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A predictive nondestructive model 
for the covariation of tree height, 
diameter, and stem volume scaling 
relationships
Zhongrui Zhang1,2, Quanlin Zhong1,2, Karl J. Niklas3, Liang Cai4, Yusheng Yang2 & 
Dongliang Cheng1,2

Metabolic scaling theory (MST) posits that the scaling exponents among plant height H, diameter D, 
and biomass M will covary across phyletically diverse species. However, the relationships between 
scaling exponents and normalization constants remain unclear. Therefore, we developed a predictive 
model for the covariation of H, D, and stem volume V scaling relationships and used data from Chinese 
fir (Cunninghamia lanceolata) in Jiangxi province, China to test it. As predicted by the model and 
supported by the data, normalization constants are positively correlated with their associated scaling 
exponents for D vs. V and H vs. V, whereas normalization constants are negatively correlated with the 
scaling exponents of H vs. D. The prediction model also yielded reliable estimations of V (mean absolute 
percentage error = 10.5 ± 0.32 SE across 12 model calibrated sites). These results (1) support a totally 
new covariation scaling model, (2) indicate that differences in stem volume scaling relationships at 
the intra-specific level are driven by anatomical or ecophysiological responses to site quality and/or 
management practices, and (3) provide an accurate non-destructive method for predicting Chinese fir 
stem volume.

The accurate estimation of standing plant biomass is essential for understanding and predicting the effects of for-
est ecosystem processes (e.g. energy, nutrient, water, and carbon fluxes) on regional and global carbon cycles1–4. 
A convenient and widely used method for biomass estimation is provided by equations that interrelate plant 
biomass (M) and stem/trunk diameter (D) that take the form M =  β Dα, where β  is a normalization constant and 
α  is the scaling exponent5–8. Since the numerical values of β  and α  can differ among species, stand age, site char-
acteristics, climate, and stand density5–7,9,10, they are typically estimated via regression of log-transformed data 
for D and M data obtained from destructive sampling methods. This approach is time consuming and expensive, 
and thus generally restricts data collections to small areas, plant sizes, and sample numbers. More efficient and 
economical methods for estimating allometric parameters would help considerably.

In addition to empirical model fitting approaches, theoretical models have also been used to predict and 
estimate allometric scaling exponents. For example, metabolic scaling theory (MST)11–15 hypothesizes that evo-
lutionary optimization of vascular transport hydraulics has resulted in plant metabolic rates that scale as 3/4 
power of M and that M scales as the 8/3 power of D. Several authors have used these and other MST predictions 
to develop allometric models for interrelating M and D4,6,9,16,17 and to evaluate the generality of predicted or 
estimated allometric parameters, although other authors have concluded that the power-law scaling exponents 
vary considerably within and across taxa6. Additionally, several studies have argued that MST as originally formu-
lated11,12 cannot explicitly account for the range and origin of variation of plant metabolic scaling exponents18–21. 
For example, mass-scaling exponents of metabolic rates are close to unity for saplings (isometry) and decrease as 
trees grow in size22–24, implying that metabolic scaling relationships vary though ontogeny. To address the con-
cerns, Niklas and Enquist24 and Enquist et al.25 used biomechanical and space-filling arguments to suggest how 
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metabolic scaling of seedlings and saplings should deviate from the original MST predictions11. Further, Niklas26 
demonstrated that the scaling of height with respect to diameter decreases from nearly isometric (for small and 
juvenile trees) to a 2/3 power for older more mature trees. Niklas and Spatz22 also developed a hydraulic model 
that predicts a log-log nonlinear H (and M) vs. D relationship that predicts a shift from an isometric to an allo-
metric scaling exponent across species and habitats.

To address these issues and to expand their theoretical underpinnings, Price et al.27 extended MST to show 
that the biomass scaling exponents relating M, H, and D covary, a feature that was already demonstrated by Niklas 
and Spatz22 and Sileshi28. Consequently, the scaling exponents of M vs. D can be estimated from those of H vs. D, 
which provides an attractive method for estimating tree biomass scaling relationships because data for D and H 
can be collected non-destructively. Indeed, if tree trunks can be modeled as simple cylindrical or truncated con-
ical geometries, tree biomass can be related to diameter and height as M ∝  D2H9. Furthermore, if the scaling 
exponent relating height and stem diameter is denoted as α 1, we see that ∝ +αM D2 1, which is a more general 
expression of the M, D, and H scaling interrelationship.

However, although biomass-scaling relationships clearly involve covariation among the scaling exponents for 
the relationships among M, D, and H (see details in Materials and Methods), the extent to which these relation-
ships mediate the numerical values of normalization constants (i.e., β -values) remains unclear. Prior studies have 
shown that scaling exponents are inversely related with their corresponding scaling constants in M vs. D rela-
tionships6,10,28. For example, using a collection of 223 allometric equations relating biomass to diameter, Zianis 
and Mencuccini6 have shown that normalization constants are negatively correlated with the scaling exponents 
governing M vs. D scaling relationships. If this relationship holds true generally, a “prediction model” for estimat-
ing tree biomass can be established by recasting biomass-scaling relationships in terms of an inverse relationship 
between the numerical values of scaling exponents and normalization constants. Specifically, the scaling of M 
with respect to D can be estimated from the scaling of H with D, and the normalization constants can be estimated 
using the specific function between scaling exponents and constants as suggested by Zianis and Mencuccini6.

Nevertheless, empirical testing of the biomass scaling relationships proposed by Price et al.28 has been based 
primarily on the datasets collected from different species and biomes. More experimental work is needed to gain 
insight into the mechanisms of covariation among scaling exponents and normalization constants at the level 
of individual species. Since plant functional traits can influence metabolic scaling relationships29–31, predictions 
for the covariation of scaling relationships among D, H and V must be tested at the intra-specific level because of 
species-specific differences among species (e.g. wood density). Under any circumstances, it is necessary to verify 
whether the covariation between the numerical values of scaling exponents and normalization constants hold 
true at the intra-specific level.

In light of the theoretical and practical importance of understanding the mathematical and biological relation-
ships among scaling exponents and their corresponding normalization constants, we used the stem volume data 
of Cunninghamia lanceolata (Lamb.) Hook. (Chinese fir) in Jiangxi province, China, to (1) examine the variations 
of the scaling relationships between stem volume, diameter, and height, (2) test whether an inverse relationship 
between scaling exponents and related constants holds true, (3) verify whether the covariation of scaling expo-
nents in these stem relationships support the mathematical functions proposed by Price et al.27, and (4) test 
whether the prediction model emerging from our approach successfully estimates stem volume.

Materials and Methods
Species and Study Area Selection. Cunninghamia lanceolata (Lamb.) Hook. (Chinese fir) is an evergreen 
conifer in the Taxodiaceae (Redwood) family. This species was selected because it is one of the most important 
commercial trees in China32 and because it is grown in a variety of sites. In the first half of 1988 and 1999, twen-
ty-four sites in the Jiangxi Province were selected to investigate tree stem (trunk) growth (Supplementary Fig. S1). 
The original planting density was 3300 trees·ha−1. For the first three years, the forest was tended twice every year, 
after which it was left undisturbed for the duration of the experiment. Thinning operations were conducted using 
chain saws and heavy equipment after 7–10 years of the initial planting of trees. About 30% trees in the planta-
tion were felled. When necessary, a second thinning operation was conducted to maintain an appropriate space 
between neighboring trees after 12–15 years of the initial plant of trees, the average reserve density is about 1800 
trees·ha−1. All of the sites were located in subtropical monsoon climatic regions. Mean annual temperature ranged 
from 16.5 °C to 19.5 °C and mean annual precipitation from 1421 mm to 1962 mm (Supplementary Table S1).

Field Measurements. Because C. lanceolata is the main forestation species in Jiangxi province, all trees were 
collected from plantation sites. Circular forest research plots were established with areas of 600 m2. Because prior 
work had shown that the architecture of the forest canopy is an important determinant of the scaling relation-
ship between tree height and diameter33, efforts were made to eliminate differences among canopy densities by 
drawing data only from sampling plots where the vertical projection of forest crowns was over 60%. This protocol 
identified 24 sites that could be sampled.

At each site, individuals spanning a wide range of sizes were selected in order to properly characterize the 
size distribution of the local stand (Supplementary Table S1). Because the number of plots varied across sites, the 
number of sampled individuals ranged between 6 to 185 (Supplementary Table S2).

Data were obtained by first measuring trunk diameter at breast height (DBH; 1.3 m from ground-level). Trees 
were then felled using a chain saw, and total height was measured using a steel tape. Stem discs were then taken 
at 1.3 m above the base and every 1 m for H <  10 m or 2 m for H ≥  10 m thereafter. An additional disc was taken at 
0.5 m above the base for trees < 10 m. Finally, the stem volume of each trunk section was calculated based on the 
geometric shape of the segments. For example, the stem volume for the top section (above the last sample disc) 
was calculated using the formula for a truncated cone. Total trunk volume was calculated subsequently as the sum 
of all trunk sectional volumes.
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Statistical protocols. Data for D, H and V from each of the 24 sites were log10-transformed. Because func-
tional rather than predictive relationships were sought, reduced major axis (RMA) regression was used to deter-
mine the scaling exponents (α ) and normalization constants (log β ) for log–log linear regression curves (see 
Supplementary Table S2). The parameter ϕ  (see Supplementary Eqs (6–8)) was calculated using nonlinear regres-
sion analyses in SPSS Statistics 17.

Because trees were required to determine the numerical values required to develop a prediction model and 
because trees were aslo necessary to test the prediction model, 12 of the 24 sites (from Anfu to Ruichang, listed 
in Supplementary Table S1) were used to establish the prediction model and the remaining 12 sites (from Ruijin 
to Yongxin; see Supplementary Table S1) were used for testing the model. Specifically, the numerical values 
of the scaling exponents and constants of V vs. D of 12 sites were used to estimate the parameters c and d in 
Supplementary Eq. (10). Then, using the estimated parameter ϕ , a site-specific stem volume prediction model was 
developed and used to predict stem volume based on measurements of D and the associated scaling exponents of 
H vs. D for the second set of 12 sites. It must be noted that ordinary least squares (OLS) regression analyses were 
used to establish the prediction model (Supplementary Eq. (11)) because the objective was to predict standing 
biomass by means of predicting stem volume.

RMA and OLS regression analyses were performed using the Standardized Major Axis Tests and Routines 
(SMATR) software package34,35. The software package SMATR was also used to determine whether the numerical 
values of scaling exponents differed among the 24 sites, which can provide the Model Type II equivalent of OLS 
standard analyses of covariance (ANCOVA). The significance level for testing scaling exponent heterogeneity was 
P <  0.05 (i.e. slope heterogeneity was rejected if P >  0.05).

The reliability of using this approach to predict stem volume was assessed numerically by calculating the mean 
absolute percentage error (MAPE) as suggested by Sileshi27 using the formula: = × ∑ =

−MAPE
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n V V
V
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1
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where VO and VP denote the observed and predicted stem volume, respectively.

Results
Volume-scaling relationships. The numerical values of the scaling exponents for volumetric scaling were 
significantly heterogeneous across sites (P <  0.005) (Supplementary Table S2). The mean scaling exponent of 
all sites was 0.380, with the smallest scaling exponent at Guixi and the largest at Anfu (i.e. α  =  0.323 and 0.427, 
respectively). For all sites, D scaled as 0.386 power of V (95% CIs =  0.383–0.390, n =  1273, r2 =  0.969). Likewise, 
the scaling exponents relating height and volume varied significantly among sites (P <  0.005; Supplementary 
Table S2), and ranged from 0.323 to 0.427, with a mean of 0.341 (Fig. 1). Pooling all of the data gave α  =  0.331 
and log β  =  1.389 (n =  1273, r2 =  0.870). The scaling exponents for the H vs. D relationship differed significantly 
among sites (P <  0.005), and ranged from 0.603 to 1.589 (Supplementary Table S1).

The allometric covariation of volume-scaling relationships. The covariation of scaling exponents.  
The empirical data agreed well with the predicted covariations of stem volume scaling relationships (Fig. 2). 
Specifically, the observed relationships between the scaling exponents for D vs. V (y′ ) and H vs. D(x) closely fol-
lowed the predicted function of Supplementary Eq. (8) (i.e. ′ = ϕ

+
y

x2
), with ϕ =  1.10 (95% CIs =  1.09–1.11, 

r2 =  0.867) (Fig. 2a). The relationship between scaling exponents for H vs. V(z′ ) and H vs. D(x) was governed by the 
function ′ = ϕ

+
z

1
x
2

, where ϕ  is 1.10 (95% CI =  1.09–1.12, r2 =  0.975) (Fig. 2b). The observed relationships 

between the scaling exponents for D vs. V and H vs. V also complied with the predicted function ′ = ϕ − ′y z
2

, with 
ϕ =  1.10 (95% CIs =  1.09–1.11, r2 =  0.703) (Fig. 2c). Importantly, the ϕ–value calculated for the three covariation 
curves had the same identical value of 1.10 (Fig. 2).

Figure 1. The regression parameters (scaling exponents and normalization constants, respectively) for 
volume scaling relationships of height H, diameter D, and stem volume V for Cunninghamia lanceolata at 
24 sites in Jiangxi Province. The numerical values are shown in Supplementary Table S1.
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The covariation of scaling exponents and constants. The scaling exponents and normalization constants were sta-
tistically significantly correlated with one another (Fig. 3). Specifically, normalization constants positively corre-
lated with the scaling exponents for D vs. V (i.e. y =  0.74x +  1.26, n =  24, r2 =  0.741, P <  0.01) (Fig. 3a) and H vs. V 
(i.e. y =  0.59x +  1.19, n =  24, r2 =  0.778, P <  0.01) (Fig. 3b). In contrast, the relationship between the constants and 
the exponents for H vs. D was significantly negative (i.e. y =  − 1.31x +  1.18, n =  24, r2 =  0.992, P <  0.01) (Fig. 3c).

Furthermore, as predicted by Supplementary Eq. (9), the H-D scaling exponents were significantly correlated 
with the covariation of normalization constants in the stem volume scaling relationship (i.e. y =  0.995x +  0.0079, 
n =  24, r2 =  0.999) (Fig. 4).

Predictions and there percent prediction errors. A significant negative relationship was observed between empir-
ically determined normalization constants (i.e. log β ) and the V vs. D scaling exponents (i.e., 

′y
1 ) across the 12 sites 

(for details, see Material and methods and Supplementary Table S1) used to develop the prediction model, i.e.

β = −
.

′
− . = .

y
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2

when V is expressed in m3 and D in cm (Fig. 5).
The empirically determined scaling exponents of H vs. D were applied to Supplementary Eq. (8) to estimate 

′y
1 . 

These values were then applied to Supplementary Eq. (12) to calculate the corresponding normalization constants 
for each model calibrated site (Supplementary Table S1). Lastly, a non-destructive model for estimating the stem 
volume of C. lanceolata was obtained, i.e.,
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where x is the empirically determined site-specific scaling exponent for H vs. D.
Across all of the model calibrated sites, the mean absolute percentage error (MAPE) was 10.50 ±  0.32 SE, and 

57% of all trees had MAPE values less than 10% (Fig. 6).

Discussion
The variation in volume-scaling relationships. A number of previous studies have predicted heter-
ogeneity in the numerical values of the scaling exponents of stem volume scaling relationships. For example, 

Figure 2. Allometric covariation of volume scaling exponents estimated using RMA regressions of 24 
sites in Jiangxi Province. (a) Relationship between scaling exponents for D vs. V and H vs. D. Axes represent 
the function y =  ϕ /(2 +  x), where ϕ  is 1.10 (95% CI =  1.09–1.11, r2 =  0.867). (b) Relationship between 
scaling exponents for H vs. V and H vs. D. Axes represent the function y =  ϕ /(1 +  2/x), where ϕ  is 1.10 (95% 
CI =  1.09–1.12, r2 =  0.975). (c) Relationship between scaling exponents for D vs. V and H vs. V. Axes represent 
the function y =  (ϕ  − x)/2, where ϕ  is 1.10 (95% CI =  1.09–1.11, r2 =  0.703).
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three biomechanical models have been proposed to explain the scaling of H with respect to D. These are the 
geometric similarity model, which assumes height will scale isometrically with respect to diameter (H ∝  D1/1), 
the elastic similarity model, which assumes height will scale as the 2/3 power of diameter (i.e. H ∝  D2/3), and the 
constant stress similarity model, which assumes height will scale as the 1/2 power of diameter (i.e. H ∝  D1/2)36,37. 
Our data demonstrate that none of these models can be applied to our experimental system because significant 
variation in the numerical values of the scaling exponents of the stem volume scaling relationships exist for 
C. lanceolata (Supplementary Table S2; Fig. S2). Specifically, for the scaling relationship of H vs. D, five sites 
had scaling exponents with 95% CIs that included 2/3, twelve sites included 1.0, one site included both 2/3 and 

Figure 3. Normalization constants versus scaling exponents using reduced major axis (RMA) regression for 
C. lanceolata at 24 sites. (a) Relationship between D vs. V. (b) Relationship between H vs. V. (c) Relationship 
between H vs. D.

Figure 4. Relationship between empirical normalization constants (β5) of reduced major axis (RMA) 
regression for D vs. V at 24 sites and the predicted normalization constants based on the formula 
β = β β−log

x5
(log log )6 3 , where log β6 is the normalization constant for H vs. V, log β3 and x are the 

normalization constant and scaling exponent for H vs. D, respectively. The dashed line is isometric with a 
slope of one.
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1.0, and five sites included neither 2/3 nor 1.0. Further, across all of the sites, height scaled as the 0.86 power 
of diameter (95% CI =  0.84–0.88) (Supplementary Table S2). These results diverge significantly from all of the 
aforementioned models, indicating that no single optimal scaling exponent exists for Chinese fir. Indeed, many 
studies have demonstrated that tree scaling relationships for height, diameter and biomass are variable rather than 
constant27,38–43.

In addition to empirical studies, using a growth-hydraulic model, Niklas and Spatz21 predicted a nonlinear 
(convex) relationship between height and diameter through tree ontogeny, which agrees with empirical observa-
tions26 and implies that scaling relations will vary among trees of different sizes16. Similarly, Enquist et al.25 have 
shown a curvilinear relationship between tree height and diameter and a similar scaling transition for metabolism 
and biomass. Given that our results indicate that biomass scales nearly as the 1.10 power of stem volume (Fig. 2), 
the observed variation in scaling relationships of Chinese fir might, at least in part, reflect differences in scaling 
relationships between trees of different ontogenetic stages driven ultimately by anatomical or ecophysiological 
responses to site quality and/or management practices.

The covariation of volume scaling relationships. It has long been recognized that size-dependent var-
iation in H vs. D scaling relationships can be important in shaping other allometric relationships44. For instance, 
Dai et al.45 demonstrated that the scaling exponent of height with respect to diameter decreases with increasing 
drought stress such that, for a given diameter, drought stressed trees are proportionately shorter, leading to a 
systematic change in the plant density–mass relationship. Our data demonstrate that the scaling exponents of 
the stem volume scaling relationships covary and that the changes agree with the equations derived from the 
biomass scaling relationships suggested by Price et al.27 (see Supplementary Eq. (8), Fig. 2), which indicates that 
the intraspecific covariation in scaling exponents for Chinese fir plantations across different locations holds true 
as well as across species. Thus, our results indirectly support the hypothesis that plant growth can adjust network 

Figure 5.  Relationship between normalization constants and scaling exponents using the OLS regression 
of V vs. D for C. lanceolata at 12 model development sites inSupplementary Table S1. Normalization 
constants and exponents were calculated using ordinary least squares regression. Solid line is OLS regression 
line (r2 =  0.979).

Figure 6. Relationship between observed and predicted stem volume of Cunninghamia lanceolata across 
the second set of 12 model calibrated sites listed in Supplementary Table S1. The insert plot is frequency 
distributions of the mean absolute percentage error (MAPE) based on the Eqn (13). The mean and S.E. values 
are presented.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:31008 | DOI: 10.1038/srep31008

geometry and hydraulic function in order to cope with variation in the abiotic and biotic environment, at least in 
the case of Chinese fir.

Furthermore, we find that the scaling exponents are all correlated with their associated normalization con-
stants across all of the stem volume scaling relationships. Consistent with the findings of Zianis and Mencuccini6, 
Djomo et al.10, and Sileshi28, our analyses show a positive correlation between the numerical values of the normal-
ization constants and scaling exponents of D vs. V (Fig. 3a). Likewise, noting that H =  β 3Db/a (see Supplementary 
Eq. (1)), it follows that β 3 =  H/Db/a. Given that the scaling of H vs. D should shift from 1.0 to 2/3 as trees grow in 
size15,21,25, we must expect a negative relationship between β 3 and b/a. Indeed, our data support the expectation 
that normalization constants significantly correlate with scaling exponents for H vs. D (Fig. 3c). Importantly, 
beyond the variations of scaling exponents suggested by Price et al.27, our mathematical derivation (see Eq. (9)) 
and empirical data illustrate that the plant fractal traits a and b influence not only scaling exponents but also 
normalization constants interrelating tree height, diameter, and stem volume (Fig. 4). It is reasonable therefore 
to argue that other key plant functional traits underlie these relationships. For example, across woody plants, 
wood density is a crucial variable in carbon estimation and correlates with numerous morphological, mechanical, 
physiological, and ecological properties of trees46–48. For example, wood density is related to the normalization 
constants for M vs. D9,25,49, but is negatively correlated to tree growth rates47,50,51, i.e. species with denser wood 
tend to have slower growth rates than species with less dense wood because dense wood may have a lower conduit 
fraction that reduces the rate of transpiration and photosynthesis, and thus growth in biomass. In addition, denser 
wood requires more mass per volume such that for the same growth in mass, a denser wood species will grow less 
in volume52. Given that the growth rate is directly proportional to plant metabolic rate14,53, wood density, con-
strained by plant growth, might therefore affect the scaling exponents of plant metabolism. Indeed, King et al.54  
report that the scaling exponent of tree stem growth rate vs. light-interception is negatively correlated with wood 
density. Furthermore, wood density varies more than an order of magnitude across species47,48,55, which can 
weaken correlations among scaling exponents among biomass scaling relationships across species, because there 
is less variation in ecophysiological traits within species than across species. Indeed, our data reveal a stronger 
allometric covariation among height, diameter and stem volume relationships (i.e. r2 >  0.70) then that reported by 
Price et al.27 (i.e. r2 ≥  0.27) (Fig. 2). This feature may reflect a more consistent sampling methodology for a single 
species with more uniform anatomical, morphological, and biomechanical properties, which would reduce the 
residual variation in contrast to the many differences among the many species represented in a global data set27.

The prediction model. In terms of its practical application, our prediction model (Eq. (13)) was developed 
based on the theoretical framework of the covariation of scaling exponents and the correlation between scaling 
exponents and constants in stem volume scaling relationships (Supplementary Eqs (8–11)). A considerable num-
ber of studies have attempted to develop a general predictive model for biomass estimation. For example, using 
the small tree sampling scheme (SSS), Zianis and Mencuccini7 reported that the mean absolute percentage error 
(MAPE) of aboveground biomass estimation in 10 different studies ranged from 7.43% to 31.59%, with a mean 
value of 14.83%. Furthermore, using biomass-diameter-height regression models, the MAPE values of biomass 
estimation in tropical forests reported by Chave et al.47 ranged between 9.4% to 12.2%, with a mean value of 
10.7% (recalculated by Ref. 27). Likewise, using the site-specific H vs. D scaling relationship in our field sites, 
MAPE across the 12 model calibrated sites listed in Supplementary Table S1 was 10.5%, and more than 57% of all 
MAPE values were less than 10% (Fig. 6). Consequently, our data show that the implementation of the prediction 
model developed here can result in very accurate predictions for stem volume. Furthermore, the data required 
for determining a site-specific H vs. D scaling relationship are easy to collect, requiring only height and diameter 
measurements. Therefore, the prediction model reported here provides a useful non-destructive tool for predict-
ing stem volume (and biomass) based on the site-specific height vs. diameter relationship. However, it must be 
noted that our prediction model was developed using data drawn from the monospecific plantations having small 
or little variations in density and age. Another concern is the statistical limitations to fitting log-log linear power 
functions to H vs. D relationships, which the reductionist model is contingent upon. This latter problem is likely 
exacerbated when a strict linearity does not true (i.e., under less uniform conditions and a wider range of tree 
ages, height-diameter relationships become more complex).

Conclusions
Our results reveal important departures from the general scaling relationships predicted for allometrically ideal 
plants, and show that volume scaling relationships vary significantly even for a single species. Nevertheless, a 
modified stem volume scaling model governed by the covariation of the numerical values of scaling exponents 
and normalization constants for whole-plant morphology and stem volume is shown to have remarkable predic-
tive properties. Furthermore, the theory and empirical data present in the current study support the view that 
allometric normalization constants are influenced by plant fractal traits, and are thus directly related to scaling 
exponents (Fig. 3). Lastly, the covariation of scaling relationships provides an accurate non-destructive method 
for predicting Chinese fir stem volume relationships. Collectively, our data and our theory show that the changes 
in the numerical values of scaling exponents and the corresponding normalization constants attending growth 
reflect anatomical and ecophysiological responses to ontogenetic changes in size, and, importantly, differences in 
site quality and/or management practices. Our results provide strong circumstantial support for the hypothesis 
that plant growth adjusts hydraulic geometry and function in order to cope with ontogenetic changes in plant size 
and variation in abiotic environmental factors. Nevertheless, progress toward understanding the mechanisms 
that govern the scaling of plant form and function require additional theoretical insights regarding how and why 
scaling exponents and normalization constants covary within species. It also requires additional data in order to 
assess theoretical predictions.
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