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Fragments
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Anne-Maree Haynes5, Lee Ponsky6, Satish Viswanath1 & Anant Madabhushi1

In applications involving large tissue specimens that have been sectioned into smaller tissue fragments, 
manual reconstruction of a “pseudo whole-mount” histological section (PWMHS) can facilitate (a) 
pathological disease annotation, and (b) image registration and correlation with radiological images. 
We have previously presented a program called HistoStitcher, which allows for more efficient manual 
reconstruction than general purpose image editing tools (such as Photoshop). However HistoStitcher 
is still manual and hence can be laborious and subjective, especially when doing large cohort studies. 
In this work we present AutoStitcher, a novel automated algorithm for reconstructing PWMHSs from 
digitized tissue fragments. AutoStitcher reconstructs (“stitches”) a PWMHS from a set of 4 fragments 
by optimizing a novel cost function that is domain-inspired to ensure (i) alignment of similar tissue 
regions, and (ii) contiguity of the prostate boundary. The algorithm achieves computational efficiency 
by performing reconstruction in a multi-resolution hierarchy. Automated PWMHS reconstruction results 
(via AutoStitcher) were quantitatively and qualitatively compared to manual reconstructions obtained 
via HistoStitcher for 113 prostate pathology sections. Distances between corresponding fiducials placed 
on each of the automated and manual reconstruction results were between 2.7%–3.2%, reflecting their 
excellent visual similarity.

Whole-mount histological sections (WMHSs) allow for visual and spatial co-registration with pre-operative in 
vivo imaging. This approach can thus allow for spatially mapping disease extent annotated on the ex vivo pathol-
ogy images onto the in vivo imaging1. However, preparation of whole-mounts is not always feasible in routine 
clinical practice, as large histological specimens can be difficult to slice thin enough to obtain sections without 
compromising tissue integrity. In addition to requiring significant amounts of technical expertise and preparation 
time as well as specialized equipment, whole-mount specimens can be too large to fit on a standard glass micros-
copy slide. As a result, several clinical centers have adopted the solution of cutting large specimens into multiple 
smaller fragments, resulting in their examining or annotating multiple slides per section2,3.

Unfortunately, utilizing tissue fragments spread across multiple slides presents a significant challenge when 
the pathologic region-of-interest crosses the boundary of the fragments. An example of this is when in vivo radi-
ological imagery is cognitively evaluated against corresponding ex vivo pathology, in which case it is considerably 
more demanding to correlate fragmented pathology with whole section in vivo MR images. In addition to the 
visual differences between the two modalities, having to switch between multiple slides to cognitively combine 
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disjoint visual cues makes it difficult to spatially localize tissue fragments directly on imaging. Similarly, when 
co-registering ex vivo pathology and in vivo imaging4, whole-mount sections are required on both modalities; 
which are easier to spatially correlate to one another than tissue fragments. Under these circumstances, recon-
structing pseudo whole-mount histological sections (PWMHSs) from component tissue fragments fulfills a clear 
need in pathology annotation and radiology-pathology correlation workflows.

Chappelow et al.2 presented a semi-interactive computerized tool called HistoStitcher which enabled 
PWMHS reconstruction from component digitized histological image fragments2,3. The tool takes as input 
several user-selected fiducials along the edges of a pair of fragments. A transform to “stitch” the edges together 
is then computed based on calculating an affine transform (encoding rotation, translation, and scaling) of the 
image fragments such that the fiducials are brought into spatial alignment. HistoStitcher was shown to be easier 
to use and more memory-efficient than photo-editing tools such as Photoshop. However, a significant limita-
tion with HistoStitcher lies in its requirement of manual identification of corresponding fiducial points prior to 
reconstruction. In addition to being time-consuming, this makes HistoStitcher subject to inter- and intra-user 
variability. In this paper, we present AutoStitcher, an fully automated algorithm for reconstructing whole from 
image fragments which is able to overcome most current limitations associated with HistoStitcher.

A clear parallel to solving the problem of PWMHS reconstruction may lie in the variety of automated 
approaches that have been developed for jigsaw puzzle assembly, panoramic photo stitching, and shredded doc-
ument reconstruction. However, these approaches cannot be directly translated over to our specific problem 
domain of histological image reconstruction as they make at least one of the following assumptions about the 
input images:

(a)  Overlap: Most photo stitching algorithms require using images that depict overlapping regions of a common 
scene, as shown in Fig. 1a, as they operate by aligning matching key-points within these regions5–7. Only 
Poleg and Peleg8 have previously presented an algorithm for stitching non-overlapping images, however, it is 
specifically designed for rectangular photographic images that have no missing pieces.

(b)  Completeness: Most automatic jigsaw puzzle solving algorithms assume that all available puzzle fragment 
images together depict the entire jigsaw image, implying that none of the pieces are missing (illustrated in 
Fig. 1c 9,10). Liu et al.11 have presented an algorithm for assembling hand-shredded photos that does account 
for missing shreds, however, it relies on matching the boundary contours of adjacent pieces.

(c)  Interlock: As seen in archetypal jigsaw shapes which fit into one another (illustrated by Fig. 1e); this factor 
is typically accounted for as contours that can be matched based on their curvature. Most automatic jigsaw 
puzzle solving algorithms make the assumption that the jigsaw fragments “interlock”9,12. Shredded docu-
ment reconstruction algorithms focus on reconstructing documents that have been processed by traditional 

Figure 1. Illustration of assumptions made in related problem domains in image assembly and document 
reconstruction. (a) A pair of overlapping images of a natural scene (green box highlights region of overlap).  
(b) Photograph of a natural scene with no missing pieces (whole image highlighted in green, stitched subimages 
boxed in dashed lines). (c) Interlocking archetypal jigsaw puzzle pieces (green arrows highlight interlocking 
edges). (d) Two corresponding prostate histology quadrants, which do not overlap (red box highlights region of 
non-overlap). (e) A stitched PWMHS which lacks completeness (whole image outlined in green, missing pieces 
outlined in red). (f) Non-interlocking prostate histology quadrants (red X’s highlight lack of interlocking edges).
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strip- or cross-cut paper shredders13, and thus tend to rely on curve matching to identify corresponding 
shredded fragments14.

As depicted in Fig. 1, all of the above assumptions are violated when reconstructing whole-mount histological 
images. Typically, histological fragments (a) are non-overlapping, since they are cut from a single object; (b) lack 
completeness as significant tissue loss can occur during pathological processing; and (c) do not interlock, since 
uneven warping and tissue loss during processing renders boundary contours too dissimilar to match reliably. 
Further, tissue processing of whole-mount prostates involves quartering and sectioning of a tissue block. This 
could potentially lead to variable slice depths and orientations between the tissue fragments that are supposed to 
lie on the same plane15. This further exacerbates the lack of interlock, completeness, and overlap between these 
tissue fragments.

AutoStitcher utilizes a novel cost function that does not make any of the three limiting assumptions of (a) 
overlapping, (b) completeness, and (c) interlocking images; as previously presented in image reconstruction liter-
ature. Our cost function is inspired by two features humans use to perform manual stitching: (i) alignment of sim-
ilar tissue regions and (ii) contiguity of the prostate boundary. Tissue region similarity is quantified by grayscale 
intensity histograms, and contiguity of the prostate boundary is quantified by distance between automatically 
detected points along the boundary of each fragment. AutoStitcher achieves computational efficiency by working 
hierarchically, utilizing approximate reconstructions performed at lower resolutions to reduce the amount of 
computation necessary at higher resolutions.

To evaluate AutoStitcher’s performance, 113 sections were stitched both automatically via AutoStitcher and 
manually via HistoStitcher; which were then qualitatively and quantitatively compared. Quantitative comparison 
was facilitated via automatically and manually selected fiducial points, as well as Hausdorff distance between 
reconstruction contours. To investigate whether AutoStitcher could work on an independent cohort from a dif-
ferent institution, parameters were learned on a sub-cohort, and tested on the remaining sections from both 
institutions.

The remainder of the paper is organized as follows. In the next section, we describe the methodological details 
of AutoStitcher. Then, we explain our experimental design to evaluate AutoStitcher on histological data from 2 
different institutions. Finally, we present and discuss our experimental results, and end with concluding remarks 
in the last section.

Methods
Ethics Statement. Data analysis was waived review and consent by the IRB board, as all data was being ana-
lyzed retrospectively, after de-identification. All experimental protocols were approved under the IRB protocol 
# 02-13-42C with the University Hospitals of Cleveland Institutional Review Board, and all experiments were 
carried out in accordance with approved guidelines.

Notation. Notation employed in this paper has been summarized in Table 1. We denote an image Q where each 
image has dimensions [X, Y], and each pixel in the image has coordinates (x, y) =  {(x, y)|x ∈  [1, X] and y ∈  [1, Y]}.

Preprocessing and Initialization. The only input to AutoStitcher is a set of 4 tissue fragments comprising 
a single 2D section (selected by a user), which are then pre-processed as follows (see Fig. 2):

(i) Down-sampling the unprocessed high-resolution tissue fragment images to lower resolution for compu-
tational efficiency.

(ii) Applying user-specified flipping to correct for human errors in microscopy slide digitization, where tis-
sue fragments from the same sectioned plane may be scanned on different sides of the original sectioning 
plane. After flipping, the images are converted to grayscale (depicted in Fig. 2b) to improve computation-
al efficiency. The grayscale pixel values are rescaled from the conventional 8-bit intensity range [0, 255] 
to decimals within the range [0, 1].

(iii) Segmenting the tissue foreground mask from background, as shown in Fig. 2c, to identify the fragment 
boundaries.

 An approximate initial reconstruction is first computed at low resolution, which is used as an initialization for 
all subsequent algorithmic processing. Initialization is performed by:

(i) Computing the minimum-area bounding box, as highlighted in blue in Fig. 2d, and identifying the edges 
(cyan and green lines in Fig. 2e) as pixels on the tissue boundary contour that fall between “corner” 
points (green stars in Fig. 2d) closest to the three relevant corners of the bounding box. The fourth cor-
ner, highlighted in red, is external to the prostate, so is not used to define an edge.

(ii) Computing best-fit lines to the edges using Theil-Sen linear regression16, which achieves robustness to 
outliers by choosing the median slope of all possible lines through sample points, and rotating the quad-
rant such that the horizontal best-fit line, as plotted in green in Fig. 2f, is parallel to the x-axis. Figure 2g 
displays the initially non-rotated quadrants, which is followed by the rotated quadrants in Fig. 2h.

(iii) Finally, the rotated fragments are translated together such that the boundaries of the masks of adjacent 
quadrants are joined, shown in Fig. 2i.
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Domain-Inspired Cost Function. AutoStitcher uses a two-component, domain-inspired cost function to 
drive stitching, based on quantifying the dissimilarity of adjacent quadrant regions across the quadrant stitch 
boundaries, as illustrated in Fig. 3b–g, while the misalignment component quantifies how well the stitched result 
maintains the continuity of the prostate shape (as illustrated in Fig. 3a).

Dissimilarity. Dissimilarity is defined as the degree to which corresponding tissue regions of adjacent quadrants 
are dissimilar. This is quantified via the following steps:

(i) Identification of corresponding edge-pixels: Corresponding edge pixels are pairs of pixels on adjacent 
sections that share a common edge, as illustrated by the two pairs of corresponding patches in Fig. 3b,e. 
They are defined as follows:

Symbol Description

Q =  {Qul, Qur, Qll, Qlr} The set of quadrant images corresponding to the upper-left, upper-right, lower-left, 
and lower-right quadrants, respectively.

T =  {Tul, Tur, Tll, Tlr} The set of transformations of all 4 quadrant images, where each quadrant’s 
transformation stores the x-translation, y-translation, and degrees of rotation.

Dpair(Q1, Q2) Pair-wise intensity-based dissimilarity computed on each quadrant pair (Q1, Q2).

Mpair(Q1, Q2) Pair-wise distance-based misalignment computed on each quadrant pair (Q1, Q2).

{V1(k), V2(k)} The kth set of corresponding histogram vectors or pixel values V1 and V2 of a pair of 
quadrants, where V1 belongs to Q1 and V2 belongs to Q2.

C C C C{ , }, { , }outer outer inner inner
1 2 1 2 The set of corresponding outer and inner corner points C1 and C2 of a pair of 

quadrants, where C1 belongs to Q1 and C2 belongs to Q2.

w1, w2 Empirically determined cost function component weights (w1, w2)

w3, w4 Inner- and outer-point weights (w3, w4)

m, n m =  Number of overhanging, and n =  number of corresponding pixels for a pair of 
adjacent edges

p, b p =  Size of rectangular patch, and b =  number of histogram bins for cost computation

φ Dissimilarity for a non-corresponding edge pixel

Table 1.  Notation.

Figure 2. Illustration of AutoStitcher’s preprocessing and low resolution initialization workflow.  
(a) Initial unprocessed quadrant image. (b) Resizing, flipping, and conversion to grayscale. (c) Segmentation 
of tissue mask. (d) Bounding-box fitting. (e) Identification of edges. (f) Identification of best-fit lines, followed 
by automatic rotation. (g) Initial unprocessed quadrant images for a single slice. (h) Automatically rotated and 
flipped quadrant images. (i) Low resolution initialization.
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 Pixels are defined to be non-corresponding if they do not have any corresponding pixel on the adjacent 
quadrant.

(ii) Patch extraction and histogram (or intensity value) computation: For each corresponding edge-pixel 
identified in step (i) for any pair of quadrants Q1 and Q2, square patches of size p are extracted. Intensity 
histograms with b bins are computed from the patches, excluding non-tissue background pixels, which 
are then normalized by computing the discrete probability density function of the intensity bins. Cor-
responding histograms (or pixel intensity values) V1(k) and V2(k) are then computed for all k ∈  {1, … 
, n}, where n is the number of corresponding pixels or patches, such that: V1(k) is the kth pixel value or 
histogram vector centered on (x1, y1) in Q1, and V 2(k) is the kth pixel value or histogram vector centered 
on (x2, y2) in Q2, such that:
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 Since the patch size is kept at a constant real-world size, patches encompass only a single pixel at the lowest 
resolution. Therefore, at the lowest resolution, pixel intensity values are used instead of histograms.

(iii) Dissimilarity computation: While patches of tissue on opposite sides of a cut can appear to be visually 
different, corresponding patches on either side of the cut can be expected to have more similar intensity 
distributions compared to image patches that do not correspond. For example, given a cut through a 
gland-dense region, patches on either side of the cut are likely to have intensity distributions skewed 
towards higher frequencies of high intensities, since gland lumen are mostly white or very light-colored. 
This would be reflected in the similarity in their intensity distributions. By contrast, distributions of 
patches in gland-dense and gland-sparse regions would be very different. Dissimilarity between pairs of 
histograms (or pixels) is computed using the L2-norm of the histogram vector (or intensity value) differ-
ences. Given that pixel values are in [0, 1] and histogram vectors are discrete probability density func-
tions that sum to 1, the maximum possible dissimilarity, denoted φ, between histograms is equal to 2 and 
between pixels is equal to 1. Non-corresponding pixels are treated consistently by setting their dissimi-
larity to φ. The pair-dissimilarity Dpair for the pair of adjacent images is thus defined as:

Figure 3. Illustration of the computation of the cost function for AutoStitcher used for stitching at high 
resolution. (a) Stitched image, with two corner points (stars), which are used to compute misalignment M, 
plotted on the ends of each quadrant’s best-fit lines. (b) A pair of corresponding patches on quadrants Qur and Qlr. 
(c) Intensity histograms of the two patches. Since these patches appear visually similar, their histograms are also 
similar, thus this pair will have low dissimilarity D. (d) Another pair of corresponding patches on quadrants Qur 
and Qlr, and (e) their intensity histograms, which are more dissimilar, reflecting the apparent visual dissimilarity 
of their patches.
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where n is the number of corresponding pixels, and m is the number of non-corresponding pixels.

Misalignment. Misalignment is defined as the degree to which adjacent quadrants are incorrectly localized and 
oriented relative to one another. To compute misalignment, the endpoints of the best-fit lines of the first and sec-
ond quadrants in the quadrant-pair are identified, as shown in Fig. 3a. The pair of corner points nearest to the 
outer-boundary of the prostate is denoted C C( , )outer outer

1 2 , while the point pair closest to the center of the prostate 
is denoted C C( , )inner inner

1 2  . Misalignment Mpair is computed as:

= × − + × −M Q Q w C C w C C( , ) (2)pair outer outer inner inner
1 2

3
1 2

2
2

4
1 2

2
2

where w3 and w4 (w4 =  1 −  w3) weight the relative contributions of the two pairs of points.

Total computation for all pairs of quadrants. AutoStitcher evaluates dissimilarity and misalignment on each of 
the four pairs of vertically or horizontally adjacent quadrant images (Qul, Qur), (Qur, Qlr), (Qlr, Qll), (Qll, Qul); as 
follows:
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Cost Function. The optimal reconstruction is found by determining the set of quadrant transformations T of 
quadrants Q that minimizes the cost function below. This cost function involves combining the dissimilarity Dtot 
and misalignment Mtot in a weighted sum (equation 5), where w2 =  1 −  w1. The set of quadrant transformations 
T specifies the rigid-body transformations of three moving quadrants relative to the fourth fixed quadrant. Each 
quadrant’s rigid-body transformation is parameterized by three degrees of freedom (two for translation, one for 
rotation).

θ = × + ×argmin w D w MT Q( , ) (5)T tot tot1 2

Optimization of equation (5) is done via genetic algorithms for each resolution in the hierarchy. Genetic algo-
rithms were utilized as they are well-suited to such problem domains, that are highly nonlinear and have many 
local optima17. In our implementation, each “generation” of the genetic algorithm comprises a set of 20 solutions, 
where each solution is a nine-element vector specifying a combination of transformations of three quadrants 
relative to the fourth quadrant. Optimization concludes after twenty-five consecutive generations that have not 
demonstrated a significant improvement in the cost function. To ensure computational efficiency, the maximum 
and minimum possible translations and rotations are restricted to within a local search window of the next lower 
image resolution.

Experimental Design
Data Collection and Processing. Data from prostate cancer patients who underwent radical prostatec-
tomy were acquired from two institutions: (1) 19 patients from University of Pennsylvania, and (2) 17 patients 
from St. Vincent’s Hospital. Each surgically resected prostate gland was fixed in formalin, embedded in paraffin, 
and sectioned axially in a plane perpendicular to the urethral axis from apex to base in 3–4 mm sections. Each 
slice was then sectioned into four quadrants (see Fig. 2g for sample data), stained with hematoxylin & eosin 
(H &  E), and digitized via an Aperio® whole slide scanner at 20X magnification and 0.5/pixel resolution. Digitized 
slides were de-identified and labeled with the anatomic location of the slide (left- or right-anterior or posterior 
of the prostate gland).

Our final curated dataset contains a total of 113 sections (452 quadrants) from 36 patients. Note that 143 (out 
of a total of 256) sections were excluded from our cohort due to (a) large quantities of missing or extra-prostatic 
tissue (100 out of 143), (b) not having been sectioned into quadrants (e.g., left-to-right-sliced apex or base) (43 
out of 143).

All 113 sections were reconstructed into PWMHS via each of AutoStitcher and HistoStitcher. AutoStitcher 
parameters are described in parameter selection in the next subsection. Manual reconstruction via HistoStitcher 
was performed by a user with 2 years of previous experience in utilizing the software.

Evaluation. A total of 113 sections were utilized for evaluation, of which 20 were used for parameter selec-
tion, and 44 from University of Pennsylvania plus 49 from St. Vincent’s Hospital were used for independent 
testing.

As there is no “perfect” ground truth whole-mount section for the clinical data utilized in this study, we 
quantitatively evaluated the accuracy of reconstruction for AutoStitcher with respect to HistoStitcher using three 
different error measures. Two of the measures are based on fiducial points, which provide an intuitive error meas-
ure as well as being computationally efficient for tracking image transformations. Fiducial error is also commonly 
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used in similar applications where automated methods are evaluated with respect to manual gold-standard 
results, such as medical image registration18–20.

Note that in addition to computing these measures in micrometers (μ m), we additionally normalized these 
evaluation measures by the average of length and width of the HistoStitcher reconstruction, to yield a percent-
age error. In such a case, an error of 100% would result from an AutoStitcher reconstruction containing fiducial 
points extremely far from where they were positioned on the corresponding HistoStitcher reconstruction. This 
stitched result would also appear to be overwhelmingly and obviously inaccurate. Similarly, an error of 0% would 
result from an AutoStitcher reconstruction that is completely identical to the corresponding HistoStitcher recon-
struction. It should be noted that an error of 0% does not necessarily represent a perfect result, but simply that 
the AutoStitcher and HistoStitcher yielded an identical PWMHS reconstruction. Error measures utilized in this 
study were:

(i) Automatically selected fiducials (ASF) error: A total of ten pairs of corresponding fiducial points are 
automatically identified on the endpoints and midpoints of the edges of the HistoStitcher reconstruction. 
Although there are a total of twenty fiducial points (ten pairs), only ten are visible since there is zero 
distance between each pair as shown in the green, red, and yellow stars in Fig. 4b. These points are then 
mapped onto the AutoStitcher reconstruction, revealing twenty visible points as shown in Fig. 4a. The 
ASF error is computed for each AutoStitcher reconstruction as the mean distance between all 10 pairs of 
points (in μ m).

(ii) Manually selected fiducials (MSF) error: A total of nine or more pairs of fiducial points were 
identified by an expert on each HistoStitcher reconstruction. These were selected based on vis-
ually identified corresponding landmarks or regions of apparent similarity on the reconstruct-
ed PWMHS. Utilizing MSF points thus provides an error measure complementary to the 
ASF by providing a domain knowledge-based measure, which more accurately reflects an ex-
pert’s judgment of the reconstruction quality than the automatically identified ASF points. 
These points are mapped onto the AutoStitcher reconstruction as depicted in Fig. 5a. The MSF  
error is computed as the mean distance between all identified point pairs, for each AutoStitcher 
reconstruction.

(iii) Hausdorff distance (H): A stitched result that maintains the expected outline shape is particularly desir-
able because this information forms a crucial reference to guide manual selection of anatomic fiducials 
during image registration. We measure the similarity between shapes of the AutoStitcher reconstruction 

Figure 4. Final reconstruction results of (a) AutoStitcher vs. (b) HistoStitcher, with ASF evaluation fiducials 
plotted (via red, green, blue, and yellow asterisks). The enlarged boxed regions in (c,d) display sample ASF 
fiducials for each result. Note that since fiducials were selected on the HistoStitcher reconstruction, the panel 
in (d) shows both points being superposed onto the same yellow asterisk, compared to distinct points when 
mapped onto the AutoStitcher reconstruction in (c). Normalized ASF error was computed to be 2.61% in this 
example.
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and HistoStitcher reconstruction outline contours via the Hausdorff distance21, The steps involved in the 
computation are as follows:

(1) Binary tissue masks of both the manually and automatically stitched images are obtained from the seg-
mentations performed during pre-processing.

(2) The convex hull is computed for each of these masks, as shown in Fig. 6a,b, in order to eliminate concav-
ities in the reconstruction outlines. Note that using the original reconstruction outlines would produce 
large Hausdorff distances despite visually similar reconstructions.

(3) The convex hulls are mapped to a common coordinate system (Fig. 6c).
(4) The convex hulls are rotated and translated such that they are maximally aligned, such that the Hausdorff 

distance between them is minimized (Fig. 6d).
(5) The Hausdorff distance is calculated as the distance between points at which the two aligned convex hulls 

are farthest apart. An ideal Hausdorff distance of zero would occur when the outlines are identical, and 
thus, the more dissimilar the outlines, the larger the Hausdorff distance.

Parameter Selection. Optimal parameter values for AutoStitcher were experimentally determined on a training 
subset of data consisting of 20 sections from 9 patients from the University of Pennsylvania (see Table 2). Based 
on the likely ranges for each parameter, optimal parameters were identified as those that produced the minimum 
error of ASF on the training set, over a total of 72 experiments comprising every possible combination of the 
parameters w1, w2, w3, w4, and p. Parameter b was determined empirically and fixed prior to selection of the other 
parameters in order to restrict the number of degrees of freedom of the parameter space and make the problem 
computationally feasible. In synthetic testing (not shown), b was not found to significantly affect the reconstruc-
tion accuracy. The value for this parameter was picked such that different-looking patches were distinguishable 
via their histograms while ensuring that the histograms were not sparse.

Multi-site evaluation. Learned parameters from the “training” subset of 20 sections were kept fixed when stitch-
ing the remaining 93 sections. Inter-institutional variability of AutoStitcher could then be evaluated by com-
paring ASF error, MSF error, and Hausdorff distance in terms of (a) training error on 20 sections (9 patients) 

Figure 5. Final reconstruction results of (a) AutoStitcher vs. (b) HistoStitcher, with MSF evaluation over the 
fiducials plotted (in red, green, blue, and yellow asterisks). The enlarged boxed regions in (c,d) display sample 
MSF fiducials for the AutoStitcher and HistoStitcher reconstructions, respectively. Normalized MSF error was 
computed to be 1.89% in this example
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from UPenn, (b) testing error on 44 sections (17 patients) from UPenn, and (c) validation error on 49 sections  
(17 patients) from St. Vincent’s Hospital. Note that data used to compute testing and validation error was not used 
in any way to optimize the algorithmic parameters.

Equivalence testing22 was utilized to compare each of the three evaluation measures described in the previous 
subsection over all reconstructions, with the null hypothesis being that evaluation measures were not statistically 
significantly equivalent between the two institutions. To perform this test, the error distributions were confirmed 
to be normal using the Kolmogorov-Smirnov test. The mean and standard deviation of the errors were computed, 
and then a 90% confidence interval relating to the difference between the means of the errors on the testing and 
validation cohorts was computed. The equivalence margin δ was set to 1%, which was estimated to be the smallest 
difference in mean errors between the two institutions that would render them meaningfully different. If the 90% 
confidence interval fell within the equivalence margin bounds [−δ, δ], the error measure was considered to statis-
tically equivalent between the testing and validation cohort at a significance level of α =  0.05.

Speed Comparison. We estimated the required time of stitching for novice and expert users by surveying three 
users of HistoStitcher for the typical length of time required to perform manual reconstruction of a PWMHS. 
Additionally, we measured the length of time required for AutoStitcher to perform automated reconstruction of 
each PWMHS. Based on these times, we estimated an approximate range of times required for each of (a) the 
novice users and (b) expert users to perform stitching using (i) AutoStitcher and (ii) HistoStitcher, respectively.

Results and Discussion
Experiment 1: Qualitative and Quantitative Evaluation of Reconstruction Accuracy in terms of 
fiducial error. Figures 4 and 5 illustrate a high degree of apparent visual similarity between the AutoStitcher 
and HistoStitcher reconstructions (depicted for 2 different sections from 2 different patients). This qualitative 
similarity is supported by ASF and MSF errors of under 3% (see Table 3), over all 113 sections. In the absence 
of a true “gold standard” PWMHS reconstruction for the real world clinical data used by us in this study, a fidu-
cial-based error of less than 3% indicates that the AutoStitcher reconstruction is highly similar to the HistoStitcher 
result even when considering tissue regions that are in correspondence across a stitched edge. It should be noted 
that our HistoStitcher reconstructions were performed by only a single operator. This was a study limitation and 

Figure 6. Hausdorff distance evaluation computed on the convex hull of (a,e) a PWMHS reconstructed using 
AutoStitcher next to (b,f) a PWMHS reconstructed using HistoStitcher. The convex hulls are first transformed 
to a common coordinate system as shown in (c,g), then aligned such that the Hausdorff distance is minimized 
in (d,h). The location of the maximum Hausdorff distance is highlighted in the black boxes, resulting in 
normalized Hausdorff errors of 3.81% (d) and 2.43% (h).

w1 w2 = 1 −  w1 w3 w4 = 1 − w3 p b

Optimal Value 0.989 0.011 0.4 0.6 81 ×  81 16

Range 0.98–0.995 0.005–0.02 0.3–0.5 0.5–0.7 41 ×  41–
121 ×  121 6–20

Table 2.  Parameter Selection.
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in future work we will look to perform multi-user studies to evaluate the extent of inter-user variability in the use 
of the AutoStitcher tool.

Visual inspection of some of the less similar-appearing reconstructions reveals common patterns among 
sections where AutoStitcher’s performance deviates from that of HistoStitcher (illustrated in Fig. 7). These 
include:

(i) Misalignment, which occurs when regions on adjacent quadrants with similar appearance do not cor-
rectly line-up in the reconstructed image. This is depicted in Fig. 7a, in which the lower-left quadrant 
is misaligned relative to the lower-right and upper-left quadrants. The correctly aligned quadrants are 
shown in the corresponding HistoStitcher reconstruction in Fig. 7b, based on the operator correctly 
identifying where the edges should line up between quadrants. Note that misalignment could also be 
caused by variation in the depth of tissue sectioning and the orientations of quadrants within a section15. 
This is because regions on adjacent quadrants that come from significantly different depths are less likely 
to have a similar appearance.

(ii) Over-compensation for missing tissue gaps which occurs when there are large portions of tissue missing 
from the fragments, and AutoStitcher stitches the quadrants together too tightly. In Fig. 7a, the result 
of over-compensation by the algorithm is apparent in the marked closeness of the lower-left and low-
er-right quadrants, which contrasts with the significant gap left between these two quadrants in the 
HistoStitcher reconstruction shown in Fig. 7b. While missing tissue is accounted for in HistoStitcher 
reconstruction by the operator visualizing how the gaps would appear on a PWMHS, this remains one of 
the main sources of errors in the case of AutoStitcher.

(iii) Lack of scaling of quadrants by AutoStitcher, as this has not been been implemented in the current ver-
sion of the algorithm. This is evident in the differences in sizes of the upper-right and lower-right quad-
rants in the AutoStitcher reconstruction shown in Fig. 7c and the HistoStitcher reconstruction shown in 
Fig. 7d.

(iv) Excessive overlap of adjacent quadrants, as both HistoStitcher and AutoStitcher allow for some overlap 
to ensure optimal alignment of quadrants. Despite the fact that there can theoretically be no overlap 
between quadrant images, both HistoStitcher and AutoStitcher allow for overlap as they utilize only 
rigid-body transformations when reconstructing a PWMHS. An example of excessive overlap can be 
seen in the upper-left and lower-left quadrants in the AutoStitcher reconstruction, shown in Fig. 7c. In 
the HistoStitcher reconstruction shown in Fig. 7d, there is considerably less overlap between these quad-
rants, based on the operator manually selecting fiducials that would ensure this.

Experiment 2: Qualitative and Quantitative Evaluation of Reconstruction Accuracy in terms 
of Hausdorff Distance. Figure 6 illustrates the high degree of visual similarity between the reconstruction 
outlines of AutoStitcher (blue) compared to HistoStitcher (red). These visualizations are supported by a median 
normalized Hausdorff Distance of 3%, over all 113 sections (see Table 3), indicating that the reconstruction out-
lines are highly similar between AutoStitcher and HistoStitcher.

Further inspection of the HistoStitcher reconstructions shown in Fig. 6b, d indicates that they appear slightly 
wider than the automated reconstructions in Fig. 6a,c. This may be because the HistoStitcher reconstructions 
allow for more space near the center of the PWMHS to account for missing tissue. As discussed in section the 
previous subsection and illustrated in Fig. 7, misalignment of tissue fragments and differences in the handling of 
missing tissue between AutoStitcher and HistoStitcher account for the majority of AutoStitcher’s error.

Experiment 3: Multi-Site Evaluation. AutoStitcher’s performance was not found to be significantly 
different between the two institutions for all measures (Table 3). The errors were seen to be marginally higher 
across all evaluation measures on the validation dataset from St. Vincent’s hospital. As depicted in Fig. 8 via 
box-and-whisker plots comparing the training, testing, and validation cohorts, ASF and MSF errors have similar 
ranges between all 3 cohorts. However, the Hausdorff distance errors have noticeably larger ranges and are slightly 

University of 
Pennsylvania (Training)

University of 
Pennsylvania (Testing)

St. Vincent’s Hospital 
(Validation) Cumulative

Inter-Institutional Difference 90% Confidence 
Interval (University of Pennsylvania (test) vs. 

St. Vincent’s Hospital).

Number of Patients 9 17 17 36

Number of Sections 20 44 49 113

Median PWMHS Size (μ m) 
(Width × Height) 39,382 ×  31,216 39,768 ×  31,796 41,609 ×  34,043 40,750 ×  33,080

Median Absolute Error (ASF) 945.45 974.64 1164.4 1061.6

Median Normalized Error (ASF) 2.55% 2.75% 3.03% 2.89% Statistically equivalent [− 0.61%, 0.16%]

Median Absolute Error (MSF) 764.41 988.71 1172.3 976.24

Median Normalized Error (MSF) 2.29% 2.67% 2.75% 2.70% Statistically equivalent [− 0.50%, 0.30%]

Median Absolute Error (H) 1014.3 1153.7 1348.3 1141.3

Median Normalized Error (H) 2.85% 3.36% 3.44% 3.20% Statistically equivalent [− 0.80%, 0.50%]

Table 3.  Multi-Site Evaluation.
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higher on average on the testing and validation cohorts, compared to the training cohort. This can be explained 
by the fact that the Hausdorff measure is computed based on a single pair of points, and uses the distance between 
points at which the aligned outlines are furthest apart, whereas the ASF and MSF are computed based on averages 
of several pairs of points.

Experiment 4: Comparison of required time for AutoStitcher vs. HistoStitcher. As shown 
in Table 4, a novice user of HistoStitcher can take as little as 40 or as long as 80 minutes to complete a stitch 
(depending on how many times they repeat the process to get a reasonably appearing reconstruction), while 
an experienced user can perform a stitch in as little 10–20 minutes since they require fewer repetitions. On the 
other hand, the time required for AutoStitcher to perform a stitch is independent of the level of user experience, 
and is thus consistently between 4–10 minutes of computation time alone. This is because while AutoStitcher 
requires only that the user input the image files of each quadrant, and specify whether to flip if quadrants were 
incorrectly flipped relative to one other during scanning and digitization (which takes up to 30 seconds on 
average), HistoStitcher requires significantly more user interaction and laborious point selection. When using 
HistoStitcher, users identify a minimum of nine total pairs of initial corresponding fiducial points to stitch two 
pairs of quadrants and a pair of hemispheres. After identifying an initial set of corresponding points, they may 
need to repeat the process by modifying the set of points many times to obtain a satisfactory final reconstruction. 
Further, this process of point selection has to be repeated for each pair of quadrants and hemispheres.

By comparison, once the set of fragments comprising a single section are identified for AutoStitcher recon-
struction, the process of stitching them together is fully automated. Therefore, while a stitching time of 4–10 min-
utes per section for AutoStitcher vs. 10–20 minutes per section for HistoStitcher may seem like a moderate 
improvement, the user-interaction time for AutoStitcher is negligible relative to that of HistoStitcher. To pro-
vide some context, while a pathologist or researcher seeking to reconstruct a dataset consisting of one-hundred 
sections using HistoStitcher might spend 2 hours per day at 15 minutes per section and thus take a total of 2.5 

Figure 7. Visual inspection of PWMHSs stitched by (a,c) AutoStitcher and (b,d) HistoStitcher, to reveal 
common causes of reconstruction error: (i) misalignment of quadrants, (ii) under-compensation for missing 
tissue gaps, (iii) lack of scaling, and (iv) excessive overlap. AutoStitcher reconstruction in panel (a) has MSF, 
ASF, and Hausdorff errors of 6.56%, 5.85%, and 5.46% compared to corresponding HistoStitcher reconstruction 
in Fig. 7b. AutoStitcher reconstruction in Fig. 7c has MSF, ASF, and Hausdorff errors of 5.51%, 3.27%, and 
5.70% compared to HistoStitcher reconstruction in Fig. 7d.
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weeks to stitch the entire dataset, the same dataset could be automatically reconstructed by AutoStitcher in under 
12 hours at 7 minutes per section, with a majority of that time being spent on computation.

Concluding Remarks
We have presented an automated program called AutoStitcher, which robustly and efficiently digitally stitches 
pseudo whole mount histological sections from multiple smaller tissue fragments with an accuracy and quality 
consistent with previous semi-automated methods2. Reassembly of whole histological sections from smaller tis-
sue fragments allows for visual and spatial co-registration with pre-operative in vivo imaging. This approach can 
thus allow for spatially mapping disease extent annotated on the ex vivo pathology images onto the in vivo imag-
ing. AutoStitcher is the first attempt at an algorithm for automated stitching of histology images, and is funda-
mentally different from algorithms used in similar problem domains in that it makes none of the assumptions of 
(a) overlap, (b) completeness, and (c) interlock. The algorithm utilizes a novel cost function that performs align-
ment using a combination of (i) a quantitative measure of image similarity and (ii) automatically detected fiducial 
points, and achieves computational efficiency on high-resolution histology images by optimizing this function 
hierarchically at multiple resolution levels. AutoStitcher resulted in PWMHS reconstructions that were evaluated 
as quantitatively and qualitatively similar to reconstructions performed manually by humans (via HistoStitcher), 
as measured by human-selected and automatically detected fiducial points as well as the difference between 
reconstruction contours (difference error of 3% for all measures considered, over 113 PWMHS reconstructions). 
Our experimental design included separate training and testing cohorts (from 1 institution) and independent val-
idation of the method and parameters on data from a different institution. The differences in the performance of 
AutoStitcher on data from across the 2 institutions was statistically equivalent to within 1%. AutoStitcher requires 
approximately 4–10 minutes to reconstruct a single section with a negligible amount of user-interaction, while 
an expert performing manual stitching using HistoStitcher requires 10–20 minutes of user-interaction. When 
considering large data cohorts that require reconstruction of large numbers of sections, AutoStitcher could thus 
save substantial amounts of time and substantially reduce user error.

In future work, the accuracy and efficiency of AutoStitcher could potentially be improved by (a) exploring 
a larger set of image features for computing region dissimilarity, (b) making the localization of corresponding 
points across the tissue cut boundary even more robust by incorporating additional domain-information into the 
cost function, (c) using more sophisticated data-driven statistical methods of incorporating prior knowledge of 
the prostate capsule and urethra shape, such as active shape models, (d) explicitly detecting areas where tissue is 
missing, (e) correcting for tissue scaling and nonlinear warping by adding more degrees of freedom to the opti-
mization function, and (f) comparing reconstructions of AutoStitcher to a reference standard with intact tissue 
(such as high resolution ex vivo MR prior to sectioning). These methods could potentially allow sections with 
large quantities of missing or extra tissue to be stitched more accurately. Although histology sections are likely 
to undergo scaling and nonlinear warping during tissue processing, in this work we have focused on stitching 
quadrants together using only rigid transformations. This is because simultaneously solving for just rigid trans-
formations of four individual quadrants was already a highly complex computational problem with nine degrees 
of freedom. Finally, AutoStitcher could further be validated to work with other types of histological data such as 
breast or kidney pathology specimens.
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Figure 8. Box and whisker plots of evaluation results between the training cohort, the testing cohort, 
and the validation cohort, with boxes marking the median, lower-quartile, and upper-quartile, dashed-
lines connecting the extremes; and crosses marking outliers. Boxes are colored green, cyan, and purple to 
distinguish between the three cohorts.

Novice Expert

HistoStitcher 40–80 minutes 10–20 minutes

AutoStitcher 4–10 minutes 4–10 minutes

Table 4.  Time to stitch a single section using AutoStitcher vs. HistoStitcher.
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