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Discovery of potential prognostic 
long non-coding RNA biomarkers 
for predicting the risk of tumor 
recurrence of breast cancer patients
Meng Zhou1,*, Lei Zhong2,*, Wanying Xu1,*, Yifan Sun1, Zhaoyue Zhang1, Hengqiang Zhao1, 
Lei Yang1 & Jie Sun1

Deregulation of long non-coding RNAs (lncRNAs) expression has been proven to be involved in the 
development and progression of cancer. However, expression pattern and prognostic value of lncRNAs 
in breast cancer recurrence remain unclear. Here, we analyzed lncRNA expression profiles of breast 
cancer patients who did or did not develop recurrence by repurposing existing microarray datasets 
from the Gene Expression Omnibus database, and identified 12 differentially expressed lncRNAs that 
were closely associated with tumor recurrence of breast cancer patients. We constructed a lncRNA-focus 
molecular signature by the risk scoring method based on the expression levels of 12 relapse-related 
lncRNAs from the discovery cohort, which classified patients into high-risk and low-risk groups with 
significantly different recurrence-free survival (HR = 2.72, 95% confidence interval 2.07–3.57; p = 4.8e-13).  
The 12-lncRNA signature also represented similar prognostic value in two out of three independent 
validation cohorts. Furthermore, the prognostic power of the 12-lncRNA signature was independent 
of known clinical prognostic factors in at least two cohorts. Functional analysis suggested that the 
predicted relapse-related lncRNAs may be involved in known breast cancer-related biological processes 
and pathways. Our results highlighted the potential of lncRNAs as novel candidate biomarkers to 
identify breast cancer patients at high risk of tumor recurrence.

The increasing attention to various types of non-coding RNAs (ncRNAs) has highlighted their well-adapted and 
specialized biological roles during past years1,2. Long non-coding RNAs (lncRNAs), a newly discovered class of 
ncRNAs, were defined as RNA molecules longer than 200 nucleotides in length that do not belong to known cat-
egories of small RNAs and structural RNAs3. Transcriptome analysis showed that the majority of lncRNAs were 
expressed at lower levels and in a more cell type-, tissue- and developmental stage-specific manners compared to 
protein-coding genes4,5. Though most of lncRNAs have not been functionally characterized yet, there is growing 
evidence that lncRNAs are involved in a spectrum of biological processes, such as development, maintenance of 
pluripotency6, nuclear organization7, genomic imprinting8, RNA splicing and translational control9. Differences 
in expression patterns of lncRNAs have been observed between normal human tissues and cancers10, and many 
differentially expressed lncRNAs were identified in various cancers by cancer transcriptome profiling analysis. 
A growing number of dysregulated lncRNAs were better characterized as oncogenes or tumor suppressor genes 
contributing to cancer development, progression and metastasis11. For example, lncRNA MALAT1 function as an 
oncogene whose high expression was associated with high metastatic potential and poor patient prognosis of lung 
cancer12. Zhou and colleagues observed the loss of lncRNA MEG3 expression in many primary human tumors 
and tumor cell lines, providing substantial evidence that supported lncRNA MEG3 as a tumor suppressor13. An 
increasing amount of clinical investigations and studies about lncRNAs has highlighted the potential and impor-
tance of lncRNAs as novel biomarkers and/or therapeutic targets for cancer diagnosis and therapy14–24.

Breast cancer is a frequent malignant gynecologic cancer accounting for 29% of all newly diagnosed cancers 
among women in 2014, and is one of the major causes of cancer death among women25. Although improvements 
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in early diagnosis by mammographic screening and biomarker detection, tumor recurrence (local recurrence 
or distant recurrence) following conventional therapies is a major cause of morbidity and mortality in patients 
with breast cancer. It is a critical need to identify biomarkers that could predict breast cancer recurrence or 
recurrence-free survival. Several prognostic biomarkers for breast cancer recurrence have been established at the 
protein-coding gene and miRNA levels, such as 70-gene MammaPrit panel26, 21-gene Oncotype DX assay panel27, 
36-gene signature28 and 5-miRNA signature29. As breast cancer is a highly clinically and molecularly heteroge-
neous disease, our understanding of the molecular mechanisms underlying breast cancer recurrence is far from 
clear. Recently, some studies have found that altered lncRNA expression is associated with tumor recurrence in 
hepatocellular carcinoma30, gliomas31, bladder cancer32 and colorectal cancer33, highlighting the potential func-
tion for lncRNAs as novel biomarkers to predict tumor recurrence. In breast cancer, several lncRNAs have been 
found to be involved in patient’s survival and metastasis34–36. However, the expression pattern and prognostic 
value of lncRNAs in breast cancer recurrence have not been investigated.

In this work, we performed a comprehensive analysis of lncRNA expression profiles across 473 breast cancer 
patients who did or did not develop recurrence by repurposing the publicly available microarray expression 
profiles from the Gene Expression Omnibus (GEO) database. A comparison between the groups of patients who 
did and did not develop recurrence identified a set of 12 lncRNAs overexpressed or downregulated in relapsed 
patients. Finally, we defined a 12-lncRNA signature by risk scoring method that is highly predictive of tumor 
recurrence and recurrence-free survival of breast cancer patients.

Results
Identification of lncRNAs associated with tumor recurrence of breast cancer patients.  In this 
study, we included four breast cancer patient cohorts with recurrence information for biomarker discovery and 
validation (see Supplementary Table S1). The patient cohort from Clarke’s study, including 48 relapsed patients 
and 56 non-relapsed patients, was selected as a discovery cohort to identify lncRNA biomarkers associated with 
tumor recurrence of breast cancer patients (hereafter inferred as discovery cohort), and the patient cohorts from 
Bos’s study, Loi’s study and Dedeurwaerder’s study were used as additional independent test cohorts for validation 
purpose (hereafter referred as test cohort-1, test cohort-2 and test cohort-3).

To identify potential lncRNA biomarkers associated with tumor recurrence of breast cancer patients, the 
patients from discovery cohort were classified into two groups according to recurrence status. We first compared 
the lncRNA expression profiles of breast cancer patients who did and did not develop recurrence, and identi-
fied 12 differentially expressed lncRNAs between the two patient groups (p-value <​ 0.001 and FDR <​ 0.15) (see 
Supplementary Table S2). Among those lncRNAs, six lncRNAs were overexpressed and six were underexpressed 
in relapsed patients (see Supplementary Figure S1). Then we performed hierarchical clustering in 104 patients 
from discovery cohort based on the expression patterns of these 12 differentially expressed lncRNAs. As shown 
in Fig. 1A, the resulting dendrogram showed two main patient clusters (58 patients in cluster 1 vs. 46 patients in 
cluster 2), which were highly correlated with tumor recurrence status (p =​ 4.76e-05, Chi-square test) and lymph 
node status (p =​ 0.03, Chi-square test). Cluster 1 included 75% of non-relapsed patients while cluster 2 included 
66.7% of relapsed patients. Moreover, a significant difference in recurrence-free survival between the two patient 
clusters was observed (log-rank test p =​ 4.39E-06; Fig. 1B). We further performed univariate Cox proportional 
hazard regression to each of 12 differentially expressed lncRNAs for their associations with recurrence-free sur-
vival. As shown in Table 1, all of them were closely correlated with patient’s recurrence-free survival in univariate 
analysis (p-value <​ 0.001 and FDR <​ 0.1). The above results demonstrated that these dysregulated lncRNAs were 
potential prognostic biomarkers for predicting the risk of tumor recurrence of breast cancer patients.

Determination and analysis of a 12-lncRNA predictive signature in the discovery cohort.  
Since these 12 differentially expressed lncRNAs exhibited distinct expression patterns in patients who did and did 
not develop recurrence, these 12 lncRNAs were integrated into a predictive signature by risk scoring method to 
predict the risk of tumor recurrence of breast cancer patients (hereafter inferred as BCSigLnc-12) (see Methods), 
as follows: BCSigLnc-12 risk score =​ (−​0.4585 ×​ expression value of RP1-34M23.5) +​ (−​0.0009 ×​ expression  
value of RP11-202K23.1) +​ (−​0.3242 ×​ expression value of RP11-560G2.1) +​ (0.1672 ×​ expression 
value of RP4-591L5.2) +​ (−​0.0134 ×​ expression value of RP13-104F24.2) +​ (0.4971 ×​ expression value 
of RP11-506D12.5) +​ (0.2189 ×​ expression value of ERVH48-1) +​ (0.0137 ×​ expression value of RP4-
613B23.1) +​ (−​0.3225 ×​ expression value of RP11-360F5.1) +​ (−​0.2464 ×​ expression value of CTD-
2031P19.5) +​ (0.2166 ×​ expression value of RP11-247A12.8) +​ (−​0.1720 ×​ expression value of SNHG7). We 
calculated a BCSigLnc-12 risk score for each patient in the discovery cohort and ranked them according to 
increased risk score. To obtain the best cutoff value of the risk score, the various cutoff values were evaluated 
using time-dependent ROC curve37. In the discovery cohort, the time-dependent ROC curves analysis for the 
BCSigLnc-12 achieved an AUC of 0.847 at five years of recurrence-free survival (Fig. 2A), and the risk score 
value of −​0.1, which produced the shortest distance to the point of perfect prediction of the five-year ROC curve, 
was selected as the cutoff point. According to this cutoff value, patients were classified into high-risk group and 
low-risk group. The patients with low-risk scores were expected to have better recurrence-free survival outcomes. 
As a result, the BCSigLnc-12 classified 104 patients of the discovery cohort into the high-risk group (n =​ 57) 
or low-risk group (n =​ 47). As expected, the recurrence-free survival time of patients in the high-risk group 
was significantly shorter than that of patients in the low-risk group (p =​ 7.72e-07, log-rank test) (Fig. 2B). The 
recurrence-free survival was 80.6% for patients with low-risk signatures at five years, which is higher than that 
(40.4%) for patients with high-risk signatures. Furthermore, different risk groups classified by BCSigLnc-12 were 
highly correlated with the tumor recurrence status (p =​ 1.44e-06, Chi-square test). There is a significant association 
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between the BCSigLnc-12 risk score and recurrence-free survival time, in which the hazard ratio of high-risk group 
versus low-risk group for recurrence-free survival is 2.72 (95% confidence interval (CI) 2.07–3.57; p =​ 4.8e-13).

Distribution of BCSigLnc-12 risk scores, the relapse status and expression pattern of 12 lncRNA biomarkers 
of 104 breast patients in the discovery cohort was shown in Fig. 2C. Of these 12 lncRNA biomarkers, six were 
protective lncRNAs (RP1-34M23.5, RP11-202K23.1, RP11-560G2.1, RP4-613B23.1, RP11-360F5.1 and CTD-
2031P19.5) whose high expression was associated with good recurrence-free survival, while high expression of 
the remaining six (RP4-591L5.2, RP13-104F24.2, RP11-506D12.5, ERVH48-1, RP11-247A12.8 and SNHG7) was 
associated with poor recurrence-free survival.

Validation of BCSigLnc-12 in three additional independent test cohorts.  To evaluate the robust-
ness of BCSigLnc-12 in predicting the risk of tumor recurrence of breast cancer patients, the BCSigLnc-12 was 
then tested for its predictive power in the test cohort-1 of 204 patients. With the same model and cutoff point as 
those derived from the discovery cohort, 204 patients of the test cohort-1 were classified into the high-risk group 
(n =​ 113) and low-risk group (n =​ 91). As in the discovery cohort, Kaplan-Meier recurrence-free survival curves 
based on BCSigLnc-12 prediction were significantly different. Patients in the high-risk group had significantly 
shorter recurrence-free survival than those in the low-risk group (median recurrence-free survival 1.5 years vs. 
2.08 years, p =​ 0.024, log-rank test) (Fig. 3A). The five-year recurrence-free survival rate of the high-risk group 
was 2.7%, while the corresponding rate in the low-risk group was 12.1%. The hazard ratio of high-risk scores ver-
sus low-risk scores for recurrence-free survival was 1.20 (95% CI 1.03–1.39; p =​ 0.019). In the test cohort-1, the 
area under the time-dependent ROC curves was 0.7 at five years of recurrence-free survival.

Another validation of the predictive power of BCSigLnc-12 was conducted using independent test cohort 
from Loi’s study (termed test cohort-2). Similar to the findings from the discovery cohort and test cohort-1, the 
BCSigLnc-12 was again shown capable of predicting the risk of tumor recurrence in the test cohort-2. Using the 
risk score formula, the BCSigLnc-12 was able to stratify 77 patients of the test cohort-2 into the high-risk group 
(n =​ 39) and low-risk group (n =​ 38) with significantly different recurrence-free survival (log-rank p =​ 0.042) and 
relapse status (p =​ 0.046, Chi-square test) using the same cutoff as in the discovery cohort. The recurrence-free 

Figure 1.  The heatmap and survival analysis of hierarchical clustering. (A) The hierarchical clustering 
heatmap of differentially expressed lncRNAs between relapsed and non-relapsed patients in the discovery 
cohort. (B) Kaplan-Meier survival curve for recurrence-free survival between two clusters.
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survival was significantly worse in the high-risk group compared with the low-risk group (Fig. 3B). At five years, 
the respective absolute difference in recurrence-free survival between the low-risk group and high-risk group 
was 10.4% (92.1% versus 81.7%). The hazard ratio of high-risk scores versus low-risk scores for recurrence-free 
survival was 1.93 (95% CI 1.14–3.29; p =​ 0.015). The AUC of time-dependent ROC curves for the BCSigLnc-12 
in the test cohort-2 was 0.627 at five years.

Further validation of the BCSigLnc-12 in the test cohort-3 from Dedeurwaerder’s study showed that 
recurrence-free survival was different between the high-risk and low-risk groups (median recurrence-free sur-
vival 8.67 years vs. 9.19 years) and the proportions of recurrence-free survival in the high-risk and low-risk 
groups were 59.9% and 65% after five years. However, the p-value of the log-rank test is 0.289 indicating that the 
BCSigLnc-12 is not significantly associated with recurrence-free survival in the test cohort-3 (Fig. 3C).

The distribution of BCSigLnc-12 risk scores, relapse status and expression pattern of lncRNA biomarkers from 
breast cancer patients in the test cohort-1,test cohort-2 and test cohort-3 have been shown in Fig. 3D–F (ranked 
according to increasing risk scores), which were consistent with the results obtained from the discovery cohort 
except for test cohort-3.

Independence of predictive capacity of BCSigLnc-12 from clinicopathological factors.  We used 
multivariate Cox regression analysis to determine whether predictive capacity of BCSigLnc-12 was independ-
ent of other clinicopathological factors of breast cancer patients in the discovery cohort, test cohort-2 and test 
cohort-3 (no available clinicopathological information in test cohort-1), such as age, tumor size, tumor grade, 
estrogen receptor (ER) status and lymph node status. The results from the discovery cohort showed that the 
BCSigLnc-12 (HR =​ 2.81, 95% CI 1.97–4.01, p =​ 1.3e-08), ER status (HR =​ 0.3, 95% CI 0.15–0.6, p =​ 5.69e-04)  
and lymph node status (HR =​ 3.95, 95% CI 1.72–9.06, p =​ 0.001) were independent prognostic factors for 
patients with breast cancer (Table 2). In the test cohort-2, only the BCSigLnc-12 was significantly correlated with 
recurrence-free survival of patients with breast cancer in the multivariate analysis (HR =​ 1.85, 95% CI 1–3.42, 
p =​ 0.0498). However, the independence of predictive capacity of BCSigLnc-12 was not observed in the test 
cohort-3.

Ensembl ID Probe ID Gene name Chromosome P-valuea FDR
Hazard 
ratioa Coefficienta

ENSG00000255811.1 216579_at, 243747_at RP1-34M23.5
Chr 1: 

34,761,426–
34,788,097 (−​)

4.44e-04 0.048 0.50 −​0.55

ENSG00000233359.1

1566142_at, 216858_x_at, 
201439_at, 224894_at, 

202076_at, 1561543_at, 
241072_s_at, 219086_at, 

1554549_a_at, 239225_at, 
227541_at.227693_at, 

230223_at

RP11-202K23.1
Chr 1: 

102,199,739–
102,389,630 (−​)

5.96e-04 0.052 0.62 −​0.49

ENSG00000254451.2 224370_s_at RP11-560G2.1
Chr 12: 

75,234,740–
75,298,508 (+​)

6.47e-04 0.052 0.49 −​0.71

ENSG00000231949.1 219781_s_at, 221968_s_at RP4-591L5.2
Chr 1: 

30,415,825–
30,421,108 (+​)

2.77e-05 0.018 1.75 0.56

ENSG00000215769.8 229747_x_at RP13-104F24.2
Chr 17: 

64,749,663–
64,781,707 (−​)

2.49e-05 0.018 1.71 0.53

ENSG00000261976.2 1554773_at RP11-506D12.5
Chr 17: 

50,840,057–
50,841,626 (−​)

5.85e-05 0.019 1.80 0.59

ENSG00000233056.2 232191_at ERVH48-1
Chr 21: 

42,916,803–
42,925,646 (−​)

1.73e-04 0.033 1.64 0.50

ENSG00000230084.5 231235_at, 202380_s_at, 
1557736_at RP4-613B23.1

Chr 3: 
42,601,963–

42,654,388 (−​)
5.63e-04 0.052 0.57 −​0.56

ENSG00000249207.1 226001_at, 232297_at, 
233866_at RP11-360F5.1

Chr 4: 
39,112,677–

39,126,818 (−​)
5.16e-04 0.052 0.58 −​0.55

ENSG00000262211.1 204864_s_at, 212195_at CTD-2031P19.5
Chr 5: 

55,936,143–
55,941,727 (+​)

6.90e-06 0.013 0.50 −​0.67

ENSG00000268050.2 226559_at RP11-247A12.8
Chr 9: 

129,175,807–
129,177,575 (+​)

1.64e-04 0.033 1.72 0.54

ENSG00000233016.6 229002_at, 1552729_at SNHG7
Chr 9: 

136,721,366–
136,728,184 (−​)

8.67e-04 0.063 1.56 0.44

Table 1.  lncRNAs associated with tumor recurrence of breast cancer patients in the discovery cohort. 
aDerived from the univariate Cox proportional hazard regression analysis in the discovery cohort.
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We further performed data stratification analysis for breast cancer patients according to ER status and lymph 
node status. Patients with ER status information in four patient cohorts were first stratified into either the 
ER-positive group or the ER-negative group. Log-rank test of ER-positive patients showed that the BCSigLnc-12 
could further classify ER-positive patients into the high-risk group (n =​ 93) and low-risk group (n =​ 93) with 
significantly different recurrence-free survival (p =​ 1.89e-04, log-rank test) (Fig. 4A). For ER-negative patients, 
the BCSigLnc-12 showed similar predictive value (p =​ 0.03, log-rank test) (Fig. 4B). Next, the stratified analysis 
was carried out in lymph node status, which stratified patients into lymph node-positive patient stratum and 
lymph node-negative patient stratum. Survival analysis showed that within each lymph node status stratum, the 
BCSigLnc-12 could subdivide patients into those likely to have poor recurrence-free survival and those likely to 
have good recurrence-free survival (p =​ 5.25e-03 for lymph node-positive patients and p =​ 3.0e-04 for lymph 
node-negative patients; log-rank test) (Fig. 4C,D). Taken together, the results of multivariate Cox regression anal-
yses and stratification analysis suggested that the BCSigLnc-12 may be a risk predictor of tumor recurrence of 
breast cancer patients independent of clinicopathological factors which needed to be further validated.

Functional prediction of prognostic lncRNA biomarkers.  We performed functional enrichment 
analysis for GO terms and KEGG pathways to predict potential biological processes and pathways involved in 
relapsed-related lncRNA biomarkers. For this purpose, we first measured the co-expressed relationships between 
12 relapse-related lncRNA biomarkers and protein-coding genes (PCGs) by calculating the Pearson correlation 
coefficient of paired lncRNA and PCG expression profiles, and identified highly positively or negatively correlated 
PCGs (ranked top 1%) with at least one of 12 relapse-related lncRNAs. The functional enrichment analysis of GO 
and KEGG pathway revealed that PCGs positively correlated with lncRNAs were involved in RNA metabolic pro-
cess and spliceosome pathway, while PCGs negatively correlated with lncRNAs were enriched in five GO function 
clusters (including cell cycle, protein localization and protein catabolic process) and six pathways (including 
NOD-like receptor signaling pathway, glycosphingolipid biosynthesis, epithelial cell signaling in Helicobacter 
pylori infection, endocytosis, apoptosis and cell cycle). The BCSigLnc-12 associated biological processes and 
pathways can be found as Supplementary Table S3.

Figure 2.  Development and analysis of the 12-lncRNA signature in the discovery cohort. (A) ROC 
analysis of the 12-lncRNA signature for recurrence risk prediction within five years as the defining point. 
(B) Kaplan–Meier survival curves of recurrence-free survival between high-risk and low-risk patients in the 
discovery cohort. (C) The distribution of patients’ risk score and recurrence status, and the expression pattern of 
prognostic lncRNAs.
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Discussion
Although great efforts have been made to improve clinical management of breast cancer leading to a reduction 
in mortality rate, a substantial number of patients still faced the risk of tumor recurrence span 20 years38,39. 
As breast cancer is a heterogeneous disease at the clinicopathological and molecular levels, traditional prog-
nostic factors, including stage, lymph node status, tumor size, tumor grade, lymphatic and vascular invasion, 
seem not to be sufficient for predicting the risk of tumor recurrence in breast cancer patients. With the devel-
opment of microarray technology, gene expression profile-based multi-gene molecular signatures focusing on 
protein-coding genes or miRNAs have been identified and used to predict survival, metastasis and recurrence 
of tumor patients. LncRNAs, a recently discovered class of ncRNAs, have been implicated in the development 
and progression of cancer40–42. Although several lncRNAs have been linked to cancer recurrence, the expression 
pattern and prognostic value of lncRNAs in breast cancer recurrence have not been systematically investigated 
due to the lack of available lncRNA expression profiles. Recent studies found that some of microarray probes on 
the commonly used arrays are likely to map to lncRNAs41,42, representing a cost-effective way to obtain lncRNA 
expression profiles by repurposing microarray probes.

In this study, we analyzed and mined lncRNA expression profiles of breast cancer patients with recurrence 
information by repurposing the publicly available microarray expression profiles from GEO database to deter-
mine whether there are significantly different lncRNA expression patterns in breast patients with and without 
tumor recurrence. By first separating breast cancer patients into two groups according to relapse status, we iden-
tified 12 lncRNAs whose expression levels were significantly different between the two patient groups with and 
without recurrence. Hierarchical clustering and Cox regression analysis revealed that 12 differentially expressed 
lncRNAs were significantly correlated with tumor recurrence and recurrence-free survival of breast cancer 
patients. By focusing on these differentially expressed lncRNAs, we constructed a lncRNA expression-based 
molecular signature, termed BCSigLnc-12, which was able to accurately predict recurrence-free survival in breast 
cancer patient. Patients with high-risk signature scores have a 2.7-fold hazard ratio (95% CI 2.07–3.57; p <​ 0.001) 
for recurrence compared to those with low-risk signature scores. The predictive value and robustness of the 
BCSigLnc-12 were successfully validated in two out of three additional independent breast cancer patient cohorts. 
Notably, the BCSigLnc-12 clearly distinguished breast cancer patients with good recurrence-free survival for 
those with poor recurrence-free survival. Furthermore, when tested together with other clinical factors in mul-
tivariate Cox regression analysis, a certain degree of independence of predictive capacity of BCSigLnc-12 from 
clinicopathological factors was found, including age, tumor size, tumor grade, ER status and lymph node status. 

Figure 3.  Validation of the prognostic value of the 12-lncRNA signature in the three additional 
independent cohorts. Kaplan-Meier survival curves of recurrence-free survival between high-risk and low-risk 
patients in the test cohort-1 (A), test cohort-2 (B) and test cohort-3 (C). The distribution of patients’ risk score 
and recurrence status, and the expression pattern of prognostic lncRNAs in the test cohort-1 (D), test cohort-2 
(E) and test cohort-3 (F).
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These results suggested that the BCSigLnc-12 may be candidate biomarkers for recurrence-free survival predic-
tion in breast cancer.

More than ten thousand lncRNAs have been discovered in human during the past years. In contrast, the 
number of well-studied lncRNAs appears to be quite rare. LncRNA SNHG7, one of 12 relapse-related lncRNAs, 
is a known lincRNA belonging to endogenous retrovirus families and may play a role in trophoblasts syncy-
tialization43. As studies on the mechanisms and function of lncRNAs are in their infancy, the computational 

Variables

Multivariate analysis

HR 95% CI of HR P-value

Discovery cohort, (n = 104)

BCSigLnc-12

  Low 1 (reference)

  High 2.81 1.97–4.01 1.3e-08

Age 1.15 0.60–2.20 0.683

ER

  ER−​ 1 (reference)

  ER+​ 0.30 0.15–0.60 5.69e-04

Grade

  G1 1 (reference)

  G2 0.73 0.16–3.46 0.694

  G3 0.82 0.17–3.89 0.806

Size

  <​=​2 cm 1 (reference)

  >​2 cm 0.72 0.31–1.69 0.447

Lymph node

  Lymph node−​ 1 (reference)

  Lymph node+​ 3.95 1.72–9.06 0.001

Test cohort-2, (n = 77)

BCSigLnc-12

  Low 1 (reference)

  High 1.85 1.0004–3.42 0.0498

Age 0.85 0.26–2.75 0.786

Grade

  G1 1 (reference)

  G2 1.313 0.138–13.45 0.818

  G3 1.314 0.137–13.61 0.819

Size

  <​=​2 cm 1 (reference)

  >​2 cm 2.74 0.55–13.74 0.221

Test cohort-3, (n = 88)

BCSigLnc-12

  Low 1 (reference)

  High 1.074 0.531–2.173 0.842

Grade

  G1 1 (reference)

  G2 1.271 0.179–9.046 0.811

  G3 1.472 0.401–5.400 0.560

ER

  ER−​ 1 (reference)

  ER+​ 0.673 0.313–1.446 0.310

Lymph node

  Lymph node−​ 1 (reference)

  Lymph node+​ 2.553 1.104–5.903 0.028

Her2

  Her2−​ 1 (reference)

  Her2+​ 1.243 0.612–2.523 0.548

Table 2.  Multivariate Cox regression analysis of recurrence-free survival in each cohort. Abbreviations: HR, 
hazard ratio; CI, confidence interval.
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prediction has been found to be effective in annotating lncRNA through the functional interpretation of their 
co-expressed mRNAs44. To gain the functional insight into these 12 prognostic lncRNAs, we performed GO and 
KEGG enrichment analysis for mRNAs co-expressed with lncRNAs, and found that the possible functions of 12 
lncRNAs associated with tumor recurrence of breast cancer patients may be involved in cell cycle, spliceosome 
pathway apoptosis, NOD-like receptor signaling pathway, glycosphingolipid biosynthesis, epithelial cell signaling 
in Helicobacter pylori infection and endocytosis. Aberrant NOD-like receptor signal is shown to be a power-
ful driver of carcinogenesis45. Glycosphingolipids are involved in cell growth and motility, and their changes in 
expression, structure and organization promote tumor progression46. Several studies have suggested that the 
growth factor PGRN can promote wound healing migration of breast cancer cells47,48, and knockdown of PGRN 
has an impact on H. pylori-induced proliferative activity and migration of cancer cells49. There is evidence that 
endocytosis is involved in many physiological processes and plays important roles in human diseases, including 
cancer50. Thus it is a plausible inference that the 12 lncRNAs associated with recurrence may be involved in 
known breast cancer-related biological processes and pathways, and their dysregulated expression contributed to 
breast cancer recurrence.

However, some limitations should be aware in our study. First, only a fraction of lncRNAs was analyzed in our 
study because of limited available lncRNAs expression profiles. Second, only three of four independent cohorts 
confirmed the predictive value of this lncRNAs signature. Therefore, larger cohorts are needed to validate this sig-
nature. Finally, the biological implication of the BCSigLnc-12 was predicted using the bioinformatics analysis in 
our study and experimental studies need to be carried out to investigate the functional roles of the BCSigLnc-12 
in breast cancer recurrence in the further work.

In conclusion, we have shown distinct expression patterns of lncRNAs in breast patients with relapse com-
pared with those with relapse-free, and identified 12 differentially expressed lncRNAs that were closely associated 
with tumor recurrence of breast cancer patients. We therefore constructed a lncRNA-based molecular signature 
using the expression levels of these 12 relapsed-related lncRNAs that predicts the risk of tumor recurrence of 
breast cancer independently of clinicopathological factors, and validated it in two out of three independent breast 
cancer cohorts derived from different studies. Our study not only indicated the potential of lncRNAs as novel 
candidate biomarkers to provide additional recurrence risk stratification for breast cancer patients beyond the 
known clinical prognostic factors, but also improved our understanding of the molecular mechanism underlying 
breast cancer recurrence with further prospective validation.

Methods
Breast cancer patient cohorts.  The gene expression profiles data generated by Affymetrix HG-U133 Plus 
2.0 platform from four independent cohorts of breast cancer patients with relapse information were obtained 

Figure 4.  Survival analysis of patients with different ER and lymph node status classified into high-risk and 
low-risk groups based on the 12-lncRNA signature. Kaplan-Meier survival curves for ER+​ patients (A) and 
ER−​ patients (B). Kaplan-Meier survival curves for patients with lymph node (C) and without lymph node (D).
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from the publicly available GEO database. After removal of the patients without recurrence status, a total of 473 
breast cancer patients were analyzed in this study (see Supplementary Table S1), including 104 patients from 
Clarke’s study (the GEO accession number is GSE42568) (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=​
GSE42568)51, 204 patients from Bos’s study (the GEO accession number is GSE12276) (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=​GSE12276)52, 77 patients from Loi’s study (the GEO accession number is GSE9195) 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=​GSE9195)53 and 88 patients from Dedeurwaerder’s study 
(the GEO accession number is GSE20711) (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=​GSE20711)54.

Acquisition and analysis of lncRNA expression profiles.  The raw microarray data (.CEL files) of 
breast cancer patients in three cohorts were downloaded from the GEO database, and were background cor-
rected, log2-transformed and normalized using the Robust Multichip Average (RMA) algorithm55 and the R 
package “Affy”56. The probe sequences of Affymetrix HG-U133 Plus 2.0 array were downloaded from the 
Affymetrix website (http://www.affymetrix.com) and re-mapped to the human genome (GRCh38) using SeqMap 
tool57. LncRNA-specific probes were obtained by matching the chromosomal position of probes to the chro-
mosomal position of lncRNA genes based on the annotations from GENCODE (release 23) according to the 
previous studies16,17,42. After the removal of those probes that were mapped to multiple different lncRNAs, 2876 
lncRNA-specific probes corresponding to 1938 lncRNAs were obtained for further analysis. When multiple 
probes were mapped to the same lncRNA, expression values of these probes were integrated by using the mean 
value to represent the expression value of the single lncRNAs.

The expression profiles of three cohorts were standardized by the Z-score transformation to avoid systematic 
error across different experiments58. Expression profiles of lncRNAs were analyzed using an unpaired two-tailed 
Student’s t-test and the p-values were adjusted for the effect of multiple tests using the Benjamini-Hochberg false 
discovery rate (FDR) control approach59 to determine differentially expressed lncRNAs in relapsed patients com-
pared with non-relapsed patients. Hierarchical clustering of both patients and lncRNAs was performed with R 
software using the metric of euclidean distance and ward’s method.

Statistical analysis.  The Cox regression analysis was used to evaluate the association between expres-
sion levels of differentially expressed lncRNAs and patients’ recurrence-free survival. The selected differen-
tially expressed lncRNAs were fitted in a multivariate Cox regression analysis in the discovery dataset. Then the 
lncRNA-focused molecular signature, termed BCSigLnc-12, was built using the linear combination of expression 
levels of prognostic lncRNAs with the estimated regression coefficients derived from the above multivariate Cox 
regression analysis as the weight to calculate the recurrence risk score for each patient as previously described60,61. 
The time-dependent receiver operating characteristic (ROC) curves were used to compare the sensitivity and 
specificity of the risk prediction of the BCSigLnc-12 for recurrence-free survival using the R package “survival-
ROC”62, and to identify the best patient stratification cutoff value in the discovery cohort. Patients were classified 
into high-risk and low-risk groups according to the above stratification cutoff. Kaplan-Meier survival analysis 
and log-rank test were used to compare the difference in recurrence-free survival between high-risk group and 
low-risk group using the R package “survival”. Multivariate analyses with Cox proportional hazards regression 
were performed to test whether the 12-lncRNA signature is independent of other clinicopathological factors with 
recurrence-free survival as the dependent variable and risk score and other clinical features as the explanatory 
variable in each cohort. Hazard ratio and 95% confidence intervals (CI) were estimated by Cox proportional 
hazards regression model. All statistical analyses were performed with R software.

Functional enrichment analysis.  We calculated the Pearson correlation coefficients between lncRNAs 
and protein-coding genes, and identified protein-coding genes positively or negatively correlated with prog-
nostic lncRNAs. Functional enrichment analysis for these protein-coding genes was performed using DAVID 
Bioinformatics Tool (https://david.ncifcrf.gov/, version 6.7)63 limited to Gene Ontology (GO) terms in the 
“Biological Process” (GOTERM-BP-FAT) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
categories. GO functional clusters with an enrichment score of >​3.0 and KEGG pathway functional annotation 
with p-value of <​0.01 using the whole human genome as background were considered as potential function of 
prognostic RNAs.
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