η
σ π ηϕ+ η

σ
r k i e( ) (cos sin )y

i ( ), and we can derive 
Eq. (15) to be η ϕ ϕ π∆ = −η

σ
η
σ

η
σn k T( ) [ ( ) (0)]/2y .

Because of the periodicity, the increment of ϕη
σ t( ) in a period, namely, ϕ ϕ−η

σ
η
σT( ) (0), must be integer multi-

ples of 2π. From the expression for ϕη
σ t( ) given below Eq. (13), we know that ϕη

σ t( ) is the argument of +η
σ

η
σx iy . It 

is clear that the trajectory of +η
σ

η
σx iy  is an ellipse on the complex plane centered at η η ηξ λ− − − σv k lE[ , ( )]y zF

0
SO , 

with |evFAy| and lEz
1  as the semi-major and semi-minor axes oriented along the real and imaginary axes, as shown 

in Fig. 3. If the ellipse encircles the origin (0, 0), the increment of ϕη
σ t( ) takes value 2π or −​2π, depending on the 
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direction of the trajectory. Otherwise, the increment is 0. The direction of the trajectory is determined by the sign 
of E Ey z

1. For the ellipse of +η
σ

η
σx iy  to surround the origin, two sufficient and necessary conditions must be satis-

fied. First, the ellipse needs to intersect the real axis. This requires that the semi-minor axis is longer than the 
distance from the ellipse center to the real axis, and so λ> −lE lEz z

1 0
SO  for ηξσ =​ 1, and λ> +lE lEz z

1 0
SO  for 

ηξσ =​ −​1. Second, the two intersecting points need to be located at opposite sides of the origin. This results in the 
condition | | < +k ky y

c  for ηξσ =​ 1, and | | < −k ky y
c  for ηξσ =​ −​1. Now it is easy to see that the number of electrons 

for given valley η and spin σ pumped per cycle at momentum ky equals to the spin-valley Chern number 
∆ =η

σ
η
σn k C k( ) ( )y y .

To further confirm the above general discussion, in Fig. 4(a–f), we plot the trajectories of η
σr k( )y  for the η =​ +​ 

valley for momentum ky in different regions. In (a) and (b), the conditions | | < +k ky y
c  and | | < −k ky y

c  are satis-
fied, corresponding to the yellow region in Fig. 2(b), and both +

↑r k( )y  and +
↓r k( )y  go around the origin counter-

clockwise once in a cycle. As a result, ∆ = ∆ =+
↑

+
↓n k n k( ) ( ) 1y y , in agreement with the spin-valley Chern 

numbers = =+
↑

+
↓C k C k( ) ( ) 1y y . In (c) and (d), we have < | | <− +k k ky

c
y y

c , corresponding to the right blue region 
in Fig. 2(b), and +

↑r k( )y  goes around the origin once, but +
↓r k( )y  does not. Therefore, ∆ =+

↑n k( ) 1y  and 
∆ =+
↓n k( ) 0y , in agreement with =+

↑C k( ) 1y  and =+
↓C k( ) 0y . In (e) and (f), we have | | > +k ky y

c  and | | > −k ky y
c , 

corresponding to the white region in Fig. 2(b), and the winding numbers of +
↑r k( )y  and +

↓r k( )y  around the origin 
are zero. Therefore, ∆ = ∆ =+

↑
+
↓n k n k( ) ( ) 0y y , in agreement with = =+

↑
+
↓C k C k( ) ( ) 0y y . The calculated trajecto-

ries of +
↑r k( )y  and +

↓r k( )y  are fully consistent with the spin-valley Chern number description.
Based upon the above discussion, we know that for each ky, the spin pumped per cycle is 

 ∆ = ∑ ∆ − ∆ =η η η
↑ ↓s k n k n k C k( ) [ ( ) ( )] ( )y y y spin y2 2

. By summing over ky, one can obtain for the total spin 
pumped per cycle


π

θ λ θ λ∆ = | | − | − | − | | − | + | .+ −S
L

E E lE lE k lE lE ksgn( )[ ( ) ( ) ] (16)
y

y z z z y
c

z z y
c1 1 0

SO
1 0

SO

Δ​S is in scale with the width Ly of the pump, a clear indication that the spin pumping is a bulk effect. If =E 0z
0 , 

where =+ −k ky
c

y
c , we have Δ​S =​ 0. As discussed earlier, the system is in the pure valley pumping regime, without 

pumping spin. If λ< −lE lEz z
1 0

SO  and λ< +lE lEz z
1 0

SO , which corresponds to the trivial insulator phase in 
the white region of Fig. 1(a), we also have Δ​S =​ 0. In all other cases, Δ​S ≠​ 0, and the system serves as a topological 
spin Chern pump.

Conclusion
We have investigated the topological pumping effect in silicene, modulated by an in-plane and a vertical 
time-dependent electric field. Using spin-valley Chern numbers to characterize the topological pumping, we 
find that there exist three quantum pumping regimes in the system, a pure valley pumping regime, a spin-valley 
pumping regime, and a trivial insulator regime, depending on the strengths of the electrostatic and ac components 
of the perpendicular electric field. The amount of spin pumped per cycle calculated from the scattering matrix 
formula is fully consistent with the topological description based upon the spin-valley Chern numbers. This work 
proposed a relatively easy scheme to achieve topological spin or valley Chern pumping. It also demonstrates the 

Figure 3.  The ellipse trajectory of +η
σ

η
σx iy  on the complex plane centered at η η ηξ λ− − − σv k lE[ , ( )]y zF

0
SO , 

with |evFAy| and lEz
1  as the semi-major and semi-minor axes oriented along the real and imaginary axes. 

For the ellipse to surround the origin, two sufficient and necessary conditions must be satisfied. First, the ellipse 
needs to intersect the real axis. This requires that the semi-minor axis is longer than the distance from the ellipse 
center to the real axis, namely, λ> lE lEz z

1 0
SO  for ηξσ =​ ±​1. Second, the two intersecting points between the 

ellipse and real axis are located at opposite sides of the origin. This results in the condition | | < ±k ky y
c  for 

ηξσ =​ ±​1. It is clear that the two conditions are just the two step functions in Eqs (6 and 7).
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fact that bulk topological spin or valley Chern pumping is a characteristic observable effect of various QSH sys-
tems, if the material parameters of the QSH systems can be suitably modified with time.
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