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Enhancement of recombination 
process using silver and graphene 
quantum dot embedded 
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Nhu Thuy Ho1, Huynh Ngoc Tien2, Se-Joeng Jang1, Velusamy Senthilkumar1, Yun Chang Park3, 
Shinuk Cho1 & Yong Soo Kim1

High performance of organic tandem solar cell is largely dependent on transparent and conductive 
intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple 
solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-
butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfo
nate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell 
efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum 
dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute 
to a better recombination process. Also, the performance of the tandem cell was solely based on the 
electrical improvements indicated by the current - voltage measurements, external quantum efficiency 
and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of 
electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more 
efficient tandem solar cells.

Organic polymer solar cell is an emerging photovoltaics (PVs) technology with promising properties due to its 
portability, ultralight, flexibility, transparency, cost-effectiveness and large-area manufacturing compatibility1–3. 
Over the decades, intensive research has focused on organic photovoltaic cells (OPVs) for development of the 
cell efficiencies in various approaches such as the combination of photoactive material design4–7, morphology 
control8, and interface engineering9–11. Consequently, the efficiency of OPVs has been boosted up to ~10%12. 
However, the spectrally limited absorption nature of the organic donor materials and low charge carrier mobility 
results in relatively poor short-circuit current density (Jsc) of PVs1–5. An increase in the Jsc of OPVs can be easily 
achieved by the use of ternary or multicomponent donor-acceptor systems that broaden the absorption spectra of 
the organic semiconductors13,14. Another drawback limiting the overall cell efficiency of OPVs is low open-circuit 
voltage (Voc). Recent studies have reported on the use of semiconductors with high dielectric constant to reduce 
the thermalization loss to a certain extent15.

To overcome these issues, another approach has been proposed, known as the tandem cell concept, which 
stacks two or more cells with complementary absorption spectra in series or parallel connections. The tandem cell 
structure was found to be a solution to both the Jsc related absorption losses as well as Voc related thermalization 
issues16,17. Using this concept, numerous organic tandem solar cells were designed with efficiency up to 11%18. For 
a tandem solar cell, choosing an intermediate layer (IML) that connects the two sub-cells in a series-connected 
sequence of a hole-transporting layer (HTL) and an electron-transporting layer (ETL) is a critical consideration 
for the device performance. To realize high performance tandem cells, an efficient and reliable IML is manda-
tory19. Charge recombination process at this layer should be efficient to maximize the Voc and fill factor (FF).
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The commonly used IML layers in the organic tandem solar cells that comprised of both high and low 
work-function components, such as LiF/Al/Au/PEDOT:PSS20, LiF/Al/MoO3

21, MoO3/Al/ZnO22, MoO3/Ag/Al/Ca23,  
or Al/TiO2/PEDOT:PSS24 require high vacuum for the synthesis of certain IML layers. The recently reported 
solution-processed IML layers containing PEDOT:PSS/ZnO25 for inverted tandem cells, and ZnO/PEDOT:PSS26 
and TiOX/PEDOT:PSS27 for conventional tandem cells have been a success to a certain limit. Moreover, all 
solution-processed IMLs are highly desirable for large-area solar cell fabrication. In addition, the use of crystal-
line inorganic materials results in less mechanical flexibility. Also, the difference between the work function of 
the widely used HTL of the PEDOT:PSS and ETL of metal oxides is less than approximately 0.6 eV, thus limiting 
the use of photoactive materials for the assembly of tandem solar cells. Hence, interfacial engineering problems 
related to IMLs is a crucial factor in obtaining high efficiency tandem solar cells.

Concerning the above issues, we report on a study the design and fabrication of an all solution-processed 
tandem cell structure with poly (3-hexylthiophene): phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as an 
active layer in both front and rear sub-cells and PEDOT:PSS/PEI as an IML. Poly(3,4-ethylenedioxythiophene) 
:poly(styrenesulfonate)/poly(ethylenimine) (PEI) was recently introduced as a powerful ETL for its adjustable 
work function, formation of tunnel junction, and a strong connection with the PEDOT:PSS material due to 
deprotonated sulfonic acid28,29. Also, to further enhance the recombination process, semitransparent and highly 
conductive silver nanoparticles (Ag-NPs) and graphene quantum dots (G-QDs) were incorporated between the 
layers of IML for efficient collection of the holes and electrons from the sub-cells with no potential loss. A system-
atic study on the different sizes of Ag-NPs was probed was performed. Intensity modulated photocurrent/voltage 
spectroscopic (IMPS/IMVS) studies were then performed to compare the recombination time and transit time of 
the tandem solar cells without and with Ag-NPs in the IML.

Results
The optical properties of the as-synthesized Ag-NPs and G-QDs dispersed in ethanol were examined. Figure 1(a) 
shows the absorption results of the three different sizes of Ag-NPs analyzed in the spectral range of 300 to 800 nm. 
The sharp peak in the absorption spectra of around 400 nm indicates that the prepared Ag-NPs are uniform in 
size distribution. The absorption peak slightly red shifted towards the higher wavelength with an increase in 
particle size. An absorption spectrum of metal NPs may be described as a result of the intra-band excitations of 
conduction electrons from the lowest energy state to higher energy state within the conduction band of metal 
NPs30,31. In addition, photoluminescence (PL) studies were performed for these Ag-NPs at room temperature 
(RT). However, no luminescence was observed. Although some studies have reported on the PL on silver clusters 
in a certain matrix at a very low temperature32, it should be noted that systematic works on the PL of Ag-NPs 
at RT were very weak33. The absorption spectrum of G-QDs clearly showed that there was no absorption in the 
wavelength range of 300–800 nm, while the PL showed a peak at 423 nm (Fig. 1(b)). It is important to notice that 
the peak of PL shifted slightly according to the concentrations of G-QDs. This might be due to the stacking of the 
G-QDs at a higher concentration.

The transmission electron microscopy (TEM) images of Ag-NPs synthesized with three different sizes using 
the Lee-Meisel method are shown in Fig. 2(a–c). The average particle sizes of Ag-NPs, which were estimated from 
the TEM images, were 7, 20, and 30 nm, respectively. To confirm the uniform size distribution of the Ag-NPs, 
these NPs were spin-coated on Si substrate. The AFM measurements for these samples clearly indicated that the 
Ag-NPs were well distributed on the whole substrate (see SI, Figure S1 and Figure S2). The low-magnification 
TEM image of G-QDs is shown in Fig. 2(d). The average particle size was found to be around 4 nm. In addition, 
these characterized Ag-NPs and G-QDs were embedded in IML of PEDOT: PSS/PEI to improve the efficiency of 
the organic tandem solar cell.

The schematic diagram, its cross-sectional TEM image and band alignment of the proposed device struc-
ture are as shown in Fig. 3(a–c). The step profile of each layer in Fig. 3(b) was clearly observed by focused ion 
beam-TEM measurements. The device consisted of two combined sub-cells, the front and rear cell connected in 

Figure 1. (a) UV-Vis absorption spectra of Ag-NPs, (b) UV-Vis absorption (red curve) and PL spectrum (blue 
curve) of G-QDs.
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a series by Ag-NPs embedded IML of PEDOT: PSS/PEI. The PEDOT: PSS acted as an HTL whereas the PEI layer 
served as an ETL. In addition, a thick PEDOT: PSS (63 nm) layer was used on the top of the front cell to protect 
the front cell layer from damage during fabrication of the rear cell.

To examine the influence of Ag-NPs, current density–voltage (J-V) measurements were performed for the 
Ag-NPs inserted tandem device under 1.5 AM illumination as shown in Fig. 4(a). For better understanding, the 
single and tandem cells, with and without Ag-NPs were measured and the results are shown in a Table 1. The 
maximum cell efficiency and the Voc of the tandem cell without Ag-NPs reached to 3.40% and 1.15 V, respectively. 
These results clearly indicated that PEDOT:PSS and PEI can also serve as a good IML even without Ag-NPs. 
For the tandem device with Ag-NPs there was a significant improvement in FF and Jsc, which increased from 
47% to 51% and 6.31 to 6.91 mA/cm2, respectively. The enhancement ratio of the two values was around 10%. 
Consequently, the photocell convergence efficiency (PCE) was thus increased from 3.40% to 4.03%. The shunt 
resistance (Rsh) increased from 4280 to 4990 Ω .cm2, whereas the series resistance (Rs) decreased from 41.8 to 
34.7 Ω .cm2. For further confirmation, a single cell was constructed with Ag-NPs (ITO/PEDOT:PSS/Ag-NPs/PEI/
P3HT:PCBM/PEDOT:PSS/Ag), and its parameters were compared to those of the inverted single cell without 
Ag-NPs. From these results, only the FF of the single cell with Ag-NPs increased, thus the cell’s FF value was 
directly affected by the photocell’s series and shunt resistances values. Hence, an increase in the Rsh and a decrease 
in the Rs lead to a higher FF, thus resulting in an enhancement of efficiency to 18% in the Ag-NPs inserted tandem 
device, which can be attributed to the better electrical properties of the device structure.

Further, we investigated the different sizes of Ag-NPs embedded in the IML of the same tandem cell structure 
and the results are presented in supporting information (see Figure S3). On increasing the particle size, the Jsc 
value increased from 6.9 to7.8 mA/cm2 due to the enhancement of plasmonic effects. However, the Voc value 
showed a drastic decrease and the J-V curve changed to S-shape. It could be possibly due to the lesser thickness 
of the PEI layer (10 nm) which cannot uniformly cover large sized Ag-NPs. This in turn leads to direct contact of 
the Ag-NPs with the active material. Hence, an IML layer is very important in a tandem cell as it connects the two 
sub-cells in a series, and is directly related to the Voc values. This is the reason that smaller sized Ag-NPs (7 nm) 

Figure 2. (a) TEM image of Ag-NPs of 10 nm, (b) 20 nm, (c) 30 nm and (d) G-QDs. Inserted in (d) high 
resolution images and its diffraction pattern.
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inserted into tandem cells show higher efficiency when compared to the larger sizes. The maximum Voc value was 
obtained at a lower concentration of Ag-NPs at 0.01 mg/ml (see Figure S4).

Figure 3. (a) Schematic of a tandem organic solar cell based on P3HT:PCBM active layer, (b) cross-sectional 
TEM image of the device (FIB method), and (c) band alignment of the device.

Figure 4. (a) Current density-voltage characteristic and (b) External quantum efficiency of single and tandem 
OSC devices.
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Discussion
A similar approach was applied to tandem OSC by using semiconductor G-QDs instead of Ag-NPs. The obtained 
results are shown in Table 2. However, the cell efficiency of the G-QDs inserted tandem cell was slightly lower 
than that of the Ag-NPs inserted tandem cell. A G-QDs spin-coated at a concentration of 5 μ g/ml showed slight 
improvement in FF and Jsc values. Thus, the cell efficiency increased from 3.40 to 3.72%. The lower efficiency with 
G-QDs when compared to Ag-NPs may be due to the dangling bond of passivated hydrogen of PEI during the 
fabricating process34. In addition, a thicker layer of G-QDs leads to a decrease in device efficiency due to lower 
conductivity between localized quantum dots.

Further, EQE of the optimized tandem cell with a 10 nm Ag-NPs inserted device was measured. The com-
parative results of EQE for single as well as tandem cell, with and without Ag-NPs are as shown in Fig. 4(b). 
The EQE of the tandem cell was estimated by multiplying the absorption of the tandem cell (under reflection 
mode) by the internal quantum efficiency (IQE) of the single-junction cell35. Noticeably, there was no significant 
change in the single cell, with and without Ag-NPs in the wavelength range of 300–800 nm. This may be due to 
the light absorption and plasmonic effect of Ag-NPs that are limited by the use of small sized Ag-NPs as well as 
low concentration. In the previous reports on use of various size controlled Ag-NPs in organic solar cells36,37, 
the plasmonic forward scattering effect was tuned by the size of Ag-NPs. According to these studies, Ag-NPs of 
~60 nm in size and at optimized concentration showed maximum PCE enhancement. The small sized Ag-NPs 
have been demonstrated to show a very weak plasmonic effect. Thus, in the current study Ag-NPs of 7 nm did not 
influence the device performance based on its plasmonic effect. Based on these results it was concluded that the 
enhancement of EQE in the tandem device was not related to an optical effect.

Previous work on organic tandem solar cells demonstrated that insertion of a small-size metal cluster 
between the sub-cells has two major functions: (1) serving as recombination centers for unpaired charges that 
are photo-generated in the device’s interior and (2) inducing a strong near-field to enhance the absorption of the 
active layer38. It can be presumed that insertion of Ag-NPs induces “dopant” levels between PEDOT:PSS and PEI, 
and introduces new surface recombination centers inside the IML.

To examine the device properties in detail, light intensity modulated photocurrent/voltage spectroscopy39 was 
performed on the device, with and without Ag-NPs. The IMVS and IMPS results obtained under illumination of 
a red LED light (635 nm) are shown in Fig. 5(a,b). The calculated recombination time (τr, from IMVS) and transit 
time (τt, from IMPS) for the tandem cells without Ag-NPs were 63.4 μ s and 8.95 μ s, respectively. For the tandem 
cell with the Ag-NPs layer, τr and τt were calculated as 356.3 μ s and 3.17 μ s, respectively. From the results, the τt of 
the tandem cell with Ag-NPs was not significantly affected by Ag-NPs, whereas the life-time of the electron-hole 
pair was significantly increase. It can be explained by the additional Ag-NP layer that builds up effective recombi-
nation sites in IML thus leading to less accumulation of photo-excited charges at the active interface. Figure 5(c,d) 
shows the dark J-V curve and impedance data of the tandem cell, with and without Ag-NPs. The J-V characteris-
tics are primarily determined by Rsh at a low voltage region (0–1 V), and by Rs at a higher voltage region (1–1.5 V). 
Here, the tandem cell showed obvious diode properties. A shunt current approaching zero in the lower voltage 
region along with a steep slope in a higher voltage region indicates that the resistance of the multilayer structure 
has been modified by introduction of the Ag-NPs layer. This is consistent with the results for calculated resistance 
obtained from J-V measurement under bright condition. In addition, as shown in Fig. 5(d), reduction of whole 
tandem system impedance from 35 kΩ  back to 8 kΩ  confirmed the electrical domination of modified IML on 
performance parameters. These results showed that the recombination nature of IML was effectively enhanced 
by the insertion of the Ag-NP layer. Yet, considering the capability of application of such different active material, 
the proposed architecture stands a chance of improving the Ohmic contact of IML by a simple solution process.

To summarize, we have studied an efficient IML embedded with Ag-NPs and G-QDs to enhance the Jsc 
and FF of organic tandem solar cells. The impedance of the whole device was decreased by 77% and shunt 
resistance increased by 15% in the presence of the Ag-NPs. Consequently, efficiency of P3HT:PCBM based 
homo-tandem cell was enhanced from 3.40% to 4.03%. To the best of our knowledge, this is one of the highest 

Sample Jsc (mA/cm2) Voc (V) FF (%) ƞ (%) Rs (Ω·cm2) Rsh (kΩ·cm2)

Single cell w/o Ag-NPs 8.93 0.58 0.60 3.10 9.69 4.13

Single cell w Ag-NPs 9.00 0.58 0.62 3.23 10.3 5.32

Tandem cell w/o Ag-NPs 6.31 1.15 0.47 3.40 41.8 4.28

Tandem cell w Ag-NPs 6.91 1.15 0.51 4.03 34.7 4.99

Table 1.  Device parameters of tandem OSC with and without Ag-NPs.

Sample Jsc (mA/cm2) Voc (V) FF (%) ƞ (%) Rs (Ω·cm2) Rsh (kΩ·cm2)

Single cell w/o G-QDs 8.46 0.58 0.60 2.94 10.9 4.51

Single cell w G-QDs 8.95 0.58 0.61 3.15 10.6 5.07

Tandem cell w/o G-QDs 6.28 1.15 0.47 3.38 50 4.17

Tandem cell w G-QDs 6.61 1.15 0.49 3.72 45 4.80

Table 2.  Device parameters of tandem OSC with and without G-QDs.
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efficiency P3HT:PCBM based solar devices. The existence of “dopant” levels between PEDOT:PSS and PEI and 
inducing surface recombination centers inside the IML are attributed to causing noticeable change in electrical 
properties of the device. A better Ohmic contact between two sub-cells is predicted to lengthen the life-time of 
photo-generated electron-hole pairs by reducing accumulated charges surrounding IML. The simple but effective 
modification of a commonly used IML structure shows its capability of application to various other polymer 
materials and open up opportunities for reaching highly efficient tandem solar cells.

Methods
Synthesis of Ag nano-particles. Synthesis of Ag-NPs was performed using the Lee-Meisel method40. 
The chemicals silver nitrate (AgNO3), sodium borohydride (NaBH4), and trisodium citrate dihydrate 
(C6H5Na3O7·2H2O) were purchased from Shanghai Sinopharm Chemical Reagent Co., Ltd. (China) and used as 
received. The glassware was cleaned using a solution of HCl:HNO3 in a 3:1 ratio (v/v) and rinsed with deionized 
(DI) water prior to the experiments. Following addition 20 mL of 1% (w/v) citrate solution and 75 mL of DI water 
to a round bottom flask, the mixture was heated to 70 °C for 15 min. Then, 1.7 mL of 1% (w/v) AgNO3 solution 
was added to the mixture followed by rapid addition of 2 mL of 0.1% (w/v) freshly prepared NaBH4 solution. 
The reaction solution was kept at 70 °C under vigorous stirring for 1 h and cooled to room temperature. The final 
volume was made up to 100 ml with DI water. The resulting Ag-NPs solution was centrifuged at 10000 rpm for 
30 minutes. Stepwise growth was used to obtain a larger size of Ag-NPs; 2 mL of 1% citrate solution was mixed 
with 75 mL of DI water and then brought to boiling using a heating mantle for 15 min. Next, 10.0 mL of starter 
seed solution was added while vigorous stirring, followed by addition of 1.7 mL of 1% AgNO3 solution. Vigorous 
mechanical stirring was continued for 1 h. In the next step, 2 mL of 1% citrate solution and 1.7 mL of 1% AgNO3 
solution were dropped into the reaction solution. Reflux with vigorous stirring continued for an additional one 
hour, and then the reaction solution was cooled to room temperature. Water was added to bring the volume up 
to 100 mL. The size of resulting Ag-NPs was approximately 20 nm. To obtain 30 nm Ag-NPs, one more step was 
added using the same operation. Resulting Ag-NPs solutions then were centrifuged at 10000 rpm.

Synthesis of graphene quantum dots. G-QDs were synthesized by carbonization of citric acid (CA, 99%, 
Sigma-Aldrich) with ammonia through hydrothermal treatment41; 80 ml of a CA aqueous solution (100 mg/ml)  
and a 20 ml (30%) ammonia aqueous solution and were heated at 180 °C in a Teflon-lined autoclave for 24 h. After 
cooling to room temperature, pH of the light yellow G-QDs solution was adjusted to 8 by additional of NaOH 
solution (1 mg/ml) dropwise. The G-QDs solution was then dialyzed in dialysis tubing (3000 Da, Spectrum Lab. 

Figure 5. (a) IMVS at open-circuit condition, (b) IMPS at Voc, (c) semi-log plot of dark current density-voltage, 
and (d) Nyquist plot of the impedance of tandem OSC according to with and without Ag-NPs.
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Inc.) against DI water for 4 h for removal of impurities and excess ammonia. The aqueous suspension of G-QDs 
was then centrifuged at 10000 rpm for removal of any conglomerate.

Single junction device fabrication. The chemicals, PEI (Aldrich, 50 wt% in H2O), P3HT (Merck), PCBM 
(EMS index), PEDOT:PSS AI4083 and PEDOT:PSS Clevios P (Heraeus) were used as received. The pre-cleaned 
indium tin oxide (ITO) substrates were first treated with UV-ozone for 1 hour. PEI solution (0.1 wt% diluted in 
iso-propanol) was spin-coated at 5000 rpm on the ITO substrates and dried at 100 °C. P3HT:PCBM (1:1) was 
dissolved in 1,2-dichlorobenzene at a concentration of 13.1 mg/ml and was then spin coated on the PEI surface. 
Prior to the spin-coating of the active layer, the solution was heated at a range of 60–80 °C for 2 h to improve the 
solubility, and then the diluted PEDOT:PSS (Al 4083) in iso-propyl alcohol (IPA) (1:6) was spin coated on the 
active layer. Finally, the samples were transferred into the evaporation chamber for fabrication of the Ag electrode 
with a device area of 0.13 cm2.

Tandem devices fabrication. The front cell was constructed according to the single junction procedure 
with ITO/PEI/P3HT:PCBM, followed by spin coating a layer of diluted PEDOT:PSS in iso-propyl alcohol (1:7). 
This PEDOT:PSS layer was used to modify the surface of the active layer. Another layer of PEDOT:PSS was spin 
coated at 5000 rpm. The sample was annealed at 140 °C for 10 minutes and Ag-NPs solution (0.01 mg/ml in eth-
anol) was spin coated at 2000 rpm on the surface of the PEDOT:PSS layer. Subsequently, the rear cell was also 
fabricated with PEI/P3HT:PCBM. Thicknesses of the active layer were controlled by the speed of spin coating 
process. After a while, the samples were spin coated with diluted PEDOT:PSS in IPA (1:6) and transferred into the 
evaporation chamber. Finally, an Ag metal electrode of 100 nm thickness was deposited through a shadow mask 
with a device area of 0.13 cm2.

Device Characterization. Atomic force microscopy (AFM; Dimension 3100, Veeco) and NIR-UV-VIS 
spectrometer (Carry 500, Varian) were used to observe the size of Ag-NPs. IMVS and IMPS measurement were 
carried out using impedance analyzer (AviumStat, IVIUM Tech), which measure the optoelectronic frequency 
response in the frequency range of 1 M Hz down to 1 Hz with a LED light source (IVIUM Tech., ModuLight) in 
the air and room temperature. The LED (λ  =  635 nm) provided both the DC and AC components of the illumi-
nation, where the modulation depth of the AC component superimposed on the DC light was 10%. The light 
intensity was 0.86 mW/cm2, which was measured silicon photodiode. IMPS and IMVS were obtained under 
short-circuit and open-circuit condition, respectably. J-V characteristics of photovoltaic cells were taken using 
a Keithley 2400 source measure unit under a simulated AM1.5G spectrum, with an Oriel 9600 solar simulator. 
During the measurement, each finger was absolutely isolated by scratching surrounding films around the devices 
to avoid parasitic current. External quantum efficiencies (EQE) were measured using the PV measurement system 
in ambient pressure. The total absorption of the device was evaluated by measuring reflection (R) of the device 
and the absolute absorption of the device was calculated by (100−R)%. The reflection was performed using a 
NIR-UV-Vis spectrometer with a reflection accessory.
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