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Oncogenic KRAS triggers MAPK-
dependent errors in mitosis and 
MYC-dependent sensitivity to  
anti-mitotic agents
David Perera & Ashok R. Venkitaraman

Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects 
on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing 
oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the 
uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, 
we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects 
in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation 
and de-regulated expression of several mitosis-related genes. These anomalies are accompanied 
by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor 
MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation 
between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when 
surveying a large database of anti-cancer drug responses. However, we report that the co-existence of 
KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a 
novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues 
to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-
mitotic drugs.

Recent studies implicate several proteins controlling mitotic progression as being synthetic lethal with onco-
genic KRASG13D in human colorectal cancer cells1–3, consistent with the heightened sensitivity of these cells to 
paclitaxel when compared to their wild-type counterparts2. However, neither the mechanism nor the uniform-
ity of anti-mitotic drug sensitivity connected with mutant KRAS expression is yet clear. Indeed, several lines 
of evidence suggest that mutant KRAS expression per se may not be a marker of anti-mitotic drug sensitivity. 
For example, inhibition of the mitogen-activated protein kinase (MAPK) pathway, which is hyper-activated 
by oncogenic KRAS, sensitises cancer cells to the microtubule stabiliser paclitaxel (also known as Taxol)4–6. 
Moreover, lung cancer cell lines harbouring KRAS mutations are significantly more resistant than cell lines with 
wild-type KRAS to growth inhibition induced by the anti-mitotic agent GSK923295, an inhibitor of the kinesin 
centromere-associated protein E (CENP-E)7. Therefore, it remains unclear if or how mutations activating KRAS 
may confer sensitivity to anti-mitotic chemotherapeutics.

One hypothesis is that oncogenic KRAS induces poorly characterised mitotic alterations, termed ‘mitotic 
stress’, that underlie tumour sensitivity to anti-mitotic agents2. Consistent with this notion, pancreatic ductal 
adenocarcinomas, > 90% of which harbour mutant forms of KRAS8, frequently exhibit abnormal mitotic figures 
and aneuploid chromosome number9,10. But whether these anomalies are direct consequences of KRAS activation 
has not yet been determined. Indeed, although KRAS is the RAS family member most often mutated in human 
cancer11, it is another RAS gene, HRAS, which is better studied in this regard. Thus, over-expression of oncogenic 
HRASG12V is reported to provoke several mitotic defects including centrosome amplification, micronuclei forma-
tion, chromosome mis-alignment and weakening of the spindle assembly checkpoint12–17, for which no mechanis-
tic explanation has yet been elucidated. Whether similar anomalies occur in cells expressing mutant KRAS, and 
if so, through what mechanism, remain open questions.
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We have investigated these issues, and report here that oncogenic KRAS provokes errors in mitotic chromo-
some alignment and segregation dependent on activation of MAPK signalling. Contrary to expectation, however, 
KRAS mutation status does not correlate with increased sensitivity to anti-mitotic agents when analysing a small 
in-house panel of cancer cell lines, three isogenic cell line pairs or a large database of anti-cancer drug responses. 
Instead, and consistent with a recent report18, we identify an apoptotic mechanism regulated by the transcription 
factor MYC that determines the sensitivity of KRAS-mutant cells to anti-mitotic drugs, and show that, consistent 
with this mechanism, the co-existence of KRAS mutations with elevated MYC expression predicts sensitivity 
to anti-mitotic drugs. Our findings open new avenues for therapeutic intervention in KRAS-mutant cancers, 
highlighted by the increasing clinical acceptance of therapeutic regimes combining anti-mitotic drugs with other 
agents for KRAS-mutant lung or pancreatic cancers.

Results
Oncogenic KRAS expression provokes defective progression through mitosis in a MAPK-
dependent manner. Previous reports suggest KRAS-mutant cancer cells display abnormalities during mitosis2.  
To explore this, we generated a stable cell line where expression of KRASG12D can be induced by treatment with 
doxycycline (Dox). Figure 1a shows expression of ectopic KRASG12D after a 24-hour treatment of HeLa FRT/
TO KRASG12D cells (from here on, termed HeLaG12D) with doxycycline. The transgene has a single myc tag at 
its amino terminus, distinguishing it in size from the endogenous RAS proteins. As expected, activation of the 
downstream MAPK pathway occurs upon doxycycline treatment, as detected by increased phosphorylation and 
nuclear translocation of Extracellular signal-regulated kinase (ERK) 1 and 2 (Fig. 1a and Supplementary Fig. S1).  
As a positive control, we treated HeLaG12D cells with Extracellular Growth Factor (EGF), which triggers a con-
siderably higher increase in phosphorylated ERK1/2. Known downstream effects of RAS-MAPK pathway acti-
vation such as elevated expression and/or stabilization of MYC and tumour suppressor ARF are also observed at 
later time points (5 days post-doxycycline; Fig. 1b), demonstrating that this model system recapitulates several 
characteristics of RAS pathway activation.

In order to analyse mitotic progression and chromosome behaviour shortly after expression of KRASG12D, 
we stably integrated GFP-tagged histone H2B into HeLaG12D cells, and performed time-lapse imaging 24 h 
after addition of doxycycline. As shown in Fig. 1c, untreated cells spent an average of 50 minutes in mitosis 
(scored from nuclear envelope breakdown [NEB] to anaphase; n =  250 cells), while a significant proportion of 
doxycycline-treated cells showed delayed progression through mitosis (mean value of 95 minutes; n =  252 cells). 
Closer inspection of the time-lapse data revealed that KRASG12D-expressing HeLa cells displayed a variety of 
mitotic defects including errors in chromosome alignment and segregation (Fig. 1d and Supplementary Fig. S2).  
We note that, in most cases, these defects were relatively mild, with 1–2 unaligned or lagging chromosomes in 
anaphase, consistent with the fact that KRAS is not a direct mediator of mitosis, and instead suggesting that 
oncogenic KRAS may exert subtle regulatory effects on the mitotic machinery. Importantly, neither parental 
cells devoid of transgene expression nor cells expressing wild-type KRAS showed mitotic delay or defects in 
chromosome alignment or segregation upon doxycycline treatment (Fig. 1c,d and Supplementary Fig. S3). Taken 
together, these results indicate that acute expression of oncogenic KRAS triggers aberrant mitotic division asso-
ciated with delays in progression through mitosis.

In order to explore the mechanism by which KRASG12D leads to defects in mitosis, we treated H2B-GFP- 
expressing HeLaG12D cells with doxycycline for 24 h, then added two different MEK1/2 inhibitors: the 
first-generation compound, U0126, and the highly potent and selective inhibitor, AZD6244. Treatment with 
either inhibitor prevented mitotic delay as well as the appearance of mitotic defects triggered by KRASG12D expres-
sion (Fig. 1e,f). This result suggests that mitotic abnormalities elicited by oncogenic KRAS expression require 
MAPK pathway activation.

To further analyse the mitotic defects in HeLaG12D cells, we looked at the ability of KRASG12D-expressing 
cells to form a stable bipolar spindle upon release from a Monastrol block19,20. Interestingly, the majority of 
doxycycline-treated HeLaG12D cells exhibited metaphase spindles with abnormal geometry upon Monastrol 
washout, with poles often out of line with normal spindle orientation (Supplementary Fig. S4a–c). Spindles also 
appeared longer and narrower than in control, non-induced cells (Supplementary Fig. S4d,e). These results suggest 
expression of KRASG12D influences one or more processes essential for mitotic progression. In fact, quantitative  
PCR analysis showed expression of several mitosis-related genes was down-regulated in doxycycline-treated 
HeLaG12D cells prior to mitotic entry (Supplementary Fig. S5), providing a potential explanation for the 
observed mitotic defects in these cells. The list of de-regulated mitotic genes includes centromere protein A 
(CENPA) and centromere protein M (CENPM), which encode proteins essential for the assembly of a functional 
kinetochore21, cohesin associated factor PDS5B22, and several genes encoding proteins involved in mitotic spindle 
formation and/or maintenance, such as microtubule-associated protein 7 (MAP7, also known as Ensconsin or 
E-MAP-115)23,24, large tumour suppressor kinase 2 (LATS2)25 and kinesin family member 2C (KIF2C, also known 
as MCAK)26,27.

We then decided to check whether expression of KRASG12D provokes mitotic defects in a different cell line. For 
this purpose, we stably integrated GFP-tagged histone H2B into an isogenic pair of lung cancer cell lines that only 
differ in their KRAS genotype (NCI-H1975 KRAS+/+ and KRASG12D/+), and monitored cell division by time-lapse 
microscopy. As shown in Fig. 2a, GFP-H2B-expressing KRASG12D/+ cells displayed a higher incidence of chro-
mosome alignment and segregation defects compared to the parental NCI-H1975 KRAS+/+ cells, suggesting 
KRASG12D-triggered mitotic defects are not a phenotype exclusive of HeLa cells. We then engineered immortalised, 
non-transformed retinal pigment epithelial cells (hTERT-RPE-1; hereafter referred as RPE) to express KRASG12D 
upon doxycycline treatment. Interestingly, doxycycline-treated RPEG12D cells did not display errors in mitosis 
or a delay in mitotic progression when compared to un-induced RPEG12D cells (Supplementary Fig. S6a,b).  
We noticed however that expression of ectopic KRASG12D protein was lower in the polyclonal RPEG12D 
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Figure 1. Expression of KRASG12D in HeLa cells leads to mitotic defects in a MAPK-dependent manner. 
(a) HeLaG12D cells were treated with doxycycline (Dox) for 24 hours, and 10 ng/ml EGF was added 5 minutes 
before harvesting. Equal amounts of protein lysates were blotted with the indicated antibodies. Top arrow points 
to ectopic myc-tagged KRASG12D, while bottom 2 arrows point to endogenous RAS isoforms. (b) HeLaG12D 
cells were treated with doxycycline for 5 days, protein lysates were prepared and blotted with the indicated 
antibodies. Actin was used as a loading control. (c) HeLaG12D cells expressing GFP-H2B were treated with 
doxycycline for 24 hours then monitored by time-lapse microscopy for a further 24 hours. The scatter dot plot 
shows time spent in mitosis (scored as the time taken from NEB to anaphase onset), represented in minutes. 
HeLa FRT/TO parental cells were used as controls. Data was obtained from 3 independent experiments, and  
> 250 cells were analysed for each condition. Red lines represent mean values. ns, not significant; ***p <  0.0001 
(Mann Whitney test). (d) Bar graph depicting the percentage of cells with abnormal division (including defects 
in chromosome alignment and/or segregation, as well as multipolar divisions) from the time-lapse movies in 
(c). Bars represent mean values ±  S.E.M. from 3 independent experiments. (e) GFP-H2B-expressing HeLaG12D 
cells were treated with doxycycline for 24 hours, then 0.5 μ M AZD6244 (AZD) or 10 μ M U0126 were added 
before monitoring by time-lapse microscopy. Scatter dot plot shows time spent in mitosis as in (c). Data was 
obtained from 2 independent experiments. Red lines represent mean values. ***p <  0.0001 (Mann Whitney 
test). (f) Bar graph depicting the percentage of cells with abnormal division from the time-lapse movies in (e).
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Figure 2. KRASG12D-induced mitotic defects are accompanied by increased nuclear accumulation of 
ERK1/2. (a) Asynchronously growing GFP-H2B-expressing NCI-H1975 KRAS+/+ and KRASG12D/+ cells were 
monitored by time-lapse microscopy for 24 hours. Bar graph depicts the percentage of cells with abnormal 
division (mean ±  S.E.M. from 3 independent experiments), with > 40 cells analysed per experiment for each 
cell line. *p <  0.05 (paired t-test). (b) Individual HeLaG12D clones expressing GFP-H2B were treated with 
doxycycline for 24 hours then monitored by time-lapse microscopy for a further 24 hours. The scatter dot plot 
shows time spent in mitosis, represented in minutes. Data was obtained from 3 independent experiments, and 
67–97 cells were analysed for each condition. Red lines represent mean values. ns, not significant; *p <  0.05; 
***p <  0.0001 (Mann Whitney test). (c) Bar graph depicting the percentage of cells with abnormal division 
from the time-lapse movies in (b). Bars represent mean values ±  S.E.M. from 3 independent experiments.  
(d) Individual HeLaG12D clones were treated with doxycycline for 24 hours, then fixed and stained for the myc 
tag (KRASG12D) and ERK1/2. Bar graph depicts KRASG12D pixel intensity (left Y axis) and nucleo-cytoplasmic 
(N:C) ratio of ERK1/2 (right Y axis). (e) GFP-H2B-expressing RPEG12D cells were treated with doxycycline 
and synchronised in G1/S by addition of thymidine, then released from the G1/S block in the presence or 
absence of EGF and monitored by time-lapse microscopy. Bar graph depicts the percentage of cells with 
abnormal division. Bars represent mean values ±  S.E.M. from 3 independent experiments, with 16–64 cells 
analysed per condition in each experiment. ns, not significant; *p <  0.05; **p <  0.005 (paired t-test).
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population than in HeLaG12D cells (data not shown), prompting us to investigate whether the increased expres-
sion levels of KRASG12D were responsible for the induction of mitotic defects. To address this possibility, we 
first monitored mitotic progression in 3 independent HeLaG12D clones. As shown in Fig. 2b,c, mitotic defects 
and delay were only observed in clones 3 and 4, which show higher expression of KRASG12D than clone 11 
(Supplementary Fig. S6c). This result suggests that elevated levels of KRASG12D expression may be required for the 
induction of errors in progression through mitosis. We then analysed mitotic progression in RPEG12D clone 4, 
which expresses KRASG12D at levels comparable to the HeLaG12D polyclonal population (Supplementary Fig. S6c).  
Surprisingly, no mitotic defects were observed in these cells either (Supplementary Fig. S6d,e), suggesting ele-
vated expression of oncogenic KRAS per se is insufficient to trigger defective cell division.

Interestingly, we noticed that RPEG12D cells were unable to fully activate the MAPK pathway, as meas-
ured by their inability to induce translocation or ERK1/2 into the nucleus upon doxycycline treatment 
(Supplementary Fig. S6f and data not shown). However, translocation of ERK1/2 into the nucleus was readily 
apparent in HeLaG12D cells, both in the polyclonal population and in individual clones 3 and 4 (Fig. 2d and 
Supplementary Fig. S1). These results suggest that the inability of KRASG12D to fully activate MAPK pathway in 
RPE cells might be responsible for the lack of induction of mitotic defects in these cells, consistent with the fact 
that KRASG12D-triggered mitotic errors in HeLa cells are mediated by MEK (see Fig. 1). To test this hypothesis, we 
treated RPEG12D cells with EGF, which induces hyper-activation of the MAPK pathway independently of onco-
genic KRAS activation. Strikingly, EGF-treated RPEG12D cells showed an increase in the incidence of mitotic 
errors (Fig. 2e). Taken together, our results suggest that abnormal activation of the MAPK pathway, which occurs 
in most cell types following oncogenic KRAS activation, results in defective mitotic progression.

Oncogenic KRAS expression increases sensitivity to anti-mitotic drugs. We hypothesized that 
the mitotic delay observed in HeLaG12D cells could enhance sensitivity to treatments perturbing normal mitotic 
progression. Indeed, the colony-forming ability of doxycycline-treated HeLaG12D cells was reduced compared 
to untreated cells when cultured in the presence of the kinesin Eg5 inhibitors Monastrol or S-trityl-L-cysteine 
(STLC; Fig. 3a). As a control, we treated HeLa parental cells with doxycycline, then with Eg5 inhibitors. As shown 
in Supplementary Fig. S7a, no differences in colony-forming ability were observed in doxycycline-treated vs. 
untreated parental cells challenged with Eg5 inhibitors. Importantly, expression of KRASG12D on its own sufficed 
to reduce colony formation (Fig. 3a, white bars, DMSO), indicating KRASG12D expression has anti-proliferative 
effects in HeLa cells and consistent with the fact that it compromises mitotic cell division. Indeed, when 
doxycycline-treated HeLaG12D cells were followed by time-lapse microscopy over a period of 2 days after release 
from a double thymidine block, it was apparent that abnormal divisions induced by KRASG12D expression led to a 
higher incidence of death of ‘grand-daughter’ cells (Supplementary Table S1). This finding is consistent with the 
decreased ability of these cells to form colonies in the long term.

Interestingly, we also observed signs of apoptosis (as determined by cleavage of caspase-3 and PARP) as early as 
24 h after Eg5 inhibition in doxycycline-treated vs. untreated HeLaG12D cells (Fig. 3b and Supplementary Fig. S7b),  
indicating the combination of anti-mitotic drug treatment with acute KRASG12D expression leads to premature cell 
death. Similar results were observed when challenging cells with paclitaxel (Supplementary Fig. S7c). To inves-
tigate this phenotype in more detail, we performed phase-contrast time-lapse imaging of doxycycline-treated 
HeLaG12D cells upon addition of 50 μ M Monastrol, half the concentration required for maximal Eg5 inhibition20.  
As shown in Fig. 3c, control HeLaG12D cells (-doxycycline) were only partially delayed in mitosis (median 
value =  180 minutes) and the majority of cells stayed alive during the period of filming (48 hours). In contrast, 
Monastrol treatment led to a significant delay in mitosis in doxycycline-treated HeLaG12D cells, with 50% of cells 
dying during this protracted mitotic arrest (Fig. 3c,d). At higher concentrations of Monastrol (100 μ M), the dif-
ference between doxycycline-treated and untreated HeLaG12D cells was still apparent albeit less significant (80% 
cells dying during mitosis + doxycycline, compared to 50% -doxycycline; Fig. 3e). Similar results were observed 
with a different Eg5 inhibitor (STLC) and with a different spindle poison (paclitaxel; Fig. 3f and Supplementary 
Fig. S7d). Of note, low concentrations of paclitaxel (5–10 nM), comparable to the intracellular level of paclitaxel 
in treated patients and cell lines28, were required to expose different sensitivity between doxycycline-treated and 
untreated HeLaG12D cells (Fig. 3f and Supplementary Fig. S7c,e). At these concentrations, the mitotic delay 
was mild (median value =  107 minutes -doxycycline, 130 minutes + doxycycline; n =  30 cells analysed per con-
dition; Supplementary Fig. S7e, left panel). At higher concentrations (30–100 nM), the delay in mitosis was more 
pronounced and, although all cells died in mitosis irrespective of doxycycline exposure, KRASG12D-expressing 
HeLa cells (+ Dox) died significantly faster than non-expressing cells (-Dox; Supplementary Fig. S7e, middle and 
right panels), suggesting KRASG12D expression primes cells for the induction of apoptosis, leading to faster cell 
death upon anti-mitotic drug treatment. Taken together, these results suggest expression of KRASG12D can lead to 
increased sensitivity to anti-mitotic agents by two mechanisms: by lowering the death threshold prior to mitotic 
entry, and by delaying mitotic progression, which allows for death signals to accumulate.

Transcriptional down-regulation of BCL-XL by MYC mediates cell death in response to 
anti-mitotic treatments in KRASG12D-expressing cells. To explore the mechanism of cell death of 
KRASG12D-expressing cells after exposure to anti-mitotic chemotherapeutics, we focused on the well-established 
connection between oncogenic RAS and MYC. Expression of oncogenic RAS leads to up-regulation of the 
transcription factor MYC via ERK-mediated phosphorylation and subsequent protein stabilisation29,30. As 
described above (see Fig. 1b), HeLaG12D cells display increased expression levels of MYC, confirming this 
observation. MYC is known to regulate transcription of several members of the BCL-2 protein family, key 
mediators of apoptotic cell death, in several contexts31–34. Furthermore, MYC has been recently shown to be a 
key mediator of cell death in response to anti-mitotic drugs18. Therefore, we hypothesized that up-regulation 
of MYC in KRASG12D-expressing cells might result in elevated expression of pro-apoptotic proteins and/or 
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reduced expression of anti-apoptotic proteins, leading to accelerated cell death after challenge with anti-mitotic 
drugs. To test this hypothesis, we transfected doxycycline-treated HeLaG12D cells with siRNA oligos target-
ing MYC. Twenty-four hours after transfection, cells were treated with paclitaxel and immediately monitored 

Figure 3. KRASG12D expression increases sensitivity to anti-mitotic drugs in HeLa cells. (a) Bar graph 
depicting the number of colonies in HeLaG12D cells pre-treated with doxycycline for 48 hours, then treated 
with 100 μ M Monastrol or 5 μ M STLC for 3 days and cultured in the absence of drugs for a further 5 days. Bars 
represent mean values ±  S.E.M. (n =  3 independent experiments). **p <  0.01; ***p <  0.001 (Two-way ANOVA 
with Bonferroni post-tests). (b) Immunoblots of HeLaG12D cells treated with doxycycline for 48 hours, then 
with Monastrol for a further 24 hours. Protein lysates were probed for PARP and cleaved (i.e. active) Caspase-3. 
Actin was used as a loading control. (c) HeLaG12D cells were pre-treated with doxycycline then incubated with 
Monastrol and filmed by phase-contrast time-lapse microscopy. Scatter dot plot shows time from mitotic entry 
(NEB) to either mitotic exit or death (whatever comes first). Dot colors reflect the fate of individual cells: green 
(mitotic exit and survival of daughter cells, at least up to the point the filming ends); red (death from mitosis); 
black (mitotic exit and death from interphase). Only cells entering mitosis were analysed (n ≥  30). Horizontal 
bars represent mean values. (d) Representative images from time-lapse movies analysed in (c), depicting the 
three different fates scored. Note that treatment with this concentration of Monastrol led to some apparently 
normal divisions and 2 (sometimes more) daughter cells. Numbers represent time in minutes from NEB. Scale 
bar, 10 μ m. (e) Stacked bar graph representing the fate of HeLaG12D cells pre-treated with doxycycline, then 
challenged with two different concentrations of Monastrol. Bar colors represent cell fates as described in (c,d). 
(f) Stacked bar graph representing the fate of HeLaG12D cells pre-treated with doxycycline, then challenged 
with 5 nM paclitaxel and monitored by phase-contrast time-lapse microscopy. Bar colors represent cell fates as 
described in (c,d).
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by phase-contrast time-lapse imaging. As shown in Fig. 4a, MYC knockdown rescued mitotic cell death in 
KRASG12D-expressing HeLa cells to levels comparable to those in non-induced cells. Apoptosis induction, as 
measured by PARP cleavage, was also rescued in Monastrol-treated HeLaG12D cells transfected with two differ-
ent siRNA oligos targeting MYC (Supplementary Fig. S8a; compare lane 6 with lanes 12 and 18).

The prevailing model of cell fate regulation in response to anti-mitotic drugs hints at the existence of a yet 
unidentified death signal which accumulates during drug-induced mitotic arrest18,35. In order to test the possi-
bility that MYC might mediate such a death signal, and to elucidate the mechanism by which it might do so, we 

Figure 4. Cell death elicited by anti-mitotic agents in KRASG12D-expressing HeLa cells is mediated by MYC 
and BCL-XL. (a) Stacked bar graph representing the fate of HeLaG12D cells pre-treated with doxycycline, 
transfected with MYC or control siRNA oligos, then challenged with 10 nM paclitaxel and monitored by phase-
contrast time-lapse microscopy (n =  30 cells analysed per condition). Bar colors represent cell fates as described 
in Fig. 3c. (b) Immunoblot analysis of HeLaG12D cells untreated or treated with doxycycline for 48 hours, then 
transfected with control or MYC siRNA oligos and probed with the indicated antibodies. Actin was used as a 
loading control. (c) Stacked bar graph representing cell fate of HeLaG12D cells pre-treated with doxycycline, 
transfected with control, MYC and BCL-XL siRNA oligos, then challenged with 10 nM paclitaxel and monitored 
by phase-contrast time-lapse microscopy (n =  80 cells analysed per condition in two independent experiments). 
Bar colors represent cell fates as described in Fig. 3c. (d) Immunoblots of HeLaG12D cells pre-treated with 
doxycycline, transfected with control, MYC and/or BCL-XL siRNA oligos, then challenged with 100 nM 
paclitaxel for 28 hours. PARP cleavage was monitored as a sign of apoptotic cell death. Equal amounts of 
protein lysates were loaded for each sample, and Ponceau staining was used as a loading control, as Actin levels 
decreased in samples with significant levels of death. (e) HeLaG12D cells were pre-treated with doxycycline, 
transfected with control, MYC and BCL-XL siRNA oligos, then challenged with 10 nM paclitaxel and monitored 
by phase-contrast time-lapse microscopy. Bar graph depicts the percentage of daughter cells surviving the 48-
hour filming period.
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tested whether MYC accumulates during paclitaxel-induced mitotic arrest. We monitored MYC protein levels 
in HeLaG12D cells upon mitotic entry, in the presence of paclitaxel, following release from a single thymidine 
block. Strikingly, MYC levels dropped rapidly upon entry into mitosis in both doxycycline-treated and untreated 
cells: by 12 h post-release (when ∼ 80% cells had already entered mitosis), MYC levels were almost undetectable 
(Supplementary Fig. S8b,c). This result indicates that MYC protein levels do not increase during mitotic arrest. 
On the contrary, they decrease rapidly. These findings therefore suggest that MYC abundance during mitosis does 
not determine cell fate upon exposure to anti-mitotic drugs.

Several members of the BCL-2 protein family have been involved in determining the response to anti-mitotic 
agents, including anti-apoptotic proteins BCL-XL and MCL-1 (reviewed in35). Since transcription of several 
of these genes is controlled by MYC31–34, we reasoned that MYC-mediated regulation of death in response 
to anti-mitotics might be dependent on regulation of expression of one or more of these apoptotic proteins. 
Interestingly, we found that BCL-XL expression was lower in doxycycline-treated HeLaG12D cells trans-
fected with control siRNA oligos (Fig. 4b), thus providing a potential explanation for the increased lethality of 
KRASG12D-expressing HeLa cells, both in the absence and in the presence of anti-mitotic drugs (see Fig. 3 and 
Supplementary Fig. S7). Moreover, we found that expression of BCL-XL and MCL-1 was up-regulated following 
MYC knockdown (Fig. 4b). Conversely, expression of pro-apoptotic protein BIM, which has also been involved 
in determining paclitaxel sensitivity, was severely down-regulated following MYC knockdown, especially fol-
lowing doxycycline treatment (Fig. 4b). These results suggest KRASG12D controls expression of anti-apoptotic 
protein BCL-XL, thus generating a pro-death environment that can be exploited by anti-mitotic drug treat-
ment. Furthermore, our results, in agreement with what has been recently reported18, indicate MYC controls the 
expression of a network of proteins with known roles in determining apoptotic response to anti-mitotic agents. 
Importantly, by co-transfecting HeLaG12D cells with siRNA oligos targeting BCL-XL and MYC, we found that 
the rescue of cell death observed following MYC knockdown was abolished by simultaneous BCL-XL deple-
tion (Fig. 4c,d). Not only was death in mitosis enhanced, but so was the death of daughter cells upon mitotic 
exit (Fig. 4e). These results indicate that MYC-mediated down-regulation of anti-apoptotic protein BCL-XL 
mediates sensitisation to anti-mitotic drugs induced by KRASG12D. Whether down-regulation of MCL-1 and/or 
up-regulation of BIM play a role in this context is still unclear.

KRAS-mutant cancer cells are not selectively sensitive to anti-mitotic drugs. The MYC-dependent  
increased sensitivity to anti-mitotic chemotherapeutics in KRASG12D-expressing HeLa cells prompted us to evalu-
ate the possibility of using these widely drugs to selectively kill KRAS-mutant tumours, a strategy previously sug-
gested by others2. For this purpose, we analysed a panel of KRAS-mutant cancer cell lines for their response to a 
48-hour treatment with STLC. Apoptotic cell death was measured by Annexin-V staining, and 5 cell lines encod-
ing wild-type KRAS were used as controls. As shown in Fig. 5a, we observed no correlation between response to 
STLC treatment and KRAS mutational status.

We reasoned that genetic alterations in these cancer cell lines other than mutations in KRAS might affect 
their response to anti-mitotics. To rule this out, and to monitor the role exclusively of KRASG12D, we again used 
the isogenic pair NCI-H1975 KRAS+/+ and KRASG12D/+. Strikingly, NCI-H1975 KRASG12D/+ cells were slightly 
less sensitive to both paclitaxel and STLC when compared to their wild-type isogenic counterparts (Fig. 5b and 
Supplementary Fig. S9a,b). We note that this small difference might be due to differences in proliferation rate. 
Indeed, NCI-H1975 KRASG12D/+ cells grow slightly slower than NCI-H1975 KRAS+/+ cells (Supplementary Fig. S9c).  
Similarly, no apparent increase in sensitivity to STLC was observed when using a different isogenic pair of cancer 
cell lines: SW48 KRAS+/+ and KRASG12D/+ (Supplementary Fig. S9d). Interestingly, no differences in the response 
to STLC, measured by a short-term apoptosis assay (Supplementary Fig. S9e) or by a long-term colony forming 
assay (Supplementary Fig. S9f), were observed when comparing isogenic colorectal cancer cell lines HCT116 
KRAS+/− and KRAS+/G13D, which were previously used to uncover sensitivity to several mitotic perturbations such 
as inhibition of PLK12. Note that, although we cannot rule out the possibility that differences in methodology 
may explain the apparent discrepancy between our study and that of Luo and colleagues2, our results indicate that 
mutations in KRAS do not universally confer sensitivity to anti-mitotic drug treatments. An alternative explana-
tion could be that cells’ response to anti-mitotic agents might be differentially regulated by different mutations 
in KRAS (G12D in NCI-H1975 and SW48 isogenic pairs, as opposed to G13D in HCT116), consistent with the 
notion that different KRAS mutants generate distinct signalling network signatures36.

We extended our analysis to a larger panel of cancer cell lines, by surveying the Genomics of Drug Sensitivity 
in Cancer database37, which contains information for 665 cell lines and 141 drugs, 10 of which are anti-mitotics. 
We sub-classified the cell lines into those wild-type or mutant for KRAS, using the associated genomic data, 
then obtained half-maximal inhibitory concentration (IC50) for each anti-mitotic drug (obtained using 72-hour  
viability assays) and plotted the mean IC50 values for each drug against KRAS mutational status. Strikingly, we 
observed no correlation between sensitivity to anti-mitotic drugs and KRAS status (Fig. 5c, Supplementary Table S2  
and Supplementary Fig. S10a). Similar results were obtained when analysing drug response data for the NCI-60 
cell line panel (Supplementary Fig. S10b38).

KRAS-mutant cells expressing high levels of MYC are sensitive to anti-mitotic drugs. It has been 
recently suggested that elevated MYC levels might predict anti-mitotic drug sensitivity18, a hypothesis supported 
by our own observations (see Fig. 4). To test this hypothesis, we again utilised the Genomics of Drug Sensitivity 
database, where MYC gene expression data are available for 625 out of a total of 665 cell lines tested. Cell lines 
were arranged according to their MYC expression levels, and IC50 values for the 10 anti-mitotic drugs used in this 
database were plotted for the top 50 and the bottom 50 MYC-expressing cell lines. Unexpectedly, no significant 
differences in IC50 values were observed when comparing cell lines with elevated levels of MYC against those 
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with low MYC expression (Fig. 6a), questioning the proposal that MYC expression alone is a reliable biomarker 
for anti-mitotic drug responses, and suggesting that other factors must also be involved.

We then sub-classified these 625 cell lines into wild-type or mutant for KRAS, and plotted IC50 values for the 
microtubule-interfering agents vinblastine, vinorelbine, docetaxel and epothilone-B, and the Aurora B inhibitor 
ZM447439, in relation to MYC gene expression as above. We note that IC50 values for the other 5 anti-mitotic 
drugs used in this database (STLC, VX-680, BI-2536, GW843682X and paclitaxel) were restricted to only ~20 
KRAS-mutant cell lines in each case, so we did not include these drugs in the analysis. MYC gene expression data 
were only available for 77 out of 85 KRAS-mutant cell lines in this database, so we only plotted IC50 values for the 

Figure 5. KRAS-mutant cancer cell lines are not selectively sensitive to anti-mitotic drugs. (a) Bar graph 
depicting induction of apoptotic cell death (measured by Annexin-V staining) of a panel of cell lines (5 wild-type, 
10 mutant for KRAS) treated with 5 μ M STLC for 48 hours. Values are represented as relative to the number 
of apoptotic cells in DMSO control-treated cells (shown by dashed horizontal red line). (b) Immunoblots of 
isogenic KRAS+/+ and KRASG12D/+ NCI-H1975 cells treated with paclitaxel for 48 hours. Protein lysates were 
probed with the indicated antibodies. (c) Scatter dot plot depicting half-maximal inhibitory concentration 
(IC50) values for KRAS wild-type vs. mutant cancer cell lines treated with the indicated anti-mitotic drugs. Data 
was obtained from the Genomics of Drug Sensitivity in Cancer database (GDSC; http://www.cancerrxgene.org/). 
Red bars depict median values. ns, not significant (Wilcoxon t-test).

http://www.cancerrxgene.org/
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Figure 6. KRAS-mutant cancer cell lines expressing high levels of MYC are sensitive to anti-mitotic drugs. 
(a) Scatter dot plot depicting IC50 values for the top 50 MYC-expressing cancer cell lines (MYC high) vs. the 
bottom 50 MYC-expressing lines (MYC low) treated with the indicated anti-mitotic agents. Data was obtained 
from the Genomics of Drug Sensitivity in Cancer database. Red bars depict median values. No statistically 
significant differences were observed in any pair-wise comparison (Mann Whitney test). (b) Box-and-whiskers 
graphs depicting IC50 values for the indicated anti-mitotic drugs for the top 10 MYC-expressing KRAS-mutant 
cancer cell lines vs. the bottom 10 MYC-expressing lines, as well as the top 50 MYC-expressing KRAS-wild-type 
(wt) cancer cell lines vs. the bottom 50 MYC-expressing lines.
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top 10 MYC-expressing KRAS-mutant cell lines compared to the bottom 10 expressing lines. Strikingly, a lower 
IC50 (corresponding to increased sensitivity) was observed for the top MYC-expressing KRAS-mutant cell lines 
compared to the bottom MYC-expressing lines (Fig. 6b). We note that statistical significance is only achieved with 
epothilone-B (p <  0.01, Mann Whitney test), but the other 3 drugs show a similar trend. Interestingly, there was 
no difference in the IC50 for ZM447439 (data not shown), which unlike the microtubule-targeting drugs does not 
prolong mitotic arrest but instead accelerates mitotic exit39. We then performed the same analysis on the ∼ 520 
KRAS-wild-type cell lines for which MYC gene expression and IC50 data were available. Strikingly, no obvious 
differences were observed in the IC50 values for vinorelbine, vinblastine, docetaxel or epothilone-B when com-
paring the top MYC-expressing KRAS-wild-type cell lines with the bottom MYC-expressing lines (Fig. 6b). Taken 
together, these results suggest that KRAS-mutant cancer cell lines expressing high levels of MYC are especially 
sensitive to microtubule-interfering agents, opening up new avenues for therapeutic intervention. Furthermore, 
they suggest MYC expression might not serve as a sole predictor of sensitivity to anti-mitotic drugs, but instead 
point to a potential cooperative effect of KRAS mutation and high MYC expression in determining anti-mitotic 
drug response.

Discussion
In this study, by combining the use of isogenic cell line pairs with a targeted bioinformatics analysis of a publicly 
available database and the study of mitosis progression in cultured epithelial cancer cells upon acute expression 
of oncogenic KRAS, we make several observations with important implications for cancer biology and therapy. 
Unexpectedly, we find no correlation between anti-mitotic drug response and KRAS status in archival analysis 
of over 600 cancer cell lines, in experimental comparison of a panel of 5 KRAS-wild-type and 10 KRAS-mutant 
cancer cell lines, or when measuring induction of apoptotic cell death in three independent isogenic paired cell 
lines treated with anti-mitotic drugs (see Fig. 5 and Supplementary Figs S9 and S10). Thus, our results – aris-
ing from three independent methods – question the proposal that anti-mitotic drugs may preferentially kill 
KRAS-mutant cancer cells, and caution against the use of KRAS mutational status alone as a predictive marker 
for patient stratification.

However, we find that acute over-expression of KRASG12D in HeLa cells leads to aberrant progression through 
mitosis. This phenotype is dependent on MAPK pathway activation, as it is rescued, at least partly, by MEK inhibi-
tion (see Fig. 1). Similar results have been reported when HRASG12V was over-expressed in mouse NIH/3T3 cells13,  
rat thyroid cells14 or primary human fibroblasts17. However, to our knowledge, this is the first time such phe-
notype is described upon expression of KRASG12D, the most prevalent RAS mutation in cancer, in human cells. 
Anaphase bridges are observed in ∼ 15% of human pancreatic ductal adenocarcinomas (PDAs)10 and in PDAs 
and liver metastases of Kras and Trp53 double mutant mice40. Our results suggest KRASG12D expression may 
play a role in the appearance of these mitotic abnormalities, possibly by de-regulating expression of one or more 
mitosis-related genes prior to mitotic entry (see Supplementary Fig. S5).

Interestingly, acute expression of KRASG12D in non-transformed RPE cells does not elicit the same mitotic 
phenotypes as in HeLa cells, probably due to a lack of full MAPK pathway activation in the former (see 
Supplementary Fig. S6). This result indicates that mitotic defects are not a universal phenotype downstream of 
KRASG12D activation; instead, they are likely to be dependent on cell type and, more specifically, on the ability 
of KRASG12D to activate the MAPK pathway above a certain threshold required to elicit gene expression changes 
which result in de-regulation of the mitotic machinery.

Notably, we find that acute expression of KRASG12D in HeLa cells also leads to increased sensitivity to 
anti-mitotic drugs. Our findings indicate that this phenotype is mediated by the ability of oncogenic KRAS to 
up-regulate MYC, which itself regulates transcription of several apoptotic genes in other contexts31–34. This is 
in agreement with a recent report showing that MYC is a key mediator of anti-mitotic drug responses18. In par-
ticular, we show here that RNAi-mediated depletion of MYC leads to up-regulation of anti-apoptotic proteins 
BCL-XL and MCL-1, as well as down-regulation of pro-apoptotic protein BIM. Moreover, BCL-XL knockdown 
abolishes the rescue of cell death observed following MYC down-regulation, suggesting a model wherein BCL-XL 
works downstream of MYC as a major determinant of cell death in response to anti-mitotic agents. Interestingly, 
previous reports suggest a role for BCL-XL in mediating anti-mitotic drug responses41. Our work, together with 
that of Topham and colleagues18, confirms this finding, and establishes MYC as a key regulator of cell fate in 
response to anti-mitotics by working upstream of BCL-XL.

Quantitative PCR analysis of MCL-1 following MYC RNAi showed no changes at the mRNA level (data not 
shown), suggesting MYC regulates MCL-1 at a post-transcriptional level. Interestingly, proteasomal degradation 
of MCL-1, mediated by ubiquitin ligases APC/C and FBW7, has been shown to play a key role in cell fate dur-
ing drug-induced mitotic arrest42,43. Whether MYC-mediated modulation of MCL-1 levels also plays a role in 
determining anti-mitotic drug response is yet unclear. We also find that levels of pro-apoptotic protein BIM are 
regulated by MYC in KRASG12D-expressing HeLa cells (see Fig. 4b). Whether MYC-mediated regulation of BIM 
occurs at the transcriptional or post-transcriptional level, and whether this regulation plays a role in determining 
anti-mitotic drug response, is still unclear.

We find - as expected from the short half-life of both MYC mRNA and protein44,45, coupled to the 
near-complete cessation of de novo protein synthesis during mitosis46,47 - that MYC protein levels quickly drop 
during drug-induced mitotic arrest (see Supplementary Fig. S8b,c). This suggests that MYC regulates the tran-
scription of apoptotic genes in interphase so that, upon mitotic entry, cells are primed for death if mitosis should 
be delayed. In other words, MYC may determine the ‘death threshold’ before cells enter mitosis. We propose that 
this mechanism acts in concert with other layers of regulation of death in response to anti-mitotics that directly 
rely on accumulation of death signals during prolonged mitotic arrest, such as SCFFBW7-dependent proteaso-
mal degradation of MCL-142,43, phosphorylation of BCL-2, BCL-XL and BID48,49, cyclin G1 over-expression50, 
caspase-9 dephosphorylation51 or telomere deprotection52. However, it is yet unclear whether these mitotic death 
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signals co-exist in every cell, and so it is conceivable that drug responses might be regulated by different pathways 
in different tissues or cell types, consistent with the reported variability in anti-mitotic drug responses across 
multiple cell lines53,54.

Finally, we demonstrate here for the first time that KRAS-mutant cancer cell lines expressing elevated levels of 
MYC show increased sensitivity to several microtubule-interfering agents, opening up new avenues for therapeu-
tic intervention and suggesting new strategies for patient stratification. Our study therefore bridges two key areas 
of cancer therapy: the use of anti-mitotic chemotherapeutics for the treatment of several types of cancer (where 
a clear understanding of the factors determining patients’ response is still lacking) and the long-standing, yet 
largely unsuccessful efforts to treat tumours harbouring mutant KRAS, which account for 20–25% of all human 
cancers.

Methods
Cell culture and reagents. Isogenic pairs NCI-H1975 KRAS+/+ and KRASG12D/+, SW48 KRAS+/+ and 
KRASG12D/+, and HCT116 KRAS+/− and KRAS+/G13D were purchased from Horizon Discovery (Cambridge, UK). 
All cell lines were grown in DMEM GlutaMAX supplemented with 10% foetal calf serum, 100 U/ml penicillin 
and 100 mg/ml streptomycin (Life Technologies), except RPE, which were cultured in DMEM:F-12 media sup-
plemented with 0.25% sodium bicarbonate (Life Technologies), SW48 (RPMI-1640 media, Life Technologies), 
and Panc-02-03, Panc-05-04 and Panc-10-05 (RPMI-1640 supplemented with 20 units/ml human recombinant 
insulin, Sigma). KRAS status for all cell lines used was obtained from the Catalogue of Somatic Mutations in 
Cancer (COSMIC) database, version 76 (http://cancer.sanger.ac.uk/cosmic). Parental FRT/TO HeLa and RPE cell 
lines (kind gifts from Stephen Taylor [University of Manchester] and Jon Pines [Gurdon Institute, Cambridge], 
respectively) were used to generate doxycycline-inducible cell lines as described previously55,56. Stable integrants 
were selected with 4 μ g/ml blasticidin (Invivogen) and 200 μ g/ml hygromycin (Roche) for HeLa, or 10 μ g/ml blas-
ticidin and 400 μ g/ml G418 (Life Technologies) for RPE. Transgene expression was achieved by treatment with 
0.1 μ g/ml doxycycline (Sigma). Other chemicals were obtained from the following suppliers: Tocris Bioscience 
(monastrol and STLC), Sigma (thymidine and paclitaxel), Cell Signalling (EGF), Calbiochem (U0126) and 
Selleckchem (AZD6244). Knockdown experiments were performed by transfecting cells with siRNA oligos at 
25 nM (Supplementary Table S3), using jetPRIME transfection reagent (Polyplus).

Immunoblotting. Cells were lysed in RIPA buffer and proteins quantified using BCA assay (Thermo 
Scientific). Proteins were loaded onto NuPAGE pre-cast gels (Life Technologies) and transferred onto HyBond 
ECL nitrocellulose membranes (GE Healthcare). Membranes were blocked in TBST (10 mM Tris-HCl pH 7.4, 
150 mM NaCl, 0.1% Tween-20) plus 5% non-fat dry milk for 1 hour, before incubation with the antibodies listed 
in Supplementary Table S4, overnight at 4 °C. Following washes with TBST, membranes were incubated with 
HRP-conjugated secondary antibodies (GE Healthcare) and developed using SuperSignal West Pico chemilumi-
nescent substrate (Thermo Scientific).

Live cell imaging. Cells were grown on multi-well 1.0-mm-thick borosilicate chamber slides (Lab-Tek). 
Phase-contrast time-lapse microscopy was performed on a Zeiss Axiovert 200M microscope, acquiring images 
every 5 minutes under a 20X objective. To visualise chromatin, GFP-tagged histone H2B was subcloned from 
pH2B-GFP (Addgene 11680) into pcDNA3.1/puro (kind gift from Chris Sullivan, University of Texas). The 
H2B-GFP transgene was then stably integrated into the required cell lines, which were selected with puromycin 
(Invivogen). Fluorescence live-cell imaging was performed on a Leica DMI6000 microscope using a HCX PL 
APO objective (40X magnification, N.A. 0.85), and images acquired every 5 minutes on an Evolve 512 EMCCD 
camera (Photometrics) using LAS AF software, then processed and analysed with ImageJ (NIH, Bethesda, 
Maryland).

Colony forming assays. Cells were treated with doxycycline for 48 hours before plating in triplicate on 
6-well dishes, at a dilution of 200 cells per well. Anti-mitotic drugs were then added for 72 hours, then washed 
out and cells allowed to grow for a further 5 days in the presence or absence of doxycycline. Cells were then fixed 
in 4% formaldehyde, washed in PBS and stained with 0.1% crystal violet (Sigma) for 20 minutes before washing 
with water. Plates were allowed to dry overnight and colonies were counted using ColCount (Oxford Optronix).

Flow cytometry. For measurement of apoptosis, cells were plated on 6-well dishes at a dilution of 200,000 
cells per well. Anti-mitotic drugs were added the following day and cells harvested 48 hours later. Apoptotic 
cells were detected by Annexin-V staining using Annexin-V/FITC Apoptosis Detection Kit II (BD Biosciences), 
according to manufacturer’s instructions, and analysed on a Becton Dickinson LSR II flow cytometer. Data was 
processed with FlowJo software. For cell cycle analysis, cells were fixed in ethanol, blocked in PBS with 0.1% 
Triton X-100 (PBST) and 1% BSA for 30 minutes, then incubated with mouse anti-phospho-MPM2 antibody 
1:500 (Millipore) for 2 h at room temperature. Following washes with blocking solution, cells were incubated with 
Alexa Fluor 488 secondary antibody (Life Technologies) for 1 h, washed with PBST and treated with 40 μ g/ml 
propidium iodide (Sigma) and 200 μ g/ml RNaseA (Sigma), then analysed as above.

Immunofluorescence and image analysis. For mitotic spindle analysis, cells grown on coverslips were 
treated with 100 μ M Monastrol for 4 h, then washed 3 times with normal growth media and released into media 
containing 20 μ M MG132 (Calbiochem) for 2 h to block metaphase-to-anaphase transition. Cells were then per-
meabilised for 90 s in K-buffer (100 mM PIPES pH 6.8, 1 mM MgCl2, 0.1 mM CaCl2, 0.1% Triton X-100) to pre-
serve K-fibres, and fixed for 10 min in 4% formaldehyde diluted in K-buffer. Following washes in PBS with 0.1% 
Triton X-100 (PBST), cells were blocked in PBST plus 5% milk, incubated with mouse monoclonal anti-β -Tubulin 
1:1000 (clone D66, Sigma) for 30 min, then incubated with Alexa Fluor 568 secondary antibody 1:500 (Life 

http://cancer.sanger.ac.uk/cosmic
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Technologies) for another 30 min. Following washes in PBST, coverslips were mounted and counterstained with 
DAPI-containing VectaShield (Vector Labs). Images were acquired as 1 μ m-step Z-stacks on a Leica SP5 laser 
scanning confocal microscope using a 100x objective (N.A. 1.4), and analysed and processed using ImageJ.

For co-staining of ERK1/2 and myc-tagged KRAS, cells grown on coverslips were fixed in 4% formaldehyde 
diluted in PBS for 10 min at room temperature. Following washes in PBST, cells were blocked in PBST plus 1% 
BSA for 30 min, then incubated with mouse monoclonal anti-Myc tag 1:500 (clone 4A6, Millipore) and rabbit 
monoclonal anti-ERK1/2 1:100 (clone 137F5, Cell Signalling) for 1 h at room temperature. Following washes 
in PBST, cells were incubated with Alexa Fluor 488 or 568 secondary antibodies diluted 1:500, then mounted 
as above. Images were acquired as 1 μ m-step Z-stack tile scans on a Leica SP5 laser scanning confocal micro-
scope using a 63x objective (N.A. 1.4). Nucleo-cytoplasmic ratio of ERK1/2 was measured using ImageJ. Briefly, 
a nuclear mask was created using the DAPI image, then superimposed on the ERK1/2 image to quantify nuclear 
signal. The cytoplasmic signal intensity was then quantified from the inverse image once the extracellular back-
ground signal was removed.

Extraction of RNA and quantitative PCR. Total RNA was obtained using the RNeasy mini kit (Qiagen), 
according to manufacturer’s instructions, and cDNA was generated from 1 μ g RNA using the Cloned AMV 
First-Strand cDNA Synthesis Kit (Invitrogen), using Oligo(dT)20 primers and Random Hexamers. Quantitative 
PCR was performed on the LightCycler 480 (Roche) using LightCycler 480 SYBR Green I Master Mix (Roche), 
according to the manufacturer’s recommendations. Gene-specific primers were designed manually or using 
Primer-BLAST (NCBI), purchased from Sigma, tested in a standard PCR reaction for generation of a single band 
only, and used at a final concentration of 0.25 μ M (see Supplementary Table S5). Each sample was run in tripli-
cates in a 96-well LightCycler 480 Multiwell Plate (Roche), and mRNA levels were estimated by normalising Cp 
values for each gene compared to Cp values of the housekeeping gene TATA-box binding protein (TBP), using the 
equation 2[Cp(ref)-Cp(target)], where ref is the reference gene (TBP) and target is each particular target gene.

Statistical analyses. All statistical analyses were performed using GraphPad Prism version 5 (GraphPad 
Software).
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