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Stochastic anomaly of 
methylome but persistent SRY 
hypermethylation in disorder of sex 
development in canine somatic cell 
nuclear transfer
Young-Hee Jeong1,*, Hanlin Lu2,3,*, Chi-Hun Park1,4,5, Meiyan Li2, Huijuan Luo2, 
Joung Joo Kim1, Siyang Liu2, Kyeong Hee Ko1, Shujia Huang2, In Sung Hwang1, Mi Na Kang1, 
Desheng Gong2,3, Kang Bae Park1, Eun Ji Choi1, Jung Hyun Park1, Yeon Woo Jeong1, 
Changjong Moon6, Sang-Hwan Hyun1,7, Nam Hyung Kim8, Eui-Bae Jeung7, Huanming Yang2, 
Woo Suk Hwang1 & Fei Gao2,3

Somatic cell nuclear transfer (SCNT) provides an excellent model for studying epigenomic 
reprogramming during mammalian development. We mapped the whole genome and whole 
methylome for potential anomalies of mutations or epimutations in SCNT-generated dogs with 
XY chromosomal sex but complete gonadal dysgenesis, which is classified as 78, XY disorder of sex 
development (DSD). Whole genome sequencing revealed no potential genomic variations that could 
explain the pathogenesis of DSD. However, extensive but stochastic anomalies of genome-wide DNA 
methylation were discovered in these SCNT DSD dogs. Persistent abnormal hypermethylation of 
the SRY gene was observed together with its down-regulated mRNA and protein expression. Failure 
of SRY expression due to hypermethylation was further correlated with silencing of a serial of testis 
determining genes, including SOX9, SF1, SOX8, AMH and DMRT1 in an early embryonic development 
stage at E34 in the XYDSD gonad, and high activation of the female specific genes, including FOXL2, 
RSPO1, CYP19A1, WNT4, ERα and ERβ, after one postnatal year in the ovotestis. Our results 
demonstrate that incomplete demethylation on the SRY gene is the driving cause of XYDSD in these XY 
DSD dogs, indicating a central role of epigenetic regulation in sex determination.

Mammalian sex determination, which is the genetic process by which gonadal primordia are committed to differ-
entiate into either testes or ovaries, is governed by complex molecular networks of gene expression1. The products 
of testis and ovary specific genes antagonize each other and promote testis and ovary development. Disturbance 
of this equilibrium can lead to disorders of sex development (DSDs)2. In humans, one in 4,500 infants is born 
with DSD, confronting both the parents and associated medical staff with challenging decisions regarding gender 
assignment, genital surgery and lifelong care3,4. Improved understanding of the genetic causes of such disorders 
will lead to refinements in their diagnosis and management.

1Sooam Biotech Research Foundation, Seoul 152-904, Korea. 2BGI-Shenzhen, Shenzhen, China. 3Agricultural 
Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. 4Animal Bioscience 
and Biotechnology Laboratory, United States Department of Agriculture, Beltsville, MD, 20705, USA. 5Department 
of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA. 6College of Veterinary 
Medicine, Chonnam National University, Gwangju 500-757, Korea. 7College of Veterinary Medicine, Chungbuk 
National University, Cheongju, Chungbuk 361-763, Korea. 8College of Animal Sciences, Chungbuk National 
University, Cheongju, Chungbuk 361-763, Korea. *These authors contributed equally to this work.  Correspondence 
and requests for materials should be addressed to W.S.H. (email: hwangws@sooam.org) or F.G. (email: flys828@
gmail.com)

received: 05 March 2016

Accepted: 13 July 2016

Published: 09 August 2016

OPEN

mailto:hwangws@sooam.org
mailto:flys828@gmail.com
mailto:flys828@gmail.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:31088 | DOI: 10.1038/srep31088

Most of our current knowledge regarding mammalian sex determination is derived from studies of 
sex-reversed mice obtained by direct genetic manipulation or natural cases of exceptions to normal gonad devel-
opment5. Previous reports mainly focused on genetic mutations, suggesting that DSD is typically caused by 
loss-of function mutations in genes required for formation and maintenance of the gonadal primordia, resulting 
in varying degrees of gonadal dysgenesis. However, a specific molecular diagnosis currently only be made in 
~20% of patients with DSDs.

Cloned animals generated by somatic cell nuclear transfer (SCNT) technology provide an alternative model 
as cases of anomalies in the sex differentiation of animals have reportedly occurred during SCNT procedure for 
unknown reasons6. This evokes questions about early events of epigenetic reprogramming in SCNT when the 
chromosomal sex is clearly determined in genetic donor cells. Epigenetic regulation of mammalian sex deter-
mination has also been revealed as a key mechanism7, while incomplete methylation reprogramming in SCNT 
embryos is actually a common issue8.

In the present study, we describe our observations in SRY positive XY DSD with almost complete female 
phenotypes in dogs generated by SCNT technology. By applying whole-genome and whole-methylome sequenc-
ing on three pairs of donor-clone dogs, we revealed persistent hypermethylation of the SRY gene as the main 
cause of XY DSD, in addition to extensive genome-wide anomaly of methylation, while no genomic variations 
could explain the XY DSD in our study. Our results clearly indicated the central role of epigenetic regulation on 
SRY in sex determination, as well as the importance of the epigenomic reprogramming during early embryonic 
development.

Results
Cytogenetic and phenotypic analyses of DSD dogs generated by SCNT. During our canine 
somatic cell nuclear transfer (SCNT), we observed an unexpectedly high frequency of the distinct congenital 
anomaly of male-female sex-reversal. Overall, 22.7% (10/44) of cloned dogs belonging to eight different breeds 
were found to have this anomaly. All cases occurred in males, but instances were not confined to a particular 
breed or age of genetic donors (Supplemental Table S1). As exemplified in one sex-reversal case (GSF74), genetic 
analysis of the metaphase of skin fibroblasts indicated a typically normal male diploid genome (78 XY) (Fig. 1a) 
without deletion of SRY gene sequences (Fig. 1b). However, its external genitalia showed complete gonadal dys-
genesis (Fig. 1c) with typical structures of the uterine horn and tube in normal bitches as revealed by histological 
analyses (Fig. 1c–e). An ovary-like structure was also observed in the location of normal ovaries, but no mature 
follicles or oocytes were present (Fig. 1f), and there was no significant increase in any hormones (testosterone, 
estradiol and progesterone), indicating gonadal failure (Supplemental Fig. 1). These results indicated that the 
internal and external genital structures were female phenotype, but the streak gonads failed to produce sex hor-
mones. Based on these findings, the cloned dog with the XY sex-reversal can be classified as 78, XY disorder 
of sex development (78, XYDSD), complete gonadal dysgenesis2,4. Furthermore, re-cloning of this 78 XY dog 
resulted 83.30% of the re-cloned dogs showing female phenotype without restoring their normal sex condition 
(Supplemental Table S1).

No genomic variations revealed in the genomes could potentially explain the XY DSD. To infer 
potential genetic variations that occurred during the SCNT procedure that could lead to abnormal sex-reversal 
phenotype, we conducted whole genome sequencing (WGS) on DNA extracted from primary fibroblast cells 
isolated from seven dog samples, including two normal donors, two sex-reversed cloned dogs, one sex-reversed 
re-cloned dog and a pair of independent replicate samples taken as controls (Supplemental Table 2). For each 
genome, an average sequencing depth of 27X was used for the following analyses (see the methods section). 
The published canine genome originated from a female boxer with no reference sequences assembled for the Y 
chromosome9. To assemble the Y chromosome sequences, we first extracted all pair-ended unmapped reads as 
the candidate reads originated from chromosome Y. After removing the low-frequency k-mers regions that were 
generally taken as sequencing errors, we constructed a draft assembly for dog chromosome Y (deposited in SRA). 
To assess the accuracy of the assembly results, we compared our assembled scaffolds with dog Y-chromosomal 
fragments available in GenBank. We collected a total of 35 specific fragments from the chrY of dog, the length 
of which was 27,378 bp. The LASTZ sequence alignment program revealed that all fragments were aligned per-
fectly to the 12 scaffolds, indicating that our assembly results are accurate and reliable (Supplemental Table 3). A 
1495 bp sequence (AF107021) containing a single exon of the canine SRY gene reported by Meyers-Wallen et al.10 
was aligned to scaffold 2360, with its open reading frame (256–915bp) mapped to a region within scaffold 2360 
(1057–1719 bp) without gaps.

To separate true variations from machine artifacts as a result of the high rate and context-specific nature of 
sequencing errors in NGS, we sequenced an independent sample twice, then used the results to evaluate sequenc-
ing errors and false positive calls. After obtaining the full canine genome, we conducted a stringent analysis to 
screen SNVs or indels of the clone sample based on comparison with the donor sample by identification of de 
novo somatic mutations (dnSM) and loss of heterozygosity (dnLOH). The results revealed a similar number of 
SNVs or indels between the clone-donor sample pairs as between the control replicates (Supplemental Table 4).  
These findings strongly indicated that there were still false positive calls. Therefore, we filtered out around 40–50% 
of the SNVs and 70% of the indels using RepeatMasker and re-performed the alignment and variation calling on 
the re-mapped reads based on more strict criteria (see the methods section) (Supplemental Table 4). Furthermore, 
we integrated three algorithms to infer potential structure variation (SV) (see the methods section), resulting in 
a limited number of de novo SVs between the donor and clone (Supplemental Table 5). However, there were still 
a similar number of variants called out from the independent replicates. Further annotation indicated that only a 
few of the variants were located in exonic regions. We finally performed comprehensive validation of these exonic 
variants (25 SNPs and 1 Indel) by applying a new method combining PCR amplification and high-throughput 
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indexing MiSeq sequencing (Supplemental Table 6). Overall, 19 of the 25 SNPs were successfully recapitulated 
in one of the clone-control pairs (Supplemental Table 7). However, none of these recapitulated SNPs were over-
lapped among the three clone-control pairs (Supplemental Fig. 2). Despite these stochastic variants during 
the SCNT procedure, no SNVs, indels or SVs of the genes relative to normal sex development were identified 
based on the criteria we set. To further eliminate potential false negative detection and validate these results, we 
selected eight genes (SRY, SOX9, AMH, WNT4, SF1, WNT1, WT1 and DMRT1), which are key regulators for 

Figure 1. XYDSD phenotype of cloned dog produced by SCNT. (a) Karyotyping analysis of the fibroblast of 
a sex reversed cloned dog (78, XY); (b) Agarose gel electrophoresis of SRY-specific PCR product; (c) External 
genitalia of a cloned male (XY genotype, XX phenotype) showing complete gonadal dysgenesis (left) and its 
gonad (right); (d–f) Hematoxylin/eosin (H&E) stained gonad and epididymic sections from adult XYDSD 
cloned dog. (d) Uterine horn. (e) Uterine tube. (f) Ovary. CT, cortical tubule; EG, endometrial gland; EM, 
endometrium; F, fold; FS, follicle-like structure; IG, interstitial gland; ML, muscular layer; MM, myometrium; S, 
serosa; V, vessel. Scale bars, 50 μ m (d–f), 100 μ m (1), 200 μ m (2 and 3).
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sex determination2, and applied PCR-based high-throughput indexing HiSeq sequencing to validate the results. 
However, we still could not detect any variants in the exonic region of these genes (Supplemental Tables 6 and 7).

Stochastic anomaly of genome-wide DNA methylation in DSD cloned dogs. Epigenetic 
abnormalities of cloned animals generated from SCNT technology have previously been observed8,11,12. We 
next performed whole genome bisulfite sequencing to examine the methylation profiles of the seven samples 
(Supplemental Table 8). A hierarchical clustering analysis based on the DNA methylation level of CpG sites was 
performed, which resulted in three distinct branches that each comprised a pair of donor-clone dogs. The differ-
ence between a donor and its clone is smaller than the inter-individual difference. Based on the cluster of inde-
pendent replicate samples as negative controls, dissimilarity between donor and clone is indicated by the cluster 
height (see methods for “Pvclust” algorithm), which is slightly bigger than the difference between the Trakr clone 
and reclone (Fig. 2a). However, the average methylation levels of CpG sites in thirteen specific genomic elements, 
including the genic region (Fig. 2b), CpG island (CGI), CGI shores, simple repeat regions, low complexity region, 
and LINE region, were not notably different (Supplemental Fig. 3). These results suggested that the differences 
between the donor-clone sample pairs were not extensive, and were instead restricted to specific loci. Therefore, 
we further conducted pair-wise comparison of methylation levels across the genomes of the donor-clone sample 
pairs, revealing about 10,000 differentially methylated regions (DMRs). In contrast, only thirty DMRs were iden-
tified between two independent replicates, which was a false positive call (Supplemental Table 9). These results 
suggested that regional methylation changes can still frequently occur in these DSD dogs, despite the large-scale 
stability of the methylome.

Because promoter methylation plays a role in gene repression13, we focused our analyses on genes containing 
DMR within their promoter regions. We found more than three hundred promoter DMRs between clones and 
donors. However, only a small portion of the DMR-containing genes between clones and donors were recurrent 
among three pairs of donor-clone comparisons, suggesting that these methylation anomalies were mostly sto-
chastic (Supplemental Fig. 4). Furthermore, Gene Ontology enrichment analyses of these promoter-DMR genes 
(see the methods section) indicated that some subsets of the DMR genes were enriched with GO terms for metab-
olism or organ development, suggesting potential molecular abnormalities. No GO terms were shared by any two 
of the three donor-clone sample pairs, again indicating the stochasticity of abnormal methylation reprogramming 
during SCNT (Supplemental Table 10).

Sexually dimorphic gene expression has previously been observed in multiple somatic tissues14. As a key gene 
regulation mechanism, we speculated that sexually dimorphic methylation will also be observed in fibroblasts of 
these dogs. Therefore, we carefully examined the methylation status of the 46 gender-related genes. We found that 
both the promoter and the gene body of the Y-chromosome-linked gene, SRY, consistently displayed significant 
hypermethylation in the clone samples relative to the donor samples (Fig. 3a), though such divergences were not 
observed in the other 45 genes (Supplemental Table 11). We further compared the cloned dogs with or without 
DSD that were cloned from these two donors (Trakr and Astro), revealing much higher methylation level (> 90%) 
of SRY gene in DSD than in the normal sex cloned dogs (Supplemental Fig. 5A,B). Moreover, the SRY hypermeth-
ylation was also observed in two extra cases of DSD cloned dogs that we randomly selected, suggesting it’s a type 
of recurrent aberrancy in the population (Supplemental Fig. 5C,D).

Hypermethylation of SRY correlated with male differentiation repression and female phe-
notypic development in the XYDSD gonad. The SRY gene encodes a master protein for initiating testis 
differentiation in mammals. This gene was previously shown to be expressed during early gonad development 
in somatic cells of XY genital ridges and to induce supporting cell precursors to differentiate into Sertoli cells 

Figure 2. Genome wide DNA methylation patterns of donor and XYDSD cloned dogs. (a) Hierarchical 
clustering of genome-wide CpG methylation in donor and XYDSD cloned dogs using PVclust software.  
(b) Methylation levels (y-axis) of 100-bp intervals around genic regions (x-axis).
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rather than female granulosa cells. Without normal Sry expression, gonads develop as ovaries or ovotestes15. 
We suspected that the abnormal promoter and gene body hypermethylation of the SRY gene might also occur 
in gonads and cause its abnormal expression, thus disrupting the highly regulated process of sex determination 
and leading to DSDs of XYDSD dog. To confirm this hypothesis, we produced XYDSD fetus at E34 by recloning of 
GSF74 (Supplemental Fig. 6A–E). Genetic sex in each individual gonad was further confirmed by PCR analysis 
of SRY gene sequences (Supplemental Fig. 6F). The XYDSD fetus displayed a negative immunostaining signal for 
VASA, which is a marker of germ cells, whereas the signals were strongly positive in age-matched XX or XY 
fetuses produced by natural mating (Supplemental Fig. 7). We then compared methylation of the promoter of 
their SRY genes. The SRY promoter was significantly hypermethylated (Fig. 3b), while its mRNA expression was 
significantly reduced (Fig. 4a) in XYDSD gonads relative to the XYwt gonad at E34. These findings confirmed that 
SRY transcription was repressed by promoter hypermethylation. Furthermore, the Sry protein levels decreased in 
the XYDSD gonads at E34, though it was not significantly reduced at this stage (Fig. 4b).

Despite the finding that Sry protein expression was only slightly reduced in the XYDSD gonad at E34, we 
assumed that abnormal expression of Sry might still trigger a cascade of gene expression changes in the sex 
determination pathway. We next examined the expression levels of known fetal sex determining and main-
tenance genes2 that show sexually dimorphic expression between the XXwt and XYwt gonad. We found that, 
among testis-determining genes, mRNA expression of SF1, SOX8, SOX9, AMH and DMRT1 was significantly 
reduced in the XY DSD gonad compared to normal XY male gonads (Fig. 4c). Correspondingly, the proteins 
encoded by these genes were also clearly reduced (Fig. 4b). As these testis-determining genes are in the SRY 
downstream pathway of testis determination and differentiation, their repression was most likely correlated with 
down-regulation of the SRY gene. Most ovarian determining genes were expressed in low levels without showing 
significantly dimorphic expression patterns, except for the mRNA expression of CYP19A1, which was signifi-
cantly up-regulated. Additionally, ERα  was expressed in low levels in the XY DSD gonad (Fig. 4c). These results 
suggest that disruption of SRY gene expression led to a cascade reaction of expression changes in key genes 
involved in sex determination, with the testis determining genes being most repressed. In this early stage, highly 
up-regulated expression of CYP19A1 might indicate increased activity of estrogen biosynthesis, which can lead 
to subsequent female phenotypic sex development in these XY DSD dogs.

Persistent SRY hypermethylation and enhanced expression of ovarian maintenance genes in 
postnatal XY DSD dogs. We also analyzed the SRY methylation pattern and expression of sex maintenance 
genes in normal XY testes, XX ovaries, and sex-reversal XY ovotestes at 1 year postnatal. Our methylation data of 
the postnatal gonads revealed that, once established, the SRY hypermethylation patterns were maintained during 
postnatal development of sex-reversal XY ovotestis (Fig. 5a). Similarly, mRNA and protein expression of all testis 
determining genes, including SF1, SOX8, SOX9, AMH and DMRT1, remained repressed for both XY DSD dogs 

Figure 3. Methylation status of SRY gene in donor/XYwt and XYDSD cloned dogs in E34 fetal gonads.  
(a) Methylation level (y-axis) across SRY gene (x-axis) of skin fibroblast in the donor and XYDSD cloned 
dogs, data generated from WGBS; (b) Promoter methylation status of SRY gene at E34 gonad in the XYwt and 
XYDSD cloned dogs, using Bisulfite Sequencing PCR (BSP). Each BSP product was subcloned. Ten clones were 
subjected to nucleotide sequence analysis. Open and filled circles indicate unmethylated and methylated status, 
respectively.
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(Fig. 5b,c). In contrast, the ovarian determining genes, including FOXL2, ERα , ERβ , CYP19A1, WNT4, and 
RSPO1, all showed highly up-regulated mRNA expression in XY DSD dogs, to a significantly higher level relative 
to normal XX ovaries (Fig. 5c). These results indicated that, due to abnormal hypermethylation and repressed 
expression of SRY, the equilibrium between testis and ovarian developmental program was disrupted. Once the 
developmental program was changed from male to female, it was maintained in postnatal life if no interference 
or treatment was provided.

Discussion
Individuals with 46, XY complete gonadal dysgenesis are phenotypically female, have completely undevel-
oped streak gonads, and are often not diagnosed until puberty, when secondary sexual characteristics fail to 
develop. However, only a small number of patients can be explained by mutations in sex-determining genes16. By 
mediating the effects from environmental factors on genotype, epigenetics provides an alternative mechanism 
to explain 46, XY complete gonadal dysgenesis. In our DSD model of canine SCNT, we thoroughly screened 
the whole-genome and whole-methylome for potential anomalies of mutations or epimutations. Based on our 
large-scale genomic data, we managed to assemble canine Y chromosome sequences, which are absent from the 
previously published dog reference genome9. The new Y chromosome sequences generated in present study will 
provide a valuable tool for future investigations of the male dog genome. Despite a thorough examination of DSD 
dog genomes accompanied with comprehensive technological validation on candidate loci, our results revealed 
no potential genomic variations during SCNT that could explain the pathogenesis of DSD.

Conversely, because normal mammalian development involves complex regulation of active demethylation of 
gametes and de novo methylation of embryos after preimplantion17, accurate epigenomic reprogramming is also 
prerequisite for the success of SCNT18. However, extensive but stochastic anomalies of genome-wide DNA meth-
ylation were discovered in these SCNT DSD dogs. Most relevantly, persistent abnormal hypermethylation of the 
SRY gene, together with its down-regulated mRNA and protein expression, was observed. The SRY gene encodes 
a master protein for initiating testis differentiation in mammals. This gene is known to be expressed during early 
gonad development in somatic cells of XY genital ridges and to induce supporting cell precursors to differentiate 

Figure 4. Gene expression of sex-determining genes in E34 fetal gonads of XYwt, XXwt, and XYDSD cloned 
dogs. mRNA expression of SRY (a) and other (c) testis or ovarian determining factors were examined by QPCR. 
Significance of expression changes is indicated (one-way ANOVA). (b) Immunohistochemical analysis of SRY, 
VASA, SOX9, AMH and DMRT1 in E34 fetal gonads. The cells were counterstained with hematoxylin. Scale 
bars in =  150 μ m; in inset =  40 μ m.
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as Sertoli cells rather than female granulosa cells. Previous studies indicated that the SRY gene can be expressed 
in Sertoli cells at different stages of fetal development until adult life19, as well as in a broad range of adult tissues 
in humans20,21. Experiments in mice showed that SRY expression level has to reach a certain threshold22 or have 
the correct timing23 to induce testis development. Once activated, Sry is assumed to first synergize with SF-1 to 
upregulate SOX9 expression24,25, which is a key hub gene for testis development that can stimulate expression of 
other downstream genes required for testis formation, such as AMH, FGF9 and FGFR2. In our study on XY DSD 
dogs, we found that the failure of SRY expression due to hypermethylation was well correlated with silencing of 
SOX9, and therefore also with a serial of testis determining genes, including, SF1, SOX8, AMH and DMRT1, in 
the early embryonic developmental stage in the XYDSD gonad at E34 (Fig. 4). Accordingly, the results of our cur-
rent study strongly indicate that incomplete demethylation of the SRY gene is the driving cause of XYDSD in these 
SCNT cloned dog.

Our results also provided clear information regarding how failure of SRY expression triggered female 
development program during embryonic and fetal development due to antagonism between the testis- and 
ovary-determining regulatory networks. For instance, it was previously known that SOX9 can suppress the 
expression of ovarian genes such as RSPO126 and FOXL2 in the XX genital ridge. DMRT1 can inhibit FOXL2 
and prevent female reprogramming in the postnatal mammalian testis27, while FOXL2 also represses DMRT128. 
Conversely, the silencing of these key testis-determination genes can lead to the activation of ovarian specific 
genes. Ovarian determining genes were mostly inactivated in the relatively early development stage of E34, except 
for CYP19A1, which encodes an enzyme critical for estrogen synthesis. However, we found that female specific 
genes were highly activated in the ovotestis after one postnatal year, including FOXL2, RSPO1, CYP19A1, Wnt4, 
ERα  and ERβ  (Fig. 5). Therefore, our results clearly indicated the central role of epigenetic regulation on SRY in 
sex determination and the fact that sex maintenance is more dynamic than previously acknowledged considering 
the dynamic nature of DNA methylation.

We also need to emphasize that our current study is about a special occasion of DSD that occurs during SCNT. 
As it mainly originated from the reprogramming procedure of SCNT, which is supposed to be a process of cre-
ating a genetically identical animal to the donor animal while epigenetically reprogrammed, the SCNT-induced 
DSD thereby is more prone to be epigenetically aberrant. However, the etiology of natural cases of DSD might 

Figure 5. SRY methylation and gene expression of sex-determining genes in 1 year postnatal fetal gonads 
of XYwt, XXwt, and XYDSD cloned dogs. (a) Promoter methylation status of SRY gene at 1 year postnatal gonad 
in the XYwt and XYDSD cloned dogs, using Bisulfite Sequencing PCR (BSP). (c) mRNA Expression of testis or 
ovarian determining factors were examined by QPCR. Significance of expression changes is indicated (one-way 
ANOVA). (b) Immunohistochemical analysis of SRY, SOX9, AMH, AMHRII and Inhibitinα . The cells were 
counterstained with hematoxylin. Scale bars in =  150 μ m.
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vary from case to case. How frequent DSD in natural cases occurs due to epigenetic aberrancy remains an open 
question and needs to be further studied in the future.

Methods
Somatic cell nuclear transfer. All experimental protocols were performed in accordance with the 
Guidelines for the Care and Use of Laboratory Animals which approved by the animal ethics committee of the 
Sooam Biotech Research Foundation approved (Accession No: C-12-10). Both the oocyte donors and surrogates 
were mixed breed bitches aged 1 to 7 years with a body weight of 20–25 kg. The oestrus of the bitches was followed 
weekly by observing vulval bleeding, which signals the onset of the heat period. When in heat, a blood sample 
(2 mL) was collected once a day by cephalic venepuncture, and serum progesterone levels were measured by 
electro-chemiluminescence immunoassay (cobas e411, Roche Diagnostics). For oocyte retrieval, one side of the 
uterus horn was retracted and fixed with Allis forceps throughout the surgical procedure. The oviduct was flushed 
upward with TCM 199 (Life Technologies). This procedure was then repeated on the other side of the uterus 
horn. The surrounding cumulus cells from freshly retrieved oocytes were removed with 0.1% hyaluronidase. 
The SCNT procedure was performed as described previously29, with minor modifications. Before enucleation, 
the denuded MII oocytes were stained with 5 μ g/ml Hoechst 33342 for 10 min. The polar bodies and metaphase 
chromosomes were aspirated, and the donor cells were subsequently inserted into the perivitelline space of the 
enucleated oocyte under an inverted microscope equipped with epifluorescence (TE2000-E, Nikon, Japan). A 
BTX Electro-Cell Manipulator 2001 (BTX, Holliston, MA, USA) was used to induce membrane fusion via appli-
cation of two direct current (DC) pulses of 1.75 kV/cm for 15 μ sec in 260 mM mannitol that contained 0.5 mM 
HEPES, 0.1 mM CaCl2 and 0.1 mM MgSO4. The reconstructed oocytes were cultured in TCM-199 at 39 °C under 
5% CO2 until embryo transfer. Recipients were anesthetized as described earlier in oocyte retrieval and placed 
in ventral recumbency. The embryos were loaded into a tomcat catheter (Severeign, Sherwood Medical, MO, 
USA) with minimum medium volume, then gently transferred into the 2/3 distal position of the oviduct without 
insufflating air. Surrogates were checked for pregnancy by transabdominal ultrasound examination on Day 25 to 
30 after embryo transfer30.

Phenotypic analyses on XYDSD dogs. Chromosomal analysis. After being cultured with 25 ng/ml colce-
mid for 4–6 h, cells were collected by trypsinization, treated with 0.075 M KCl for 15 min at 37 °C, and then fixed 
in methanol: acetic acid (3:1, v/v) solution. The cell suspensions were spread onto clean glass slides and air dried, 
after which the slides were stained with 5% Giemsa solution (Merck, Darmstadt, Germany) and metaphases were 
karyotyped using an Ikaros karyotyping system (Cal Zeiss, Jena, Germany).

Histological analyses. Ovary, uterine horn and uterine tube samples were collected from a 78 XY dog under gen-
eral anesthesia. Immediately after collection of each sample, tissue pieces were processed for paraffin embedding 
after fixation in 10% buffered formalin. Each tissue was sectioned (5 μ m), deparaffinized in xylene, and rehydrated 
through a graded ethanol series to distilled water before staining with hematoxylin and eosin (H & E).

GnRH stimulation test. To measure the plasma 17β -estradiol, progesterone, and testosterone concentrations, the 
GnRH analogue buserelin (loading dose: 0.4 μ g/kg) was injected into the cephalic vein (Receptal® ; Intervet SP). 
Blood samples were collected at 40 and 0 min before, and 10, 60, 90, and 120 min after its administration. Baseline 
testosterone levels were < 1 ng/ml with little response to GnRH.

Whole genome sequencing and analyses. NGS library construction and sequencing. Genomic DNA 
was extracted using a G-DEX™  IIc Genomic DNA Extraction Kit (iNtRON Biotechnology, Sungnam, South 
Korea). The WGS library construction followed a previously described protocol31. Approximately 1500 nano-
grams of genomic DNA in 100 μ l TE buffer were fragmented to ~500 bp by the Covaris S2 system using the 
following parameters: cycle number, 1; duty/cycle, 20%; intensity, 5; cycles/burst, 200; and time, 20s. The 3′  or 5′  
overhangs of the fragmented DNA were converted to blunt ends using T4 DNA polymerase, T4 Polynucleotide 
Kinase and Klenow polymerase for 30 min at 20 °C, then purified using the column of a QIAquick PCR 
Purification Kit (Qiagen). Purified DNA was subsequently A-tailed with dATP and Klenow (3′ -5′  exo-) for 30 min 
at 37 °C, then purified with the Mini column of a MiniElute PCR Purification Kit (Qiagen). Next, DNA adaptors 
(Illumina) with a single “T” base overhang at the 3′  end were ligated to the above products with T4 DNA ligase at 
20 °C for 15 min, then purified with the column of a QIAquick PCR Purification Kit (Qiagen). The purified prod-
ucts were subsequently separated on a 2% agarose gel, excised from the gel at a position between 580 and 600 bp, 
and purified (Qiagen Gel Extraction Kit). The adaptor-modified DNA fragments were enriched by PCR with PCR 
primer 1.1 and Index N primer 2.0 (Illumina) for eight cycles using Phusion DNA Polymerase (New England 
Bioloabs). Deep WGS was then performed using the Illumina HiSeq2000 platform (500 bp library, 90 bp reads).

Alignment of sequencing reads and assembly of Y chromosome. Low-quality reads, i.e., reads with more than 50% 
low quality base (Q-score <  20) or with more than 10% N base, were first removed from the raw sequencing reads. 
The “rmdup” module interpolated in Samtools was used to remove PCR duplicates. The SOAP (version2.01) or 
BWA algorithms were then applied to map the clean reads to the reference boxer genome (canFam2.0) from the 
Ensembl database (ftp://ftp.ensembl.org/pub/release-66)9. Following alignment, we took all un-aligned pair-end 
reads from all samples as the candidate reads that originated from chromosome Y and used SOAPdenovo assem-
bler (ver.1.06) to build a de novo draft assembly for dog chromosome Y. The low-frequency k-mers regions were 
corrected or removed. All reads that were uniquely mapped to the genome were used in the subsequent analyses.

ftp://ftp.ensembl.org/pub/release-66
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Detection of SNVs and indels. VarScan (v2.2.11)32,33 was used to compare the clone sample with the donor sam-
ple to search for potential SNVs and indels, for which several heuristic rules were applied for a specific genomic 
locus: (1) the base quality should be no less than 20 for more than 50% of the bases, while the N-base should 
be less than 10% in each read of both the donor and matched clone samples; (2) both the clone and matched 
donor samples should be covered at depths of ≥ 5x and ≤ 100x ; (3) the variant frequency (supportive read for 
variant/sum of all reads) should be larger than 0.2 for somatic mutations and larger than 0.75 or less than 0.25 
for LOH in clone samples; and (4) the variants should be supported by at least two reads in the clone samples; (5) 
the GATK software was applied independently to call somatic mutations and LOHs34,35, after which the results 
were integrated with VarScan by reasoning that true somatic mutations and LOHs should be covered in both 
results. We then searched these potential somatic mutations and LOHs in the ENSEMBL and dbSNP databases  
(ver.CanFam2.0) to eliminate the known somatic mutations and LOHs that were previously described as germline 
variants and filtered out the variants located in repeated regions of the dog genome.

Detection of structural variation. Three algorithms, CNVnator, which performs read-depth (RD) analysis36, 
Pindel, which detects split reads (SP) or break points37 and Breakdancer, which detects anomalous read pairs 
(RP)38, were integrated for identification of potential structure variations (SV). Six types of SVs were analyzed, 
deletions (DEL), tandem duplications (TD), insertions (INS), inversions (INV), intra-chromosomal translocations 
(ITX) and inter-chromosomal translocations (CTX). For DEL, TD and INS, medium or large SVs were defined 
to support the three algorithms. The parameters of calling each type of SV were adjusted according to developer’s 
instructions. A union of the results from the three algorithms was created to build a set of particular SVs.

Whole-methylome sequencing and analyses. NGS library construction and sequencing. Deep WGBS 
were performed using the Illumina HiSeq2000 platform (500 bp library, 90 bp reads) as previously described, 
with minor changes39. Approximately 1500 nanograms of genomic DNA in 100 μ l TE buffer were fragmented to 
~200–300 bp by the Covaris S2 system using the following parameters: cycle number, 3; duty/cycle, 10%; intensity, 
5; cycles/burst, 200; and time, 40 s. Each sequencing library was constructed similarly to genomic DNA librar-
ies, except that ligation was performed using methylated adapters provided by Illumina. Ligation products were 
purified using a Mini column from a MiniElute PCR Purification Kit, after which the ligated DNA was treated 
with bisulfite using the EZ DNA Methylation-Gold Kit™  (ZYMO). The purified products were subsequently 
separated on a 2% agarose gel, excised from the gel at a position between 320 bp and 420 bp, and purified (Qiagen 
Gel Extraction Kit). The products were then enriched by PCR with PCR primer 1.1 and Index N primer 2.0 
(Illumina). PCR was conducted using JumpStart™  Taq DNA Polymerase (Sigma) and the following PCR con-
ditions: 30s at 94 °C, followed by 10 cycles of 30 s at 94 °C, 30 s at 60 °C, 30s at 72 °C and then final extension for 
5 min at 72 °C.

Data analyses. The SOAP2 algorithm40 was applied to map the sequencing reads back tothe reference boxer 
genome (canFam2.0). The methylation level of CpG sites was calculated as Nme/(Nme +  Nnon-me), where Nme rep-
resents the methylation-supportive read number and Nnon-me represents the non-methylation-supportive read 
number. “Pvclust” was performed for hierarchical clustering analysis41. CpG island information and other repeat 
region information were obtained from the UCSC database (ftp://hgdownload.cse.ucsc.edu/goldenPath/can-
Fam2/database/). Putative DMRs were then identified by comparison of two methylomes using the strategy of 
sliding windows39, which mainly consisted of the following steps: first, a CpG site with significantly different 
methylation was selected as the start site for DMR (CpG depth in donor and clone >  =  4, Fisher test p value ≤  0.01 
and absolute value of methylation level differences ≥ 0.2). Second, we added the downstream adjacent CpG sites 
to the initial DMR. The DMR extension had to meet several criteria: (1) CpG depth in donor and clone ≥ 4; (2) 
Fisher test p value ≤  0.01; (3) the methylation tendency (differences in methylation level between donor and clone 
samples) of the added CpG sites could be opposite to the start site of DMR, but the Fisher test p value was > 0.01 
(single CpG site); (4) the methylation tendency of two adjacent CpG sites is not opposite to that of the start site 
of DMR; (5) the distance of two adjacent CpG sites ≤ 200 bp; and (6) DMR length ≤ 2000 bp[ED highlight-same 
comment as above.]. Third, we removed the insignificant CpG sites (Fisher test p value >  0.01) backwards until 
we encountered a significant CpG site (Fisher test p value ≤  0.01) to eliminate the obscure boundary of the DMR. 
Finally, we filtered all DMR regions according to the following standards: (1) CpG sites number ≥ 5; (2) methyla-
tion level difference in DMR ≥ 0.2; and (3) DMR length ≥ 200.

MiSeq amplicon sequencing. For SNPs and indels located in exonic regions, Illumina MiSeq amplicon 
sequencing was applied on the barcoded PCR products from different samples. PCR primers that uniquely 
amplify 26 exonic variations and exonic regions of 8 sex determination genes were designed by Primer Premier 
5.00 (Premier Biosoft), and length of all PCR products was controlled around 450 bp (Supplemental Table 6). For 
each sample, genomic DNA, KAPA2G Robust HotStart ReadyMix (KAPA Biosystems), PCR primers, PCR prim-
ers mediated high throughput sequencing linkers with a barcode sequence were dispensed into one individual 
nanowell of a Smart MyDesign Chip, which contains 5184 nanowells, by Smart Chip Multisample Nanodispenser. 
36 amplicons for each sample and 150 samples could be constructed as one library with barcode sequence classi-
fying samples using one Smart MyDesign Chip. PCR amplification of Smart MyDesign Chip was conducted using 
the Techne Prime Thermal Cycler. PCR product was purified using the QIAquick Gel Extraction Kit (Qiagen). 
After analyzed by an Agilent 2100 Bioanalyzer (Agilent Technologies) and quantified by real time PCR, the library 
was sequenced with pair end 250 bp using Illumina Miseq sequencer. When sequencing finished, the Illumina 
reads were post-processed and aligned to the reference regions (all PCR regions). SNVs and indels were detected 
with the same procedure described above (Supplemental Table 7).

ftp://hgdownload.cse.ucsc.edu/goldenPath/canFam2/database/
ftp://hgdownload.cse.ucsc.edu/goldenPath/canFam2/database/
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Bisulfite sequencing PCR. BSP was conducted using an EZ DNA Methylation-Gold™  Kit according to 
the manufacturer’s protocols. The process started with amplification of the bisulfite-treated SRY downstream 
promoter containing 12 CpG sites using sequential PCR reactions from bisulfite-treated DNA with the following 
nested primers: methyl_SRY-F: 5′ -GTT AGA TGT TGA TTT TAT TTG GGA-3′  and 5′ -AAT CAT CGC AAT 
TCA ATA CCC-3′ . PCR was performed on genomic DNA using ZymoTaq™  DNA polymerase according to the 
manufacturer’s instructions (Zymo Research). A total of 100 ng of bisulfite-treated genomic DNA was used as the 
template for PCR, and the PCR cycles were as follows: 95 °C for 10 min, followed by 40 cycles of 96 °C for 30 sec, 
60 °C for 30 sec, and 72 °C for 30 sec, and then final extension at 72 °C for 7 min. The PCR products were purified 
by gel extraction from a 2% agarose gel and ligated into the pGEM-Teasy vector (Promega), after which the liga-
tion products were used to transform competent Escherichia coli cells (strain DH5a) using standard procedures. 
Blue/white screening was then used to select a minimum of 20 bacterial transformants (clones). Plasmid DNA 
was subsequently isolated from each clone using a Miniprep Kit (Solgent). Next, clones were screened by agarose 
gel electrophoresis to verify the insert and plasmid size. Sequencing of the SRY promoters of the positive clones 
was then conducted by Solgent sequencing service (Solgent, Daejeon, South Korea), after which the sequences 
were compared with the original sequences. The sequenced clones with complete sequencing data and a mini-
mum of 95% bisulfite conversion were included in subsequent analyses.

Quantitative PCR. Total RNA from either fetal or postnatal gonads was extracted using TRizol reagentTM 
(Invitrogen) and an RNeasy mini kit (QIAGEN). cDNA was then synthesized using High-Capacity cDNA 
Reverse Transcription Kits (Applied Biosystems) and analyzed by quantitative PCR (Q-PCR) using a Power SYBR 
Green PCR master mix (Applied Biosystems) and the ABI 7300 Real-Time PCR System (Applied Biosystems). 
All data were normalized to ribosomal GAPDH expression. Relative transcription levels between the sexes for 
each type of XY male, XX female, and XY DSD cloned dog were examined by analysis of variance (ANOVA) 
and a Newman-Keuls multiple comparison tests. All data are expressed as the mean ±  SEM, and a probability of 
P <  0.05 was considered statistically significant in all tests.

Data Access. WGS data were deposited in the Sequence Read Archive (SRA) with accession of SRA304271. 
WGBS data were deposited in Gene Expression Omnibus (GEO) with accession of GSE74225. The newly assem-
bled Y chromosome reference sequences were deposited in NCBI Whole Genome Shotgun (WGS) database 
(accession ID: PRJNA305243).
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