
1Scientific RepoRts | 6:30295 | DOI: 10.1038/srep30295

www.nature.com/scientificreports

Bimetallic Metal-Organic 
Frameworks for Controlled 
Catalytic Graphitization of 
Nanoporous Carbons
Jing Tang1,2, Rahul R. Salunkhe1, Huabin Zhang1, Victor Malgras1, Tansir Ahamad3, 
Saad M. Alshehri3, Naoya Kobayashi4, Satoshi Tominaka1, Yusuke Ide1, Jung Ho Kim5 & 
Yusuke Yamauchi1,2,5

Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal 
ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon 
materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single 
MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield 
graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled 
catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method 
to achieve nanoporous carbon materials with tailored properties, including specific surface area, 
pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-
derived nanoporous carbon are systematically characterized, highlighting the importance of precisely 
controlling the properties of the carbon materials. This can be done by finely tuning the components in 
the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications.

Hybrid nanoporous carbon materials with controllable pore sizes, shapes, and surface properties have attracted 
considerable attention for the development of next-generation high performance electronic devices. Up to now, 
various types of carbon materials with different dimensionality (D), such as carbon-onions (0-D)1, carbon nano-
tubes (1-D)2, graphene (2-D)3, activated carbons (3-D)4, and templated carbons (3-D)5, have been explored exten-
sively. The advantageous properties, such as suitable pore size distribution6–8, large specific surface area9, high 
electrical conductivity10, and doped heteroatoms11, are favorable for energy conversion and storage applications. 
Practical improvements related to a specific property causes, however, the performance associated to other prop-
erties to decrease. Thus, the rational design and synthesis of hybrid carbon materials with controlled physical and 
chemical properties is still a challenge and is of great interest from the viewpoint of synthetic chemistry.

In recent years, metal-organic frameworks (MOFs) have been scrutinized as convenient precursors for pre-
paring diverse porous-carbon-based materials12,13 or metal oxides14,15, due to their regular nano-architecture con-
structed from various metal ions/clusters and organic ligands. Even though great progress has been made in using 
MOFs as precursors, the properties of the resulting porous carbons or metal oxides are limited by using only 
simple MOFs. As a subfamily of MOFs, zeolitic imidazolate frameworks (ZIFs), constructed from the coordina-
tion between zinc (Zn2+) or cobalt ions (Co2+) and imidazolate-type linkers16, have proved to be great candidates 
for fabricating morphology-inherited porous carbon materials. The zinc-based ZIF (ZIF-8) or cobalt-based ZIF 
(ZIF-67) derived carbons exhibit many advantageous properties, along with specific limitations. In detail, nan-
oporous carbons derived from the typical single-metal ZIFs composed of zinc ions (e.g., ZIF-8) usually possess 
a microporous structure, large specific surface area, and high degree of nitrogen doping, but also a low degree 
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of graphitization17. On the other hand, nanoporous carbons derived from the single-metal ZIFs composed of 
cobalt ions (e.g., ZIF-67) generally possess a mesoporous structure and a high degree of graphitization, but a low 
specific surface area and nitrogen content18. These examples suggest that having only a single type of metal ions 
in the ZIFs comes with both advantages and disadvantages. In contrast to zinc, cobalt is able to catalytically pro-
mote the graphitization of amorphous carbon at high temperature, but at the expense of decreasing the surface 
area19 and concentration of doped heteroatoms20,21. Therefore, it is desirable to combine the advantages of zinc 
and cobalt ions in one single crystal (bimetallic ZIFs) in order to achieve porous carbon materials with tailored 
functionalities.

According to our previous research, ZIF-8 (Zn(MeIm)2, MeIm =  2-methylimidazolate) and ZIF-67 
(Co(MeIm)2) are highly compatible due to their isoreticular structure and similar lattice parameters16,22. As a 
result, our group successfully synthesized core-shell ZIFs (ZIF-8 @ ZIF-67) by using ZIF-8 as seeds and further 
coating with ZIF-67 via epitaxial growth23. The fabrication of hetero-bimetallic ZIFs was also recently achieved 
via the co-precipitation of zinc and cobalt ions with MeIm24,25. Unlike the single-metal ZIFs, which only contain 
zinc or cobalt ions, here the zinc and cobalt ions coexist indiscriminately in the bimetallic ZIFs. As mentioned 
above, the zinc and cobalt ions exhibit different functionalities during carbonization. The MeIm coordinated 
with zinc ions can be converted into nitrogen doped carbons, and the micropores formed between the MeIm 
and zinc ions can be mostly retained. In contrast, the MeIm coordinated with cobalt ions tends to yield graphitic 
carbon, while sacrificing the microporosity and doped nitrogen. Considering this background, in the present 
work, we study the synthesis of nanoporous carbons using bimetallic ZIFs as precursor. The properties of the 
bimetallic-ZIF-derived carbons, including the specific surface area, porosity, degree of graphitization, and nitro-
gen doping, are precisely controlled by finely tuning the composition of the bimetallic ZIF precursors.

Results and Discussion
A series of bimetallic ZIFs were prepared by reacting Co2+and Zn2+ ions with 2-methylimidazolate (MeIm) in 
methanolic solution. The proposed crystal structure of bimetallic ZIFs is shown in Fig. 1a, which is formed by 
the mixed-coordination of MeIm with Zn2+ and Co2+, respectively, based on the nets of ZnN4

16 or CoN4
22 tetra-

hedra. The bimetallic ZIF crystals are denoted as Cox·Zn1−x(MeIm)2, where x/1− x represent the corresponding 
initial molar ratio of Co2+/Zn2+ used for the synthesis, as listed in Table 1. It should be noted that ZIF-8 crystals, 
only consisting of zinc ions, are white. When the zinc ions are replaced by cobalt ions, the color of the obtained 
bimetallic ZIFs gradually changes from white to pink, lavender, and ultimately to purple (ZIF-67), as illustrated 

Figure 1. (a) Schematic illustration of the crystal structure of the bimetallic ZIFs (Cox·Zn1−x(MeIm)2).  
(b) Photograph of ZIF-8, ZIF-67, and the bimetallic ZIF (Cox·Zn1−x(MeIm)2) crystals. The initial molar ratios 
of Co2+/Zn2+ for the synthesis of each bimetallic ZIF is shown on top of the bottles in the form of an irreducible 
fraction. (c) TEM image, (d) elemental mapping, and (e) SEM image of the Co0.1·Zn0.9(MeIm)2.

Sample ICP determined molar ratio of Co2+/Zn2+ Feeding molar ratio of Co2+/Zn2+

Co0.05·Zn0.95(MeIm)2 0.027 0.053

Co0.1·Zn0.9(MeIm)2 0.065 0.111

Co0.33·Zn0.67(MeIm)2 0.356 0.500

Co0.67·Zn0.33(MeIm)2 1.886 2.000

Table 1.  Summary of the molar ratios of Co2+/Zn2+ in bimetallic ZIFs.
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in Fig. 1b. The metal content in each bimetallic ZIF sample was precisely determined by inductively coupled 
plasma (ICP) analysis. As summarized in Table 1, the actual molar ratio of Co2+/Zn2+ is slightly less than the 
feeding molar ratio used for the synthesis, implying that the coordination interaction between zinc and MeIm is 
stronger than that between cobalt and MeIm. The successful preparation of bimetallic ZIFs by incorporation of 
Zn2+ and Co2+ into one crystal are directly demonstrated by transmission electron microscopy (TEM) and ele-
ment mapping. As shown in Fig. 1c,d, the zinc and cobalt species coexist and are dispersed uniformly throughout 
the bimetallic Co0.1·Zn0.9(MeIm)2 crystals. The adjustable molar ratio of Co2+/Zn2+ in the other bimetallic ZIFs 
samples is also confirmed by elemental mapping (Figure S1). As discussed above, ZIF-8 and ZIF-67 are compati-
ble thus, the resulting bimetallic ZIFs inherit the topology from both parent structures. According to the powder 
X-ray diffraction (XRD) patterns (Figure S2), the diffraction peaks of the bimetallic ZIFs match well with the 
single-metal ZIF-8 and ZIF-67. The absence of shifted peaks reflects the crystal compatibility between the parent 
structures as the lattice seems not to suffer from any distortions. The SEM images in Fig. 1e and Figure S3b–e 
show that the series of bimetallic ZIFs have a rhombic dodecahedral shape identical to single-metal ZIF-8 and 
ZIF-67 (Figure S3a,f).

In order to investigate the effect of the Co2+/Zn2+ molar ratio on the degree of graphitization, specific surface 
area, and pore size distribution of the bimetallic-ZIF-derived carbon, the series of bimetallic ZIFs were carbon-
ized at an elevated temperature. As shown in the thermogravimetric (TG) curves (Figure S4), the thermal stability 
of bimetallic ZIF crystals under a N2 atmosphere gradually becomes lower along with the increased Co2+/Zn2+ 
ratios, which corresponds to the decreased thermal stability from single-metal ZIF-8 to ZIF-67. The weight of 
ZIF-8, ZIF-67, and bimetallic ZIF (Cox·Zn1−x(MeIm)2) crystals decreases rapidly as the temperature increases, 
ultimately yielding to ~50 wt% at 900 °C. During heat treatment under inert atmospheres, most the organic link-
ers thermally converted into the carbon matrix, while some parts also decomposed and evaporated as small 
molecules. The porous carbon materials derived from the bimetallic ZIFs (Cox·Zn1−x(MeIm)2) are labelled as C-y 
(y =  x/1− x). C-ZIF-8 and C-ZIF-67 are also prepared for comparison by respectively using single-metal ZIF-8 
and ZIF-67 as the precursors. As shown in the SEM images (Fig. 2a–f), all of the carbon materials kept the rhom-
bic dodecahedral morphology inherited from the parent ZIFs. It is worth mentioning that the surfaces of C-ZIF-
8, C-1/19, and C-1/9 are smooth (Fig. 2a–c). When the molar ratio of Co2+/Zn2+ increases above 1/2, however, 
the derived carbon materials C-1/2, C-2/1, and C-ZIF-67 are found to have a rough surface and shrunken facets 
(Fig. 2d–f). A detailed characterization by TEM and high-resolution TEM reveals that the smooth samples of 
C-ZIF-8 and C-1/9 only consist of amorphous carbon (Fig. 2g–j) whereas the rough samples of C-2/1 and C-ZIF-
67 are composed of graphitic carbon sheets (Fig. 2k–n). These results suggest that the carbonized bimetallic ZIFs 
can be effectively graphitized in the presence of enough cobalt species, which explains the rough surface and 
distorted facets.

During carbonization, the MeIm from the bimetallic ZIF is converted into a carbon state and the coexisting 
Zn2+and Co2+ ions are thermally reduced to metallic Zn and Co nanoparticles, respectively. Incorporating cat-
alytic active transition metals into the carbon precursor (e.g. Fe, Ni, Co) has been demonstrated as an effective 
approach for catalytic graphitization of amorphous carbon via solid-state transformation process26,27. As a result, 
the MeIm organic linkers that surround the cobalt ions tend to be catalytically converted into graphitic carbon. 
However, the organic linkers that surround zinc ions tend to yield amorphous carbon because a part of the zinc 
evaporates during the high temperature treatment and the residual zinc nanoparticles have a weak catalytic gra-
phitization effect25. In other words, the degree of graphitization of C-y can be easily controlled by adjusting the 
molar ratio of Co2+/Zn2+ in the parent bimetallic ZIFs.

A close observation of the representative sample C-2/1 by high magnification SEM and TEM images (Figure S5)  
confirms the presence of thin graphitic carbon nanotubes grown on the surfaces of C-2/1. Although C-1/2 and 
C-ZIF-67 also consist of graphitic carbon, the presence of carbon nanotubes could not be observed (Fig. 2d,f). 
This suggests that there is an optimal ratio of Co2+/Zn2+ in the bimetallic ZIFs to favor the growth of carbon 
nanotubes under inert atmosphere only. In this case, the zinc species in the bimetallic ZIFs separates from the 
cobalt species and prevents the excessive growth of cobalt nanoparticles during carbothermal reduction of cobalt 
ions, resulting in the formation of abundant, dispersed, and catalytically active cobalt nanoparticles. At the same 
time, these cobalt nanoparticles are surrounded by a suitable amount of carbon atoms that will be effectively cat-
alytically converted to be carbon nanotubes28.

The degree of graphitization of carbon materials can be characterized by XRD and Raman spectra. As shown 
in Fig. 3a, the C-ZIF-8, C-1/19, and C-1/9 samples only exhibit two broad diffraction peaks at 23° and 44°, which 
are indexed to the (002) and (101) diffraction planes of amorphous carbon23. The broad diffraction peak at around 
23° shift slightly toward higher angles as the cobalt content is increased from C-ZIF-8 to C-1/19, and to C-1/9, 
indicating the gradual formation of graphitized carbon. In the case of C-1/2, C-2/1, and C-ZIF-67, which have 
higher ratios of cobalt, the (002) diffraction peak is observed at 26°, indicating highly graphitic carbon states28. 
These results confirm the importance of cobalt ions on the degree of graphitization in the bimetallic-ZIF-derived 
carbon. In addition, as revealed by the XRD patterns in Figure S6, the elevated calcination temperature from 800 
to 900 °C also is quite critical to promote the graphitization of carbon, thus helps to magnify the distinction of gra-
phitization degree in the series of bimetallic-ZIF-derived carbons in this study. The increased degree of graphiti-
zation from C-ZIF-8, to C-1/19, C-1/9, C-1/2, C-2/1, and C-ZIF-67 was further observed by Raman spectroscopy 
(Fig. 3b). Each carbon sample displays two vibration bands. The D band located at 1360 cm−1 corresponds to 
the vibrations of disordered carbon or defects, while the G band located at 1590 cm−1 is related to the vibrations 
of sp2-bonded graphitic carbon sheets29. The intensity ratio between the D and G band (ID/IG) provides a good 
insight on the degree of graphitization for comparative studies. As shown in Table 2, the value of ID/IG for C-ZIF-8,  
C-y, and C-ZIF-67 decreases with increasing the cobalt content in the bimetallic ZIF precursors, suggesting an 
improved graphitization.
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In addition to the diffraction peaks of carbon, C-1/2, C-2/1, and C-ZIF-67 display other intense diffraction 
peaks at 44° and 51°, which can be attributed to the (111) and (200) diffractions of face-centered-cubic metallic 
Co nanoparticles (Fig. 3a). The average size of the Co nanoparticles is estimated to be 9.2, 11.8, and 11.9 nm for 
C-1/2, C-2/1, and C-ZIF-67, respectively, by using the Scherrer equation30. Although most of the cobalt nanopar-
ticles in the carbon matrix can be removed via acid etching to form the pores, a small fraction of Co nanoparticles 
wrapped in circular graphitic carbon layers which formed during the catalytic graphitization, are protected from 
acid erosion and kept embedded in the carbon matrix31,32. The spatial distribution of carbon, nitrogen, and cobalt 
was detected by elemental mapping (Figure S7). Zinc completely disappeared from each carbon sample, and 
cobalt was also rarely observed. Even when the ZIFs containing high content of Co ions are used as the precur-
sor, the resulting cobalt content is only 2.15 wt% and 1.90 wt% in C-2/1 and C-ZIF-67, respectively. From CHN 
analysis, it is found that the level of doped nitrogen (relative weight ratio of nitrogen to carbon) is 24.0, 23.4, 23.0, 
6.2, 3.5, and 2.7%, for C-ZIF-8, C-1/19, C-1/9, C-1/2, C-2/1, and C-ZIF-67, respectively. This confirms that the 
nitrogen heteroatoms, originating from the MeIm organic linker, are preserved in the carbon matrix after the high 
temperature treatment. However, the content of nitrogen decreases along with the increased cobalt ratios in the 
bimetallic ZIF precursors which is probably due to the breakdown of C-N bond during the catalytically graphiti-
zation promoted by cobalt nanoparticles.

The porosity of the carbon samples was investigated by N2 adsorption-desorption isotherms. The sharp nitro-
gen uptake at low relative pressure stage (P/P0 <  0.05) is generally attributed to the strong nitrogen adsorption 
into micropores. As shown in Fig. 3c, the C-ZIF-8, C-1/19, and C-1/9 samples exhibit a much higher nitrogen 
uptake at low relative pressure compared with the C-1/2, C-2/1, and C-ZIF-67 samples, indicating higher micr-
oporosity. All of the samples have gradual nitrogen uptakes in the middle relative pressure range from 0.3 to 0.9, 

Figure 2. SEM images of the (a) C-ZIF-8, (b) C-1/19, (c) C-1/9, (d) C-1/2, (e) C-2/1 and (f) C-ZIF-67. TEM 
and high-resolution TEM images of the representative samples (g,h) C-ZIF-8, (i,j) C-1/9, (k,l) C-2/1 and (m,n) 
C-ZIF-67. The insets in (k,m) show higher magnification images of the edges.
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implying the presence of mesopores with wide size distributions. Unlike C-ZIF-8, C-1/19, and C-1/9, the C-1/2, 
C-2/1, and C-ZIF-67 samples display a clear hysteresis loop, which is generally due to presence of abundant, 
random, bumpy, and non-uniform mesopores33. The pore size distributions (Fig. 3d), calculated by the density 
functional theory (DFT) method, further prove that the pores in C-y gradually move from micropores towards 
mesopores with increasing the cobalt content in the bimetallic ZIF precursors.

The specific surface areas of C-y are also closely related to the cobalt ratios in the bimetallic ZIFs. As sum-
marized in Table 2, the surface areas decrease from C-ZIF-8 (925 m2 · g−1), to C-1/19 (890 m2 · g−1), C-1/9 
(781 m2 · g−1), C-1/2 (643 m2 · g−1), C-2/1 (502 m2 · g−1), and finally to C-ZIF-67 (450 m2 · g−1). The surface area of 
C-ZIF-8 (925 m2 · g−1, carbonized at 900 °C) is lower than that of our previously reported ZIF-8-derived-carbon 

Figure 3. (a) Wide-angle PXRD patterns, (b) Raman spectra, (c) N2 adsorption-desorption isotherms, (d) pore-size  
distributions, as estimated by the DFT method, of the C-ZIF-8, C-y, and C-ZIF-67 samples. For clarity, the 
isotherms for C-ZIF-8 are offset by 40 cm3 · g−1. The pore-size distribution curves for C-1/19, C-1/9, C-1/2, C-2/1,  
and C-ZIF-67 are offset vertically by 0.0075, 0.015, 0.0225, 0.03, and 0.0375 cm3 · nm−1 · g−1, respectively.

Sample
SBET 

(m2·g−1)
Smicro 

(m2·g−1) Smicro /SBET

Vpore 
(cm3·g−1)

Vmicro 
(cm3·g−1) Vmicro /Vpore ID/IG

C-ZIF-8 925 541 58.5% 0.57 0.29 50.9% 1.19

C-1/19 890 426 47.9% 0.58 0.23 39.7% 1.00

C-1/9 781 250 32.0% 0.52 0.14 26.9% 1.00

C-1/2 643 123 19.1% 0.54 0.06 11.1% 0.67

C-2/1 502 57 11.4% 0.53 0.03 5.7% 0.67

C-ZIF-67 450 41 9.1% 0.43 0.01 2.3% 0.67

Table 2.  The surface areas and total pore volumes calculated from N2 adsorption-desorption isotherms, 
and the ratios of D band to G band estimated from Raman spectra are summarized.
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(1499 m2 · g−1, carbonized at 800 °C)23, probably due to the collapse of some nanopores during the calcination 
at higher temperature. In addition, the ratio of the microporous surface area to the total surface area gradually 
decreases as the Co2+/Zn2+ molar ratio increases (Table 2). These results suggest that the microporosity in the 
carbons is inherited from the microporous ZIF precursor and that it is sacrificed during the graphitization of 
amorphous carbon catalyzed by the cobalt nanoparticles. Meanwhile, the mesopores are generated by the carbon-
ization process and the subsequent removal of metal nanoparticles. Thus, hierarchically crosslinked micro/mes-
oporous structures are developed, and are expected to promote electrolyte penetration and to lower the diffusion 
resistance when used as electrode materials in electrochemical devices.

The electric state of N in the carbon was investigated by X-ray photoelectron spectroscopy (XPS). As shown 
in Figure S8, the high resolution spectrum of the N 1s peak of the representative C-1/19 sample can be mainly 
fitted with two peaks centered at ~398.6 and ~400.4 eV, which are assignable to pyridinic-N and graphitic-N, 
respectively34. This result demonstrates that the N atoms in the original pentagonal ring of the imidazole units are 
mainly doped into the carbon framework through two distinct mechanisms following the carbonization process. 
Pyridinic N, referring to the sp2-hybridized N atoms bonded with two sp2-hybridized C neighbours via σ -bonds, 
possesses one lone-pair of electrons in the graphene plane, and contributes one electron to the conjugated π  
system35. In the graphitic N configuration, three sp2-hybridized N valence electrons form three σ -bonds with 
three sp2-hybridized C neighbours, one electron fills the π -orbitals, and the fifth electron enters the π *-states of 
the conduction band36. According to another report, the fifth electron is distributed in the local network of the 
carbon π -system whereas a part of the charge localizes on the graphitic N dopant and electronically couples to its 
nearest C neighbours37.

To the best of our knowledge, this is the first example of a facile control over the degree of graphitization, pore 
size distribution, and nitrogen doping in carbons by utilizing bimetallic MOFs with adjustable compositions. 
Furthermore, the series of bimetallic-MOF-derived nanoporous carbons doped with heteroatoms, which fea-
tures high surface area and a continuous conductive framework, have been investigated as promising compounds 
for electrodes in supercapacitor application using a standard three-electrode system. Cyclic voltammetry (CV) 
studies were carried out in a potential window ranging from 0.0 to 0.8 V. The CV curves for the samples show a 
quasi-rectangular shape (Fig. 4a). The volumetric performance is an important technological metric for energy 
storage devices to meet realistic application. The variation of the volumetric capacitance values obtained for 
different samples is shown in Fig. 4b. The volumetric capacitances are calculated to be 100, 95, 93, 54, 33, and 
29 F∙cm−3 for C-ZIF-8, C-1/19, C-1/9, C-1/2, C-2/1, and C-ZIF-67, respectively, at a scan rate of 20 mV · s−1. 
From these values, it can be clearly found that the capacitance decreases as the Co2+/Zn2+ ratio in the bimetallic 
ZIF precursor is increased. These results are consistent with the N2 adsorption-desorption data, which indicates 
that the surface area as well as the number of micropores decrease as the cobalt content increases (Table 2). The 
capacitance retention at a high scan speed is one of the most important parameters for high performance super-
capacitors. As shown in Figure S9, the capacitance retention for the C-ZIF-8 sample is found to be only 38% after 
cycling at a 200 mV∙s−1, which is significantly lower than 71%, 85%, and 84% for the C-1/19, C-1/2, and C-ZIF-
67 samples, respectively. The increased retention values can be explained by (i) the decreased concentration of 
micropores and increased concentration of mesopores which allow fast intercalation/de-intercalation of ions 
in the material, and (ii) the higher conductivity of the carbon matrix, owing to the increased degree of carbon 
graphitization38,39. Among all the samples, C-1/19 shows both a high volumetric capacitance and capacitance 
retention. By using C-1/19 sample as both positive and negative electrodes, a symmetric supercapacitor cell was 
fabricated and the details are shown in Figure S10.

Figure 4. (a) CV curves and (b) volumetric capacitance for C-ZIF-8, C-y, and C-ZIF-67 samples at a scan rate 
of 20 mV · s−1.
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Conclusion
In summary, bimetallic ZIFs (Cox·Zn1−x(MeIm)2) have been successfully prepared due to the crystal compatibility 
between ZIF-8 (Zn(MeIm)2) and ZIF-67 (Co(MeIm)2). Unlike the single-metal ZIFs, which only contain zinc or 
cobalt ions, the zinc and cobalt ions coexist in the bimetallic ZIFs and support different functionalities during the 
carbonization process. As a result, the physical and chemical properties of the bimetallic-ZIF-derived carbon can 
be designed via simply and precisely adjusting the ratio of Co2+/Zn2+ in the bimetallic ZIF precursor. Therefore, 
this work offers a practical way to achieve optimal properties in carbon materials for specific applications by easily 
tailoring the components of the bimetallic ZIFs precursors.

Methods
Preparation of bimetallic ZIFs (Cox·Zn1−x(MeIm)2). In a typical synthesis, Co(NO3)2∙6H2O and 
Zn(NO3)2∙6H2O were dissolved in 30 mL of methanol to form a clear solution, followed by the addition of 
2-methylimidazole (984 mg, 12 mmol) dissolved in 10 mL of methanol. After thoroughly mixing by continuous 
stirring for 10 min, the solution was then transferred into an autoclave and was incubated at 100 °C for 12 hours. 
After cooling to room temperature, the resulting crystals were collected by centrifugation, washed with methanol, 
and dried at 60 °C. The molar ratio of Co2+/Zn2+ in the obtained bimetallic crystals was adjustable over a wide 
range by varying the initial metallic precursor ratio. The total molarity of Co2+and Zn2+ was fixed to be 3 mmol 
during the synthesis. As a result, a series of bimetallic ZIFs were prepared and categorized as Cox·Zn1−x(MeIm)2, 
where x/1− x represents the corresponding initial molar ratio of Co2+/Zn2+ and the obtained bimetallic ZIFs are 
denoted as Co0.05·Zn0.95(MeIm)2, Co0.1·Zn0.9(MeIm)2, Co0.33·Zn0.67(MeIm)2, and Co0.67·Zn0.33(MeIm)2, respectively. 
Two single-metal ZIFs, ZIF-8 (Zn(MeIm)2) and ZIF-67 (Co(MeIm)2), were also prepared by adding only Zn2+ or 
Co2+, respectively.

Carbonization of bimetallic ZIFs (Cox·Zn1−x(MeIm)2). Bimetallic ZIFs (Cox·Zn1−x(MeIm)2), ZIF-8, and 
ZIF-67 crystals were thermally converted into nanoporous carbon through carbonization under flowing argon at 
900 °C for 3 hours with a heating rate of 2 °C·min−1. The Zn and Co species were removed by extensive washing 
with HF solution (10 wt%). The nanoporous carbons converted from bimetallic ZIFs (Cox·Zn1−x(MeIm)2) are 
denoted as C-y (y =  x/1− x, in the form of an irreducible fraction). Thus, the nanoporous carbon converted from 
the bimetallic ZIFs Co0.05·Zn0.95(MeIm)2, Co0.1·Zn0.9(MeIm)2, Co0.33·Zn0.67(MeIm)2, and Co0.67·Zn0.33(MeIm)2 are 
designated as C-1/19, C-1/9, C-1/2, and C-2/1, respectively. C-ZIF-8 and C-ZIF-67 are also prepared for compar-
ison by using ZIF-8 and ZIF-67 as the precursors, respectively.
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