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Self-Similar Random Process and 
Chaotic Behavior In Serrated Flow 
of High Entropy Alloys
Shuying Chen1,*, Liping Yu2,*, Jingli Ren2, Xie Xie1, Xueping Li2, Ying Xu2, Guangfeng Zhao3, 
Peizhen Li3, Fuqian Yang3, Yang Ren4 & Peter K. Liaw1

The statistical and dynamic analyses of the serrated-flow behavior in the nanoindentation of a 
high-entropy alloy, Al0.5CoCrCuFeNi, at various holding times and temperatures, are performed to 
reveal the hidden order associated with the seemingly-irregular intermittent flow. Two distinct types 
of dynamics are identified in the high-entropy alloy, which are based on the chaotic time-series, 
approximate entropy, fractal dimension, and Hurst exponent. The dynamic plastic behavior at both 
room temperature and 200 °C exhibits a positive Lyapunov exponent, suggesting that the underlying 
dynamics is chaotic. The fractal dimension of the indentation depth increases with the increase of 
temperature, and there is an inflection at the holding time of 10 s at the same temperature. A large 
fractal dimension suggests the concurrent nucleation of a large number of slip bands. In particular, for 
the indentation with the holding time of 10 s at room temperature, the slip process evolves as a self-
similar random process with a weak negative correlation similar to a random walk.

High-entropy alloys (HEAs)1–15 found in 1990’s have attracted great attention due to their unique structural prop-
erties. HEAs are defined as the multi-principal component alloys, including five or more principal elements, with 
molar ratios ranging from 5~35 atomic percent (at. %). HEAs are different from conventional alloys with one 
or two major components, i.e., the addition of small amounts of other alloying elements into alloys in order to 
enhance physical properties, such as Al-based alloys and Co-Ni-based superalloys. Recently, it was reported that 
ternary and quaternary alloys can also be regarded as HEAs, such as ZrNbHf16 and WNbMoTa17. Specifically, 
with a large number of elements, HEAs soon form solid solutions with structures, including body-centered-cubic 
(BCC) structure3,17–19, face-centered-cubic (FCC) structure3,20–22, or hexagonal-closed-packed (HCP)  
structure3,23–25, rather than complicated intermetallic compounds, which could be attributed to the large con-
figurational entropy. In addition, HEAs possess superior properties, such as the enhanced yield strength26, good 
resistance to wear and fatigue15,22,27 and corrosion28,29, remarkable fracture-toughness at cryogenic temperature4, 
and excellent properties at elevated temperatures30.

Nanoindentation has been used to probe the mechanical properties of materials on micron and submicron 
scales, such as contact modulus, hardness, creep parameters31–34, and residual stresses35. Although nanoinden-
tation has become a great technique for the measurement of mechanical properties on small scales, it may have 
even greater importance as a method to experimentally study the fundamental knowledge controlling the physics 
of materials, such as staircase-like shapes observed in the displacement-time curves of bulk metallic glasses at low 
deformation rates36.

Serrated flows in the plastic regime of HEAs have been widely observed in compression and nanoindentation 
tests. In the compressive tests of HEAs, it was shown that the physical origin of this intermittent flow was with a func-
tion of testing temperature, composition, phase formation, strain rate, and so on3,12,37–40. For example, Zhang et al.  
found that the serration is greater at low temperatures with a strain rate of in 10−3 s−1 than 10−1 s−1  Zhang et al.3;  
analyzing the sizes of serration, Dahmen et al.12 found that increasing temperature led to the transition of the 
serrated stress-strain curves from type-A to B to C PLC-band41 (characterized by almost periodically-recurring 
large slips). Nevertheless, how the serrations change with external conditions, and the physical mechanism in 
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nanoindentation of high-entropy alloys are still unclear. In order to answer the above questions, we use statistical 
and dynamic analyses to extract the hidden information of the intermittent flow in the nanoindentation of a 
high-entropy alloy, Al0.5CoCrCuFeNi, at various holding times and temperatures.

Experimental Details
The Al0.5CoCrCuFeNi (in atomic percentage) alloy was prepared by arc-melting a mixture of principal elements 
of high purity [> 99.9 weight percent (wt.%)] in a Ti-gettered high-purity argon atmosphere. The processes of 
melting and solidification were repeated at least five times to achieve high homogeneity. The molten alloy was, 
then, drop-cast into a water-cooled copper mold of 2 mm in diameter. A disk of 2 mm in thickness, which was 
cut from the as-cast Al0.5CoCrCuFeNi HEA rod, was mechanically ground and polished to obtain two parallel 
surfaces of a mirror quality to eliminate surface effects.

High-energy synchrotron X-ray diffraction (XRD) was performed at the advanced photon source (APS), 
using the 11-ID-C beam-line located at the Argonne national laboratory to obtain the initial diffraction patterns 
of the sample for structural characterization.

Nanoindentation tests were carried out in a Nano Test Vantage (Micro Materials). A diamond Berkevich 
indenter with a nominal tip radius of ~ 50 nm was used. The machine compliance was calibrated to be 0.30 nm/mN.  
The nanoindentation test was performed under the mode of load control with the peak load of 100 mN. Both the 
loading rate and unloading rate were 10.00 mN/s. Room temperature and 200 °C were chosen to study the effect 
of temperature on the indentation deformation. For each temperature, three different holding times of 5, 10, and 
20 s at the peak load were used. At least 3 indents were performed for each indentation condition. The penetration 
depth and indentation load were used in the characterization of the near-surface mechanical behavior of the 
Al0.5CoCrCuFeNi HEA.

There is a heat shield to ensure no heat flowing into the loading head with sensitive components and a separate 
active heat controller for both the cement -sample stage and indenter to limit the heat flow during indentation. 
There is also a water-cooled heat shield to contain the radiant heat from the hot stage. The procedure of automatic 

Figure 1. Schematic of indentation load vs. time. 

Figure 2. Depth-time curves for the nanoindentation of the Al0.5CoCrCuFeNi HEA with the holding times 
of 5 s, 10 s, and 20 s at room temperature (RT) and 200 °C. 
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multiple stages was used to heat the sample and indenter to the pre-determined temperature with the highest 
stability. Both the sample and indenter were heated at 1.6 °C per minute to avoid any thermal shock. During the 
indentation, a corrected thermal drift rate was calculated, using the post indentation data. For each indentation, 
the thermal drift rates were measured three times. All the displacements for the same test condition were cor-
rected, using the obtained thermal drift according to the time when they were recorded. For all the nanoindenta-
tion at the temperature of 200 °C, the calculated thermal drift rates were less than 0.9312 nm/s.

Figure 1 shows the schematic of the indentation process. At the beginning of (a), the indentation load was 
applied to the sample at a loading rate of 10.00 mN/s, reaching the maximum load of 100 mN at the point of (c), 
and then maintained at 100 mN for different times of 5, 10, and 20 s. After the holding period of (c), the indenta-
tion load was reduced at an unloading rate of 10.00 mN/s. Figure 2 shows typical displacement vs. time curves for 
the indentations at room temperature and 200 °C with three holding times of 5, 10, and 20 s.

Microstructures and Methods of Analysis
The synchrotron XRD patterns for the initial Al0.5CoCrCuFeNi alloy are shown in Fig. 3. The peaks in the XRD 
image appear as the single FCC phase with no pronounced peak splitting and texturing during the solidification 
process.

In the present work, the dynamical and statistical analyses are applied to investigate the evolution of serrations 
at the stage of a constant indentation load. First, we briefly introduce several methods for dynamical and statisti-
cal analyses to be used.

Time-series analysis. Given a time series, {σ(k), (k =  1, 2, … , N)}, the mutual information method42 is used 
to introduce a time-delay reconstruction of a phase space. To reconstruct a phase space from a signal, a time delay 
and an embedding dimension are needed. For two time sequences, A and B, the probabilities of measuring values 
of ai and bk are PA(ai) and PB(bk), respectively. Note that the union probability for ai and bk to appear simultane-
ously is PAB(ai, bk). Defining the mutual information quantity, = 
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Figure 3. Diffraction pattern of the initial microstructure of theAl0.5CoCrCuFeNi HEA. 
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E2(m) =  E*(m +  1)/E*(m). For a deterministic data, there always exists some m with E2(m) ≠  1. The value of m is, 
then, determined when E1(m) is unchanged, and E2(m) is approaching 1.

Largest Lyapunov exponent. After the delay and embedding dimension are calculated, the Wolf ’s 
method44 is used to find the largest Lyapunov exponent. For detailed analysis, see refs 45–48. For a given time 
series, the set of Y m( )ti

  =  {σ(ti +  τ), … , σ(ti +  (m −  1)τ), ti =  1, … , [N −  (m −  1)τ]} constitutes the reconstructed 
attractor with the delay, τ, and the embedding dimension, m.

Starting from the initial point, Y(t0), and its nearest neighbor point,Y0(t0)[the European distance between 
these two points, L(t0)], one can track the evolution of these two points until a time, t1, with 

ω′ = − >L Y t Y t( ) ( )0 1 0 1 , is obtained. Here ω is a constant and slightly larger than the minimum distance of 
each two points. Then the point, Y1(t1), is the nearest neighbor point toY(t1). The distance between these two 
points is L1. Repeat the above process until them-dimensional vector, Y(ti), reaches the end of the time series. 
Defining M as the total number of the repeated steps, and tM as the end time, one obtains the largest Lyapunov 
exponent as λ = ∑− =
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Approximate entropy. Here, the concept of the approximate entropy49 is introduced to the system. Given 
the depth signal, the m-dimensional vector is defined by Y(i) =  {σ(i), σ(i +  1), … , σ(i +  m −  1), i =  1, … , 
[N  −   (m  −   1)]},where m  denotes the dimension. Defining the distance between Yi and Yj as 

σ σ= + − − + −d Y i Y j i k j k[ ( ), ( )] max ( 1) ( 1) , k =  1, 2, … , m, one obtains the number, N(i), of which 
Y(i) satisfies the condition of d[Y(i), Y(j)] <  r, j =  1, 2, … , N −  m +  1. In the calculation, r =  0.2Sx is used with Sx 
being the standard deviation of the sequence, {σ(k), (k =  1, 2, … , N)}. Let .., where C r( )i
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degree of self-correlation, Φ m(r) −  Φ m+1(r) represents the degree of randomness of the sequences, {σ(i), i =  1, 2, 
… , N}. For the reconstructed phase space, the points become rare, and the probability of correlations becomes 
small with increasing the dimension, m. Thus, C r( )i

m  and Φ m(r) decrease with a larger value of m. The approxi-
mate entropy is calculated as ApEn =  Φ m(r) −  Φ m+1(r).

Fractal dimension. In this section, the box-counting method in50 is introduced. To cover the total data of a 
segment with a length, L, one needs at least N(l) =  L/l boxes. Similarly, to cover the total data of a square with a 
side length of L, one needs at least N(l) =  (L/l)2 boxes. Changing the box size of l, one obtains a series of N(l). 
Using the induction, the measurement can be expressed as N(l) =  ((N)/(l))D, where D is the fractal dimension of 
the signal. Taking natural logarithm processing of the above expression, we obtain D =  ln N(l)/(ln L − ln l) If l is 
small enough so that − ln l ≫  ln N, and = −

→
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 is obtained. For the slip bands12,22,39, there exists a fractal 
structure due to the interactions among the hierarchies of slip bands at different positions and in different direc-
tions. A large fractal dimension suggests the concurrent nucleation of a large number of slip bands throughout the 
material51.

Hurst exponent. The detrended fluctuation analysis, measuring the scaling behavior of the fluctuations, has 
been described in refs 52–55. Divide the signal {σ(i), i =  1, 2, … , N, into Nq zones, where Nq =  N/q, with each zone 
containing q elements. In the k-th zone, the detrended time series are σ σ− = …ˆi i i q( ) ( ), 1, 2, , ,k k  with the 
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Figure 4. Depth-time curves at the holding phase for the nanoindentation of the Al0.5CoCrCuFeNi HEA 
with the holding time of 5 s at room temperature and 200 °C. 
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interval length of q and repeating the above process, one obtains a sequence of Fq with Fq following a power-law 
scaling as: Fq ~ qH. Here, H is the Hurst exponent, which reflects the long-range memory dependence of the signal, 
and can predict whether the future trend is consistent with the previous or not51.

Dynamic Analysis and Modeling
Consider the evolution of the serrations during the nanoindentation of the HEA, Al0.5CoCrCuFeNi. To examine 
the effect of holding time, the depth signal during the holding stage for the indentation tests, which is depicted 
in Figs 4–6, is used.

Using above methods of the dynamical and statistical analyses, the time delay, τ, embedding dimension, m, 
the largest Lyapunov exponent, λ1, the fractal dimension, D, Hurst exponent, H, and D +  H of the serrated flow 
sequence are calculated for three holding times at room temperature and 200 °C, respectively. Tables 1 and 2 list 
the numerical results.

Holding Time(s) 5 s 10 s 20 s

τ 1 1 1

m 10 10 10

λ1 0.0088 0.0023 0.0133

ApEn 0.6762 0.7501 0.6096

D 1.295 1.2514 1.3871

H 0.3665 0.4947 0.2426

D +  H 1.6615 1.7461 1.6297

Table 1.  Dynamic parameters for the nanoindentation with three holding times at room temperature. 
Time delay: τ, embedding dimension: m, the largest Lyapunov exponent: λ1, approximate entropy: ApEn, fractal 
dimension: D, and Hurst exponent: H.

Holding Time(s) 5 s 10 s 20 s

τ 2 1 1

m 11 10 10

λ1 0.0537 0.016 0.0347

ApEn 0.8062 0.5581 0.5934

D 1.3727 1.358 1.3624

H 0.2357 0.2368 0.3872

D +  H 1.6054 1.5948 1.7514

Table 2.  Dynamic parameters for the nanoindentation with three holding times at 200 °C.

Figure 5. Depth-time curves at the holding phase for the nanoindentation of the Al0.5CoCrCuFeNi HEA 
with the holding time of 10 s at room temperature and 20 °C. 
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In a certain temperature and strain-rate regime, HEAs deform via sudden slips that are visible as stress drops 
or “serrations” in the stress-strain curves12. The magnitude of the stress decreases with time once a slip band is 
formed. The appearance of slip bands are controlled by thermally-activated rearrangements of dislocation struc-
tures56. The intermittent serrated flow has been recognized as a stick–slip behavior. The stick-slip behaviors are 
characterized by a stick phase that normally lasts much longer than the slip phase, a feature has been observed in 
the serration deformation of bulk metallic glasses45.

The stick–slip process is also a deterministic nonlinear phenomenon. The time-series analysis can offer a plat-
form to analyze this phenomenon and shed light on the complexity of the stick-slip process. One of the character-
istics for chaotic behavior is the sensitivity to initial conditions, which is quantified by the existence of a positive 
Lyapunov exponent, λ1. The trajectories for different initial conditions will be convergent, if the largest Lyapunov 
exponent is negative, while the trajectories will disperse finally for a positive Lyapunov exponent.

The largest Lyapunov exponent as a function of holding time is shown in Fig. 7. From Tables 1 and 2, the 
largest Lyapunov exponents are positive, regardless of temperature and holding time. This result suggests that 
the serration associated with slip bands possesses the complexity of chaotic behavior. The chaotic characteristics 
related to the formation of a single slip band likely involve the concurrent slip motion of multiple dislocations 
under the action of the external stress, resulting in reasonable ductility.

Note that the largest Lyapunov exponents at 200 °C are larger than those at room temperature for the same 
holding time, which reveals the temperature dependence of the largest Lyapunov exponent (Tables 1 and 2). 
At elevated temperatures, dislocations can readily move, and the dislocation motion becomes more chaotic. 
Figures 4–6 show that for higher temperatures, the serrations of depth-time curves become relatively larger 

Figure 6. Depth-time curves at the holding phase for the nanoindentation of the Al0.5CoCrCuFeNi HEA 
with the holding time of 20 s at room temperature and 200 °C. 

Figure 7. The largest Lyapunov exponent, λ1, and approximate entropy, ApEn for the holding times of 5 s, 
10 s, and 20 s. 
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regardless of the holding times, which are also consistent with the largest Lyapunov exponent predictions. The 
trend of the largest Lyapunov exponent is not a monotonous function of the holding time with an inflection at 
the holding time of 10 s for both temperatures. In Fig. 7, the largest Lyapunov exponent for the holding time of 
10 s at room temperature is the smallest among all the values, indicating that the serrated flow during the inden-
tation exhibits the least degree of chaos. The largest Lyapunov exponent for the holding time of 5 s at 200 °C is 
the greatest, suggesting that the serrated flow has the greatest degree of chaos. This result reveals that there exist 
interactions among dislocations, which controls the formation of slip bands. In this stage, the relaxation time 
approached the reloading time. The internal energy is not totally relaxed and favors the formation of new bands 
nearby the previous one.

The variation of the approximate entropy (ApEn) with time reflects the level of uncertainty with time. A larger 
value of ApEn represents more complexity and irregularity of the signal. Figure 7 also shows the variation of the 
approximate entropy with holding time. For the indentation at 200 °C, the trend of the approximate entropy is 
consistent with the largest Lyapunov exponent. At the holding time of 5 s, the largest Lyapunov exponent and 
approximate entropy are the largest, which suggests the increase of the interaction among slip bands and the com-
plexity of the slip process. It is interesting to note that the tendency of the approximate entropy is in contrast to 
the tendency of the largest Lyapunov exponent for the indentation at room temperature. For the holding time of 
10 s, the largest Lyapunov exponent is the smallest, implying that the sensitivity of the signal to initial conditions 
decreases, while the approximate entropy is the largest, suggesting the increase of the degree of freedom.

The fractal dimension, D, which represents the fractal behavior51,57, is depicted as a function of holding time 
in Fig. 8. From the values of the fractal dimension shown in Fig. 8, one can conclude that the time-series exhibits 
a fractal behavior introduced by the long-range time correlation between the small and large fluctuations. For the 
indentation with the holding time of 10 s at room temperature, the fractal dimension reaches the minimum of 
1.2514, which reflects a high degree of homogenization. For the holding times of 5 and 10 s, the fractal dimensions 
calculated for 200 °C are higher than those for room temperature, which implies that there is an enhanced fractal 
behavior at an elevated temperature. The largest value of D is 1.3871 for the indentation with the holding time of 
20 s at room temperature, which represents the influence of the holding time on serrations. This result suggests 
that slip bands with a hierarchical structure can propagate in a scale-free manner, and there exists the effect of 
holding time on the serrated flow due to the stress-assisted motion of dislocations. The largest Lyapunov exponent 

Figure 8. Fractal dimension, D, Hurst exponent, H, and D +  H of the depth signals for the holding times of 5 s, 
10 s, and 20 s; (a) room temperature, and (b) 200 °C.
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and the fractal dimension reach the maximum with the holding time of 5 s at 200 °C while the maximum occurs 
with the holding time of 20 s at room temperature. This conclusion reveals that at an elevated temperature, there 
is an enhanced fractal behavior with slip bands interacting with each other with less holding time, while this 
complex phenomenon is apparent with more holding time at a lower temperature.

Figure 8 shows the variation of the Hurst exponent with holding time. A larger value of the Hurst exponent 
represents the self-similar stochastic behavior, while a smaller value reveals the clutter intersecting during the 
slip process. The Hurst exponent of an anti-persistent process is in a range of 0 to 0.5, which suggests that the 
evolution trend of the slip process is opposite to the past progress due to the absence of the long-memory depend-
ence51. For H in the range of 0.5 to 1, the Hurst exponent represents a positive correlation, implying that the 
evolution trend of the signal is consistent with the past. The Hurst exponent of 0.5 implies that the behavior of the 
series is completely random, and there is no consistent relationship between past and future trends.

From Tables 1 and 2, one can note that the Hurst exponent is in the range of 0.23 to 0.49. Accordingly, the evo-
lution trend is opposite to the past progress. The depth signal increases during a certain time and then decreases 
during the next time. This ascending-descending trend is consistent with the fluctuation in serration, where the 
serration increases with the energy aggregation and then decreases with the energy release. The Hurst exponent 
for the indentation at room temperature reaches the maximum of 0.4947 for the holding time of 10 s, suggesting 
that the depth signal is a self-similar random process with a weak negative correlation. The slip process is similar 
to a random walk, which introduces the homogenization of microstructures to some degree. On the other hand, 
the minimum of the Hurst exponents is 0.2357 for the indentation with the holding time of 5 s at 200 °C. There 
exists a strong negative correlation of the slip process, when the anti-persistent behavior is accompanied with the 
increase of the interaction of slip bands (dislocations) at an elevated temperature.

For a stochastic process, there is a linear relationship (D =  n +  1 −  H) between the fractal dimension and 
the Hurst exponent. Following ref. 58, a modified Cauchy class associated with the fractal dimension with the 
Hurst exponent is introduced, i.e., c(r) =  (1 +  |r|α)−(β/α)−1[1 +  (1 −  β)|r|α], r ∈  R, where α ∈  (0, 2], β ≥  0.For this 
correlation function, the fractal dimension, D, and the Hurst exponent, H, are defined as D =  n +  1 −  α/2 and 
H =  1 −  β/2, respectively. Here n is the dimension of the signal space. The correlation becomes more applicable 
with the modified Cauchy class, since the linear relationship is unsatisfactory. For the indentation with the hold-
ing time of 10 s at room temperature, the maximum value of D +  H is 1.7461, with α =  1.4972, β =  1.0106, and 
H =  0.4947 (Table 1). The slip process is near a self-similar random process with a weak negative correlation. Note 
that all the values of H fall into (0, 0.5). One can have the restriction of β > 1 in the modified Cauchy class similar 
to the result in51.

For the indentation with the holding time of 20 s at 200 °C, D +  H is 1.7514 (Table 2), implying a self-similar 
random process. For the holding time of 5 s, the Hurst exponent of 0.2357 suggests a strong negative correlation. 
This strong anti-persistent behavior is accompanied by the increase of the interaction among slip bands. This 
result is consistent with the above analysis that the largest Lyapunov exponent and the fractal behavior. Under 
such a condition, the plastic deformation due to multiple interactions among slip bands is characterized by a 
low degree of homogenization, i.e., heterogeneity. The heterogeneity in the depth signal reveals a disordered and 
complex slip process.

Summary
In summary, the dynamic plastic behavior of the Al0.5CoCrCuFeNi HEA during the nanoindentation at both 
room temperature and 200 °C is chaotic. The fractal dimension and the largest Lyapunov exponents of the depth 
signal increase with the increase of temperature, while there is an inflection with the holding time of 10 s at the 
same temperature. A larger fractal dimension suggests a greater slipping rate of slip bands, which are accompanied 
by the spread of the hierarchical structure. It suggests that slip bands with a hierarchical structure can propagate 
in a scale-free manner, and there exists the effect of holding time on the serrated flow due to the stress-assisted 
motion of dislocations. For the indentation with holding time of 10 s at room temperature, H =  0.4947, and the 
slip evolves as a self-similar random process with a weak negative correlation.
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