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A mechanistic stochastic 
framework for regulating bacterial 
cell division
Khem Raj Ghusinga1,*, Cesar A. Vargas-Garcia1,* & Abhyudai Singh1,2,3

How exponentially growing cells maintain size homeostasis is an important fundamental problem. 
Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed 
size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the 
adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell 
birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for 
protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise 
in division timing increases with size at birth. Intriguingly, our results show that the distribution of the 
volume added between successive cell-division events is independent of the newborn cell size. This was 
dramatically seen in experimental studies, where histograms of the added volume corresponding to 
different newborn sizes collapsed on top of each other. The model provides further insights consistent 
with experimental observations: the distribution of the added volume when scaled by its mean becomes 
invariant of the growth rate. In summary, our simple yet elegant model explains key experimental 
findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing 
for controlling size.

Recurring cycles of growth and division of a cell is a ubiquitous theme across all organisms. How an isogenic 
population of exponentially growing cells maintains a narrow distribution of cell size, a property known as size 
homeostasis, has been extensively studied, e.g., see1–4 and references therein. From a phenomenological stand-
point, recent experiments reveal that diverse microorganisms achieve size homeostasis via an adder principle5–8. 
As per this strategy, cells add a constant size from birth to division regardless of their size at birth9,10. Interestingly, 
the size accumulated by a single cell between birth and division exhibits considerable cell-to-cell differences, and 
these differences follow unique statistical properties. For example, in a given growth condition, the added size is 
drawn from a fixed probability distribution independent of the newborn cell size. Moreover, the distribution of 
the added size normalized by its mean is invariant across growth conditions6. Here, we explore biophysical mod-
els that lead to the adder principle of cell size control and provide insights into its statistical properties.

To realize the adder principle mechanistically, a cell needs to somehow track the size it has accumulated since 
the previous division and trigger the next division upon addition of the desired size. One biophysical model pro-
posed to achieve this assumes a protein which begins to get expressed right after cell birth at a rate proportional 
to instantaneous volume (size). The cell grows exponentially over time and division is triggered when protein 
copy numbers reach a critical threshold after which the protein is assumed to degrade (Fig. 1a)7,10,11. Such copy 
number dependent triggering of cell division could potentially be implemented via the localization of protein into 
compartments whose volume does not change appreciably with the cell volume12. Moreover, the synthesis and the 
degradation of the protein in this model are used in broad sense; they could as well be activation of timekeeper 
proteins in size dependent manner, and deactivation after triggering of division. While this deterministic model 
results in a constant size added from cell birth to division10,11, it remains to be seen how noise mechanisms can be 
incorporated in this model to explain statistical fluctuations in cell size. A plausible source of noise could be the 
inherent stochastic nature of protein expression that has been universally observed in prokaryotes and eukary-
otes13–17. Such stochasticity in protein synthesis is amplified at the level of individual cells, where gene products 
are often present at low molecular counts.
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Considering noisy expression of the timekeeper protein, one can formulate cell-division time as a 
first-passage time problem: an event (division) occurs when a stochastic process (protein copy numbers) 
hits a threshold for the first time (Fig. 1b). Exploiting this first-passage time framework, we derive an exact 
analytical formula for the cell-division time distribution for a given newborn cell size. Consistent with data, 
these results predict that the mean cell-division time decreases with increasing cell size at birth, and the 
randomness (quantified by coefficient of variation squared) in the cell-division time increases with newborn 
cell size. Intriguingly, analysis of the model further shows that the distribution of the volume added from 
cell birth to division is always independent of the newborn cell size. Finally, we find that the distributions of 
added volume and cell division time have scale invariant forms: distributions in different growth conditions 
collapse upon each other after rescaling them with their respective means. We discuss potential candidates 
for the timekeeper protein and deliberate upon model modifications that result in deviations from the adder 
principle.

Results
Model description.  Consider a newborn cell with volume Vb at time t =​ 0. Its volume at a time t after birth is 
given by V(t) =​ Vb exp(αt), where α >​ 0 represents the growth rate. After cell birth, the timekeeper protein begins 
to get transcribed at a rate r(t) =​ kmV(t), where km is the transcription rate in the concentration sense. Note that 
this scaling of protein synthesis with instantaneous cell volume is essential for preserving gene product concen-
trations in growing cells. In the stochastic formulation, the probability of a transcription event occurring in an 
infinitesimal time interval (t, t +​ dt] is given by r(t)dt. Assuming short-lived mRNAs, each transcript degrades 
instantaneously after producing a burst of protein molecules18–23. Stochastic expression of the timekeeper protein 
is compactly represented by the following biochemical reaction:

∅ → ×B Protein, (1)
r t

i
( )

where r(t) =​ kmV(t) can be interpreted as the burst arrival rate and Bi, i ∈​ {1, 2, 


}, are identical and independent 
random variables denoting the size of protein bursts with mean b :=​ 〈​Bi〉​. The burst size represents the number of 
protein molecules synthesized in a single mRNA lifetime and typically follows a geometric distribution19,21,23–26. 
However, to allow a wide range of protein accumulation processes to be covered by equation (1), we assume that 
Bi follows an arbitrary non-negative integer-valued distribution. One example of such a mechanism could be to 
consider a protein A whose concentration is constant throughout the cell cycle. This protein is stochastically con-
verted to an active form A* at a rate proportional to the number of molecules of A. In essence, this can be thought 
of as production of A* in bursts which takes place at a rate proportional to the cell volume.

Let x(t) denote the number of timekeeper molecules in the cell at time t after birth. Assuming a stable protein 
with no active proteolysis, we have = ∑ ==x t B x( ) , (0) 0i

n
i1 , where n is the number of bursts (transcription 

events) in [0, t]. Cell division occurs when x(t) reaches a threshold X and the protein is degraded (or deactivated) 

Figure 1.  Proposed molecular mechanism to realize adder principle of cell size control. (a) An exponentially 
growing rod-shaped cell starts synthesizing a timekeeper protein after its birth. The production rate of the 
protein scales with the cell size (volume). When the protein’s copy number attains a certain level, the cell divides 
and the protein is degraded. (b) Stochastic evolution of the protein copy numbers is shown for cells of three 
different sizes at birth. The threshold for triggering cell division is assumed to be 50 molecules. The distribution 
of the first-passage time (generated via 1,000 Monte Carlo realizations) for each newborn cell volume is shown 
above the three corresponding trajectories. The first-passage time distribution depends upon the newborn cell 
size: on average, the protein in a smaller cell takes more time to reach the threshold as compared to the protein 
in a larger cell.
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thereafter. Given this timing mechanism, cell-division time can be mathematically represented as the first-passage 
time (FPT).

= ≥ = .FPT t x t X x: inf{ : ( ) (0) 0} (2)

This first-passage time framework assumes that cell division occurs upon precise attainment of X protein 
molecules. In principle, one could generalize equation (2) by defining a monotonically increasing function h(x) 
that defines a probabilistic rate of cell division at time t given x(t) molecules. Interestingly, analysis reveals that the 
average size added from birth to division is invariant of the newborn cell size Vb iff

= < = ∞ >h x x X h x x X( ) 0 for , ( ) for (3)
 
(see Supplementary Information (SI), section S1). Thus, a sharp threshold, where cell division cannot be triggered 
before attainment of a precise number of molecules seems to be a necessary ingredient of the adder principle.

Distribution of the cell-division time given newborn cell size.  Here we derive the distribution of the 
cell-division time (FPT) for a given newborn cell size Vb and investigate how its statistical moments depend on 
Vb. We begin by finding the distribution of the minimum number of burst events N required for x(t) to reach the 
threshold X. In particular,
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Given a specific form for the distribution of Bi, the corresponding distribution for N can be obtained using equa-
tion (4). For example, if Bi is geometrically distributed, then the probability mass function of N is given by
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where b represents the mean burst size27,28.
Having determined the number of bursts needed for cell division, we next focus on the timing of burst events. 

Let Tn represent the time at which nth burst event takes place. If the burst arrival rate in equation (1) were con-
stant, then the time intervals between bursts would be exponentially distributed, resulting in an Erlang distribu-
tion for Tn. However, in our case this rate is time varying (due to dependence on cell volume), the arrival of bursts 
is an inhomogeneous Poisson process. Employing the distribution for the timing of the nth event, and using the 
fact that FPT is same as the time at which the Nth burst event occurs, the probability density function of FPT is 
obtained as
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(see SI, section S2). One can note that fFPT(t) is dependent on the newborn cell size Vb through the function R(t).

This FPT distribution qualitatively emulates the experimental observations that the mean cell division time 
decreases with increasing cell size at birth (see SI, section S6). Intuitively, a larger newborn cell expresses the 
protein at a higher rate as compared to a smaller cell. Hence, the time taken by the protein to reach the prescribed 
molecular threshold is shorter in larger cells. Analysis of equation (6) also predicts that the noise (quantified using 
the coefficient of variation squared, CV2) in cell-division timing increases with increasing Vb, and we confirmed 
this behavior from published data (Fig. 2). The noise behavior can be understood from the fact that a small new-
born cell requires more time for cell division. This allows for efficient time averaging of the underlying bursty 
process resulting in lower stochasticity in FPT.

Distribution of the volume added between divisions.  Having derived the distribution for the 
cell-division time (FPT), we determine the volume added by a single cell from birth to division (denoted by Δ​V). 
Since volume grows exponentially, Δ​V is related to FPT as Δ​V =​ Vb(eαFPT−​1). Using the distribution of FPT from 
equation (6) yields the following probability density function for Δ​V
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(see SI, section S3). One striking observation is that fΔV (v) is independent of the initial volume Vb (as illustrated 
in Fig. 3). This is in agreement with experimental observations that the histograms of the added volume for differ-
ent newborn cell sizes are statistically identical6. Next, we investigate how statistical moments of Δ​V depend on 
model parameters, in particular, the growth rate α.

Mean volume added between divisions.  Using equation (7), the average volume added is obtained as
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Figure 2.  Both model prediction and data show increase in the noise in timing as newborn cell size increases. 
(a) Model prediction for noise (coefficient of variation squared, CV2) in division time as computed numerically 
using equation (6). The model parameters used are: transcription rate km =​ 0.13 min−1, threshold X =​ 65 
molecules, growth rate α =​ 0.03 min−1, and mean burst size b =​ 5 molecules. The distribution of protein burst 
size Bi is assumed to be geometric. For details on how these parameter values were estimated, see SI, section S6.  
(b) Experimental data from1 for Escherichia coli MG1655 also shows increase in cell division time noise as 
newborn cell size increases. Single-cell data was categorized in one of the four bins (1–2.8 μm, 2.8–4.5 μm,  
4.5–6.3 μm, and 6.3–8 μm) depending upon newborn cell sizes. CV2 of division time with 95% confidence 
interval (using bootstrapping) for each bin is shown (more details in SI, section S6).

Figure 3.  The proposed mechanism results in added cell size distribution being independent of the 
newborn cell size. (a) The cell volume grows exponentially (shown for three different newborn cell sizes) 
until the timekeeper protein reaches a critical threshold. (b) The size added to the newborn cell size also grows 
exponentially until division takes place. For three different newborn cell sizes, the distribution of the the added 
volume comes out to be same. (c) The added size generated via simulations is plotted against the newborn cell 
size in range 2–3.5 μm for 10,000 cells. The cells are further binned in 13 uniformly spaced bins (number of cells 
per bin >​100). The dashed line shows the mean of the added volume, which is independent of the newborn 
cell size. (d) Data from6 showing the added size versus newborn cell size for Escherichia coli NCM3722 grown 
in Glucose as carbon source. Cells were categorized into bins according to their newborn cell size (number 
of cells per bin >​100). For each bin, the circle shows mean of the added size whereas the error bar represents 
the standard deviation of the added size. It can be seen that the mean added cell size (shown by dashed line) is 
independent of the newborn cell size (also see Fig. 2D in ref. 6).
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Here 〈​N〉​ represents the mean number of protein burst events from cell birth to division, which depends on the 
threshold X and the form of the burst size distribution. For example, if the protein bursts Bi are geometrically 
distributed with mean b, then using equation (5)
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These formulas reveal a linear dependence of Δ​V on α, in agreement with data from Pseudomonas aeruginosa7.  
It turns out that the dependency of Δ​V on α can vary among bacterial species. For instance, Caulobacter crescentus  
exhibits an added volume independent of α, whereas this relationship is thought to be exponential in case of 
Escherichia coli5,6. Studies connecting cellular growth rates to gene expression parameters have shown that α 
primarily affects the transcription rate, with mRNA translation and stability being largely invariant across growth 
conditions29,30. Thus, if the transcription rate km is a linear function of α, then Δ​V becomes independent of α. 
Next, we discuss a slightly different model formulation that results in exponential dependency of Δ​V on α.

So far we have considered that the timekeeper protein observes time from cell birth to division. In principle, 
the timekeeping could be for some other important event in the cell cycle. Consider a scenario where the initi-
ation of DNA replication takes place when sufficient timekeeper protein has accumulated per origin of replica-
tion10,31–33. The corresponding division event is assumed to occur with a constant delay of T after an initiation. 
The delay T here is the C +​ D period, where C represents the time to replicate the DNA and D denotes the time 
between DNA replication and division34,35. As growing bacterial cells are known to regulate the number of DNA 
replication forks as a function of growth rate, we assume that the threshold for the timekeeper proteins changes 
accordingly. More specifically, if there are θ origins of replication, the number of timekeeper protein molecules 
required to be accumulated for the next initiation event are θX. The above assumption is consistent with the 
understanding that all origins of replication fire almost synchronously36,37. Further, the timekeeper molecules are 
assumed to get degraded (deactivated) after initiation and a new set of timekeeper molecules are produced for the 
next initiation. Upon a division event between two successive initiations, the partitioning errors in the timekeeper 
protein are assumed to be negligible.

In this alternative formulation, the average volume added between two consecutive initiation events for each 
origin of replication is approximately same as Δ​V obtained in equation (9) (see SI, section S3). Moreover, the 
average volume added between successive division events is now given by33

∆ ≈ ∆ .α⁎V V e (10)T

 
Recall from equation (9) that 〈​Δ​V〉​ depends linearly on α. Thus, the expression in equation (10) suggests two 
different regimes of how 〈​Δ​V*〉​ depends upon α. For small values of α, α exp (αT) ≈​ α, i.e., the mean added 
volume increases linearly with the growth rate. In the regime where α is large, the exponential term dominates. 
This implies that if α is small, it may not be possible to distinguish whether the underlying mechanism accounts 
for volume added between two division events or two initiation events as the data will show a linear dependence 
of the average added volume with changes in α7. Notice that a pure exponential relationship between 〈​Δ​V*〉​ and 
α can also be obtained if km is a linearly increasing function of α. For this particular case, the volume accounted 
by each origin of replication 〈​Δ​V〉​ becomes invariant of the growth rate, consistent with previous works33,38. In 
summary, depending on the underlying assumptions, the model captures a variety of relationships between the 
average volume added from cell birth to division and α.

It is noteworthy that in the above setup, dependency of the time T =​ C +​ D on growth rate or cell size has been 
neglected even though there is evidence that D usually depends upon both growth rate and cell size39. We have 
done so for simplicity as incorporating this would not change the fact that an exponential dependency can be 
generated between Δ​V and α by having the protein account for two other events in the cell cycle. We next inves-
tigate higher order moments of Δ​V in the original model formulation, where the timekeeper protein accounts for 
timing between division events.

Higher order moments of added volume.  We can use the distribution of Δ​V computed in equation (7) 
to get insights into its higher-order statistics such as coefficient of variation squared ∆CV( )V

2  and skewness 
(skewΔV). For example, when the protein production occurs in geometric bursts
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(see SI, section S3). Note that Δ​V is always positively skewed, consistent with previous understanding9. Moreover, 
both CV2 and skewness are independent of the growth rate α. It turns out an even more general property is true: 
an appropriately scaled jth order moment of Δ​V, i.e., 〈​Δ​Vj〉​/〈​Δ​V〉​j is independent of α, in spite of the underlying 
distribution of the burst size. This arises from the fact that the distribution of Δ​V can be written in the following 
form
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for some function g (see SI, section S3). This form implies that fΔV(v) is scale invariant: the shape of the distribu-
tion across different growth rates is essentially the same, and a single parameter 〈​Δ​V〉​ is sufficient to characterize 
the distribution of Δ​V40. This property was seen in experiments6,11,41, where the histograms for Δ​V/〈​Δ​V〉​ in 
different growth conditions collapse upon each other (Fig. 4).

Interestingly, the above invariance property is not limited to the distribution of the added volume Δ​V. As the 
distributions of the cell size at birth, and cell size at division are generated by weighted sums of random variables 
drawn from the distribution of Δ​V, they naturally inherit the scale-invariance property6 (see SI, section S4). 
Furthermore, the distribution of the cell-division time also has the scale invariance property (see SI, section S5), 
which is in agreement with previous works42,43.

Discussion
It is now well understood that several prokaryotes, such as, Escherichia coli, Caulobacter crescentus, Bacillus sub-
tilis and Pseudomonas aeruginosa employ an adder mechanism for size homeostasis5–8. In this work, we studied 
a simple molecular mechanism for realizing the adder principle that consists of a timekeeper protein expressed 
at a rate proportional to cell volume up to a critical threshold. Our work shows that stochastic expression of this 
protein is sufficient to explain the statistical properties of the cell-division time and the size added from cell birth 
to division. Key model insights are as follows:

•	 Distribution of the volume added from birth to division is independent of the newborn cell volume, a hall-
mark of the adder principle (Fig. 3).

•	 The distributions of key quantities such as the added volume, division time, volume at birth and division are 
scale invariant.

•	 The noise in cell-division time increases with increasing newborn cell size (Fig. 2).

An important point to note is that if variation in Δ​V is indeed a result of noisy gene expression, then Δ​V for suc-
cessive cell-cycles should be independent. Indeed, data shows a weak correlation between the volume added for 
mother and daughter cells5,6. This result also argues that extrinsic fluctuations in parameters that exhibit strong 
memory between mother and daughter cells cannot account for the statistical fluctuations in Δ​V.

A natural question that arises at this point is whether there are known proteins which mimic the dynamics 
of the timekeeper protein. Among many proteins involved in the cell cycle control, prominent candidates for the 
timekeeper protein are FtsZ and DnaA. More specifically if the constant volume addition is considered between 
division to division, FtsZ could be acting as the proposed timekeeper protein44–48. It has been proposed that the 
accumulation of FtsZ up to a critical level is required for cell division49–51. Interestingly, in case of Caulobacter 
crescentus, FtsZ is synthesized in a cell cycle dependent manner and its degradation rate increases after the ini-
tiation of cell division44. However, in case of Escherichia coli, its concentration remains constant throughout the 
cell cycle52. It is possible that in the former case FtsZ molecules realize the timekeeping whereas in latter case it 
is realized by the assembly dynamics of the Z-ring50. Further, in the other possibility when the constant volume 
is added between two initiation events, DnaA could behave as the timekeeper48,53,54. In this case, concentration 

Figure 4.  Collapse of added cell size in different growth conditions upon rescaling by respective mean 
values. (a) Using data from6 for Escherichia coli NCM3722, the added size is plotted versus the newborn cell size 
for different growth conditions. The mean added size (shown by circles) for each growth condition is different 
for a given newborn cell size. Cells were categorized into bins according to their newborn cell sizes (number of 
cells per bin >​100). The error bars represent the standard deviation of the added volume of cells in each bin. 
(b) The added size data for different growth conditions collapse upon rescaling them by their means in the 
respective growth conditions (also see Fig. 2D in ref. 6).
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of DnaA remains constant and initiation is proposed to occur when a critical number (around 20) of DnaA-ATP 
(active form of DnaA) molecules are available. After initiation these molecules are converted to DnaA-ADP 
(inactive form)55. While more systematic studies are warranted to ascertain roles of these proteins, their dynamics 
broadly satisfies the requirements of the hypothesized timekeeper protein. It should also be noted that the exact 
molecular implementations vary between species and the timekeeper protein is possibly only responsible for a 
coarse tuning of the cell division process. More accurate descriptions of the process will also require to account 
for feedbacks between important cell-cycle events. For example, it is well-known that FtsZ does not proceed with 
Z-ring formation until DNA replication has faithfully taken place. If this condition is not met, the adder principle 
would probably be overridden5.

Recent work in Escherichia coli has observed deviations from the adder principle for some strains under some 
growth conditions56. Unlike the adder principle, here Δ​V does not exhibit constancy with respect to newborn cell 
size and instead shows non-zero correlations56,57. For instance, the strain MG4100 shows slight positive correla-
tions between added volume and newborn cell size when grown at 25 °C and 27 °C. Interestingly, the same strain 
also shows negative correlations between the added volume and newborn cell size at 37 °C56. While it is not clear 
as to why these deviations are seen in some conditions, there could be several mechanisms that result in such 
deviations in our proposed model. These include: i) the timekeeper protein does not degrade fully upon division 
and the remaining proteins are divided in the daughter cells; ii) an indirect feedback from the cell volume to the 
mRNA translation rate making protein burst sizes volume-dependent; iii) saturation in the transcription rate 
=

+
r t k( ) m

V t
V t V

( )
( )

 at high cell volume; iv) a soft threshold for the protein level in equation (3), where cell-division 
is triggered even before attainment of a molecular threshold. Preliminary stochastic simulations show that in all 
these cases Δ​V becomes dependent on the newborn cell size. Specifically, mechanisms (i) and (ii) show negative 
correlations between added volume and newborn cell size whereas mechanisms (iii) and (iv) show positive cor-
relations (Fig. 5). As the strain MG4100 shows both negative and positive correlations as temperature is varied, we 
speculate that a combination of mechanisms that generated positive and negative deviations could be at play. As 
the temperature is varied, one of these deviations could become dominant. Clearly, a more systematic analysis 
with computations of the cell-division time and volume added distributions is warranted in these cases. It will be 
interesting to see if the statistical properties of Δ​V and the cell-division time contain signatures to discriminate 
between alternative models and provide insights into the regulatory mechanisms that drive deviations from the 
adder principle.
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correlation. For each of these mechanisms, the plots are generated from 10,000 realizations of a cell cycle 
starting with a newborn cell size Vb in the interval [1, 7]μm, computing the volume added since birth for each of 
them, and then taking average. The simulations were done using algorithm proposed in ref. 58.
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