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Swarm dynamics may give rise to 
Lévy flights
Andrew M. Reynolds1 & Nicholas T. Ouellette2

“Continuous-time correlated random walks” are now gaining traction as models of scale-finite animal 
movement patterns because they overcome inherent shortcomings with the prevailing paradigm - 
discrete random walk models. Continuous-time correlated random walk models are founded on the 
classic Langevin equation that is driven by purely additive noise. The Langevin equation is, however, 
changed fundamentally by the smallest of multiplicative noises. The inclusion of such noises gives 
rise to Lévy flights, a popular but controversial model of scale-free movement patterns. Multiplicative 
noises have not featured prominently in the literature on biological Lévy flights, being seen, perhaps, 
as no more than a mathematical contrivance. Here we show how Langevin equations driven by 
multiplicative noises and incumbent Lévy flights arise naturally in the modelling of swarms. Model 
predictions find some support in three-dimensional, time-resolved measurements of the positions of 
individual insects in laboratory swarms of the midge Chironomus riparius. We hereby provide a new 
window on Lévy flights as models of movement pattern data, linking patterns to generative processes.

Lévy flights (also known as Lévy walks in the biological literature) are a popular but controversial model of organ-
ism movement patterns. They comprise clusters of many short steps with longer steps between them. This pattern 
is repeated across all scales with the resultant clusters creating fractal patterns that have no characteristic scale1. 
The hallmark of a Lévy flight is a distribution of step lengths with a heavy power-law tail; p(l) ∼ l−μ with 1 < μ ≤ 3, 
where l is the step-length and μ is the power-law (Lévy) exponent (‘∼’ means ‘distributed as’). Widespread inter-
est in Lévy flights as models of movement patterns was ignited by a report that they can be discerned in the flight 
patterns of wandering albatrosses2. Lévy flights as models of movement patterns are, however, controversial, in 
part because many early studies, including the seminal work of Viswanathan et al.2, had wrongly ascribed Lévy 
flights to many species through the use of inappropriate statistical techniques and misinterpretations of the data3. 
Controversy also surrounds the ‘Lévy flight foraging hypothesis’, which posits that because Lévy flights can opti-
mize search efficiencies, natural selection should have led to adaptations for Lévy flight foraging1. This hypothe-
sis provided the first conceptual framework for understanding and interpreting Lévy flight movement patterns, 
but has been fiercely contested4. Nonetheless, there is now seemingly compelling evidence that many organisms 
have movement patterns with Lévy flight characteristics. Lévy flight movement patterns have, for instance, been 
observed to some extent in the molecular machinery operating within cells5, E. coli bacteria6,7, T cells8, a diverse 
range of aquatic marine predators including sharks, turtles and jellyfish9,10, mussels11,12, mud snails13,14, honey-
bees15, human hunter-gatherers16, and they have even been observed in trace fossils – the oldest records of animal 
movements17. And it now seems that wandering albatrosses and other seabirds do, after all, roam the high seas in 
a way that Paul Lévy, after whom Lévy flights are named, would have appreciated18,19. It has also become apparent 
that the occurrence of these Lévy flight movement patterns need not be attributed to optimized or advantageous 
searching20.

It is remarkable that flawed data analyses and questionable interpretations have led to a fascinating idea: a 
general law governing animal movement supplementing that of Brownian motion which underlies the correlated 
random walk paradigm. Nonetheless, the key to understanding these movement patterns lies with the elucidation 
of the generative mechanisms rather than a posteriori descriptive analysis21. Many putative mechanisms have been 
identified, but most are idiosyncratic and organism specific20. The Lévy flight patterns made by honeybees may, 
for instance, be derived from the Weber-Fechner law in a bee’s odometer22. E. coli use chemotaxis to locate food 
but, in the absence of external stimuli, noise in the chemotactic pathways that regulate their ‘run-and-tumble’ 
locomotion leads to Lévy flight movement patterns23. More recently, evidence is accumulating for Lévy flight 
patterns emerging from chaotic dynamics, albeit with very different origins. The Lévy flight patterns of mud snails 

1Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom. 2Department of Civil and Environmental Engineering, 
Stanford University, Stanford, CA 94305, USA. Correspondence and requests for materials should be addressed to 
A.M.R. (email: andy.reynolds@rothamsted.ac.uk)

received: 15 April 2016

accepted: 06 July 2016

Published: 28 July 2016

OPEN

mailto:andy.reynolds@rothamsted.ac.uk


www.nature.com/scientificreports/

2Scientific RepoRts | 6:30515 | DOI: 10.1038/srep30515

have been attributed to neuronal chaos, whilst those in swarming bacteria have been attributed to chaotic flow 
dynamics7,14. This is a significant development because chaos is ubiquitous, providing a generative mechanism 
for Lévy flights that could operate across taxa. The chaotic pathway to Lévy flight patterns in physical systems is 
well documented, but until recently had not featured in the biological literature24. Multiplicative noises provide 
another general pathway to Lévy flight patterns (sometimes with exponential truncation), one that is well known 
in the physical sciences but which has yet to feature in the biological literature25,26.

Here we show that multiplicative noises, and incumbent Lévy flights, arise naturally in the modelling the col-
lective behaviour of swarms. This generative mechanism is a mathematical consequence of swarm dynamics that 
operates independently of the Lévy flight foraging hypothesis. It also makes no reference to effective social forces, 
which have often been invoked to explain collective behaviour in animals but have been experimentally elusive to 
detect27,28. Model predictions find support in three-dimensional, time-resolved measurements of the positions of 
individual insects in laboratory swarms of the midge Chironomus riparius. Our findings suggest that Lévy flights 
stemming from multiplicative noise can and do arise inside animal aggregations, including those that, unlike 
midge swarms, possess strong global ordering.

Results
Modelling of midge swarms. Midge swarms do not show the choreographed movement of fish schools or 
bird flocks, but their members occupy just a small portion of the space available to them29. Nonetheless, evidence 
suggests that individuals are indeed behaving collectively rather than simply interacting independently with an 
external landmark29,30. The absence of global ordering makes it a particularly simple system for understanding 
swarming because coherence which is present in other swarms is not a complicating factor. Here we assume that 
the positions, x, and velocities, u, of individual midges can be described by the stochastic differential equations

= +
=

du a u x t dt b u x t dW t
dx udt
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where dW(t) is an incremental Wiener process with correlation property τ δ τ+ =dW t dW t dt( ) ( ) ( ) . We fur-
ther assume that the magnitude of the driving noise, b(u,x,t), is a constant. Equation (1) is effectively a first-order 
autoregressive stochastic process in which position and velocity are modelled as a joint Markovian process. At 
second-order, position, velocity and acceleration would be modelled collectively as a Markovian process. 
Physically, this hierarchy of models corresponds to the inclusion of a velocity autocorrelation timescale, at first 
order, and to the addition of an acceleration autocorrelation timescale, at second order, and so on31. The first order 
model, Eqn. 1, is appropriate because midge accelerations are correlated over shorter times than are midge veloc-
ities (Supplementary Material). An analogous situation arises when Eqn. 1 has been used to model passive move-
ments in turbulent flows where the neglect of acceleration autocorrelation has been found to be of little practical 
consequence31–33. The deterministic term, a(u, x, t), is here determined by the requirement that the statistical 
properties of the simulated positions and velocities be consistent with the observations of Kelley and Ouellette34. 
Kelley and Ouellette34 showed that: (1) the spatial distribution of the distance of each individual to the swarm 
centre is approximately Gaussian in all three dimensions and weakly axisymmetric; (2) and in sufficiently large 
swarms individual velocity distributions have long, nearly exponential tails.

Mathematically, these consistency conditions require that a(u, x, t) be a solution of the Fokker-Planck equation
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where P(u, x, t) is the joint distribution of velocity and position32. This leads to the classic Langevin equation when 
velocities are taken to be Gaussian, homogeneous and stationary so that = −
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equation underlies “continuous time correlated random walk” models of animal movement patterns; models35–38 
which overcome inherent shortcomings with discrete correlated random walks that have been the dominate con-
ceptual framework for the modelling of animal movement patterns39 Here, in accordance with the observations 
of Kelley and Ouellette34,
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where xc is the location of the swarm centre, σx is the root-mean-square position, and σu is the root-mean-square 
speed. The solution to Eqn. 2 is given by
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It follows from Eqns 2, 3 and 4 that
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 where T is a velocity autocorrelation timescale.
Here, it is worth remarking that in small swarms (<10 individuals) velocities are observed to be Gaussian 

rather than exponentially distributed34,40, and in this case
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This model is identical to the one posited by Okubo40 on the basis that midges act like random moving parti-
cles subject to both ‘frictional’ forces that are proportional to velocity and inward ‘cohesive’ forces. In both mod-
els, the restoring force increases linearly as the distance from the swarm centre increase, in accordance with 
observations34. Despite their similarities, the two models, Eqns 5 and 6, differ fundamentally when the swarm is 
liberated from its marker, so that the swarm centre, xc, becomes a dynamical quantity with a stochastic compo-
nent. The swarm centre is then determined from the instantaneous positions of many simulated midges and so 
becomes a strongly fluctuating quantity, Here it is tactfully assumed that liberation from the swarm marker does 
not change the behaviour of individual midges as encapsulated by Eqns 5 and 6. In this case Eqn. 5 has a multi-
plicative noise term, i.e., a velocity-dependent noise term + −σ
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, that may allow for the emergence 

of heavy-tailed velocity distributions and Lévy flights as it does in other simpler models which are amenable to 
mathematical analysis25,26, whilst Eqn. 6 has only additive noise terms. Our model does not appear to be amend-
able to such analysis. We therefore tested for the emergence of Lévy flights in numerical simulations of midge 
swarms using Eqn. 5.

The step-length (i.e., flight-segment length) distributions were fitted to truncated power-laws, which are indic-
ative of Lévy flights, exponentially-truncated power-laws, and truncated exponentials (a null model of our move-
ment pattern data):
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where N1, N2 and N3 are normalisation factors which ensure that the distributions sum correctly to unity when 
integrated over all time-intervals between the lower and upper cut-offs, l1 and l2; μ is the power-law exponent and, 
λ2 and λ3 are exponential decay rates. The lower cut-offs were taken to be start of the tail of the distributions which 
were estimated by visual inspection of the complement of the cumulative frequency distributions (which we plot). 
The upper cut-offs were taken to be the lengths of the longest recorded flight segments. Note that cumulative fre-
quency distributions corresponding to truncated power-laws are curvilinear when (as done here) plotted on log-log 
scales. Fittings were made by maximum likelihood methods41,42 and the best model distribution was identified 
using the Akaike information criterion43. Data was analysed following the approach of Humphries et al.18 in which 
movement patterns are first projected onto the x- and y-axes to create two one-dimensional movement patterns for 
each individual. The key idea here is to exploit the fact that the one-dimensional projection of a high-dimensional 
Lévy flight is itself a Lévy flight. Turns in these projections can then be identified in an unambiguous way as occur-
ring where the direction of travel changes. Without projection turns can only be identified by making reference 
to arbitrarily defined critical-turning angles. Step lengths were computed on the basis of the one-dimensional 
sequences and not on the displacements occurring in the two-dimensional sequence between turning points. This 
projection method was first utilized and discussed in Sims et al.9 and is now being applied widely13,14,17.

Data from our simulations provide evidence that the movements of individuals within the swarm can be 
modelled as Lévy flights. Lévy flights are predicted to arise when the midges are flying slowly (or equivalently 
are flying within large swarms) so that velocity autocorrelations do not persist across distances comparable with 
the swarm size (i.e., when σx ≫ σuT) (Fig. 1a). These Lévy flights can be attributed to erratic movements of the 
swarm centroid (Fig. 1b) which in our model leads to multiplicative noise and so to individuals having Lévy flight 
patterns. Our simulations also indicate that the centres of sufficiently large swarms have Lévy flight movement 
patterns.

The simulated flight patterns of fast flying midges (or, equivalently, midges within compact swarms) can be 
modelled as exponentially truncated Lévy flights (Fig. 2).

Modelling of coherent swarms. In contrast with midge swarms, many animal groups (e.g., flocks of birds 
and schools of fish) possess global order. The modelling framework (stochastic model with Fokker-Planck derived 
terms ensuring consistency with prescribed velocity statistics) can be extended to take explicit account of interac-
tions between individuals, following the approach of Thomson44 who devised a stochastic model for the motion 
of particle pairs in turbulence. One of the simplest such models is given by

τ
τ

τ
τ

= − +
∂

∂
+

∂
∂

+

=

− −du b u dt
x

dt
x

u u dt bdW

dx u dt
2

1
2

1
2

(8)

i ij j
ij

j
lj

il

k
j k i

i i

2
1 1



www.nature.com/scientificreports/

4Scientific RepoRts | 6:30515 | DOI: 10.1038/srep30515

where the subscripts denote different individuals, τ is the velocity correlation matrix with components 
τ = 〈 〉u uij i j , τ−

ij
1 denotes components of τ−1 and where dW(t) is an incremental Wiener process with correlation 

property τ δ τ δ+ =dW t dW t dt( ) ( ) ( )i j ij . Modelled velocities are Gaussian with mean zero (and close neigh-
bours will have similar velocities by virtue of the correlations). The first term describes how an individual velocity 
relaxes to a weighted sum of the velocities of its neighbours. The second and third terms ensure that the spatial 
distribution of individuals is uniform on average. Without these terms, individuals would tend to drift apart 

Figure 1. Simulation data produced by the model (Eqn. 5) of midge swarms (10 individuals, σx = 5.0 a.u., 
σu = 1.0 a.u., T = 1 a.u.) (a) Complement of the cumulative frequency distribution for the distances travelled 
between consecutive turns in individual flight patterns (o) together with the best-fit truncated power-law 
(red-line) and best-fit truncated exponential (blue-line). The maximum likelihood estimate for the power-law 
(Lévy) exponent is 1.47. The approximate power-law scaling is indicative of a Lévy flight. (b) Simulation data 
illustrating that the swarm centroid moves erratically which in our model leads to multiplicative noise and so to 
individuals having Lévy flight patterns.

Figure 2. Simulation data produced by the model (Eqn. 5) of midge swarms (σx = 1.0 a.u., σu = 5.0 a.u., T = 1 
a.u.) with (a) 10 and (b) 50 individuals. Complement of the cumulative frequency distribution for the distances 
travelled between consecutive turns in individual flight patterns (o) together with the best-fit truncated power-
law (red-line), the best-fit exponentially-truncated power-law (green line) and best-fit truncated exponential 
(blue-line).
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because relative velocities tend to decrease as individuals come together and increase as they move apart, leading 
to a net outward drift, a process akin to turbophoresis. The second and third counter this drift which on average 
is given by −

τ∂

∂x
ij

j
. Such velocity-dependent terms are necessarily present if individual velocities are correlated and 

if average spacing between individuals is constant. The modelling therefore admits the occurrence of Lévy flights 
when the underlying dynamics are frequently disrupted so that the third term on the right-hand of (Eqn. 8) effec-
tively becomes a multiplicative noise term. This situation would arise, for instance, if some of the correlations 
were frequently turned off for a short time, so that momentarily τij = 0 for some i and j’s. This would mimic occa-
sional blocking of the lines of sight between individuals45. Here it is tactfully assumed that the introduction of this 
stochasticity does not change individual behaviour, as encoded in Eqn 8. The results of numerical simulations 
provide support for this potential pathway to Lévy flying (Fig. 3). Other potential ways of introducing multiplica-
tive noise include restricting the range of correlation, so that the number of interactions (number of conspecifics 
within the zones of attraction) becomes a fluctuating quantity or making the correlations stochastic to reflect 
individual uncertainty or inaccuracies in distance estimation.

Empirical support for the predicted occurrence of Lévy flight patterns. To test the modelling ideas 
described here in a real animal system, we compared them to empirical data from laboratory mating swarms 
of the non-biting midge Chironomus riparius. Details of the data set have been given elsewhere27–29,34, and so 
we describe them only briefly here. We established a breeding colony of C. riparius midges in a cubic enclosure 
measuring 91 cm on a side. Midge larvae developed in nine tanks containing dechlorinated, oxygenated water 
and a cellulose substrate; upon emergence as adults, midges typically sit on the floor or walls of the enclosure. 
The midges are exposed to overhead light on a circadian cycle, with 16 hours of light and 8 hours of darkness 
each day. When the light changes state (corresponding to “dawn” and “dusk”), male midges spontaneously form 
swarms. To promote nucleation and position the swarms, we provide a 30 × 30 cm2 black felt swarm marker in the 
centre of the enclosure. To measure the motion of the flying midges in the swarms, we image them at a rate of 100 
frames per second with three hardware-synchronized Point Grey Flea3 cameras arranged around the enclosure. 
Using predictive tracking routines originally developed to study intensely turbulent fluid flows46, we extract the 
time-resolved positions, velocities, and accelerations of each midge in the swarms.

Analysis of the data reveals a gradual transition with increasing swarm size from exponential flight patterns to 
exponentially-truncated power-law flight patterns (Fig. 4). There is no evidence of Lévy flights per se but the flight 
patterns are clearly very well approximated as exponentially-truncated Lévy flights (Fig. 4), closely mirroring the 
simulation data for compact swarms (Fig. 2). The absence of Lévy flights per se may therefore be the result of the 
swarms remaining closely bound to their marker. Nonetheless, in accordance with theoretical expectations, flight 
patterns become increasingly more Lévy-like as the swarm size increases (Figs 2 and 4). This result mirrors the 
observations of Kelley and Ouellette34 who reported, in accordance with the modelling, that the distribution of 
individual velocities becomes broader as the swarm becomes larger, i.e., as the swarm marker becomes increas-
ingly less important29. Further testing of our predictions awaits data for larger swarms.

Discussion
Many organisms have movement patterns that can be approximated by Lévy flights5–19. This accumulation of 
empirical support is shifting the debate from the question of can organisms perform Lévy flights to how and 
when they do47,48. Identification of generative mechanisms is, in fact, crucial because the key to prediction and 

Figure 3. Simulation data produced by the model (Eqn. 8) for 10 interacting individuals with 
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contain the swarm within a (one-dimensional) box of size 100 a.u. At each time-step 10 randomly chosen pairs 
of interactions were momentarily turned off. Complement of the cumulative frequency distribution for the 
distances travelled between consecutive turns in individual flight patterns together with the best-fit truncated 
power-law (red-line) and best-fit truncated exponential (blue-line). The maximum likelihood estimate for the 
power-law (Lévy) exponent is 2.49. The approximate power-law scaling is indicative of a Lévy flight.
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understanding lies in the elucidation of mechanisms underlying the observed patterns21. “Without an under-
standing of mechanisms, one must evaluate each new stress on each new system de novo, without any scientific 
basis for extrapolation; with such an understanding, one has the foundation for understanding”21. This sentiment 
was recently echoed by Stumpf and Porter49 who rightly noted that “a statistically sound power-law is no evidence 
of universality without a concrete underlying ‘generative mechanism’ to support it”.

Many biologically-plausible putative mechanisms have been identified for the generation of Lévy flight move-
ment patterns20; largely absent from the literature, however, has been evidence for general mechanisms that can 
operate across taxa. The prime candidates are chaos and multiplicative noise. It has been suggested that the Lévy 
flights of some snails and molluscs can be attributed to neuronal chaos14, and that Lévy flights of swarming bac-
teria can be attributed to their chaotic flow dynamics7. Evidence for the multiplicative noise pathway remains 
elusive, although there is some suggestion that it may operate in some unicellular organisms50. Here we provided 
theoretical evidence that multiplicative noise and incumbent Lévy flights may arise naturally within swarms, as a 
mathematical consequence of swarm dynamics.

A hallmark of multiplicative noise is a heavy-tailed velocity distribution25,26. And in this regard it is interesting 
to note that heavy-tailed velocity distributions have been found to characterize movements of cells in cell aggre-
gates, as well as inert particles in granular matter51–53. Cell movements within cell aggregates are also anomalous 
rather than Brownian with Lévy-like characteristics51.

A precursor of our findings can be found in Matsuo et al.54, who showed that the movement patterns of par-
ticles that deform as they propagate can be modelled by the Langevin equation driven by multiplicative noise. 
They thereby showed how Lévy flights can result from a coupling between deformation and centroid movements. 
Matsuo et al.54 noted rightly that their model of ‘active deformable particles’ could find application in the model-
ling of cell locomotion. Most eukaryotic amoeboid cells, for example, show centroid movement accompanied by 
large morphological deformations55, and there are indications that such cells perform Lévy walks50. Nonetheless, 
the model of Matsuo et al.54 could also describe collective movements of cohesive groups, a possibility which 
until now has not been explored. Swarms may in fact provide a more natural setting for the model of Matsuo  
et al.54 as they can undergo continuous, significant deformation. Another antecedent of our findings can be found 
in Reynolds and Geritz56 who predicted that fission-fusion dynamics, which are seen for instance in some cell 
aggregates, can result in multiplicative noise and Lévy flights.

Our findings go beyond those of Matsuo et al.54 by describing both individual movements within a swarm, 
and swarm centroid movements, and we go beyond those of Reynolds and Geritz56 by breaking free from the 
reliance of fission-fusion for the emergence of Lévy flights. Our findings thereby open a new window on Lévy 

Figure 4. Distributions of horizontal displacements between consecutive reversals for single midges, and 
swarms with 10, 20, 32, 65 and 95 individuals (•) together with the best fit exponentials (blue lines), best fit 
exponentially-truncated power-laws (green lines) and the best fit power-laws (red line). 
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flights as models of movement patterns and provide a new perspective on swarming. The occurrence in swarms 
of Lévy flights is accidental, but may not be without consequence. It could, for example, be of advantage to the 
male midges when attempting to locate females that have been attracted to the swarm. And the emergence of 
swarm-centroid movements with Lévy characteristics could benefit the swarm as a whole. In this regard it is inter-
esting to note that the effectiveness of particle swarm optimization codes, a computational approach to solving 
optimization problems, increases when “individuals” have been programmed to Lévy fly57. These advantageous 
properties stand apart from the contentious Lévy flight foraging hypothesis, in that those assumptions pertain to 
lone, selfish searchers. Our findings suggest that the programming for within-swarm Lévy flights does not need 
to be very sophisticated or clever on the individual’s part, as Lévy flight patterns can be derived directly from the 
swarm dynamics.
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