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Obtaining Human Ischemic Stroke 
Gene Expression Biomarkers from 
Animal Models: A Cross-species 
Validation Study
Yingying Wang & Yunpeng Cai

Recent studies have revealed the systematic altering of gene expression in human peripheral blood 
during the early stages of ischemic stroke, which suggests a new potential approach for the rapid 
diagnosis or prediction of stroke onset. Nevertheless, due to the difficulties of collecting human 
samples during proper disease stages, related studies are rather restricted. Many studies have instead 
been performed on manipulated animal models for investigating the regulation patterns of biomarkers 
during different stroke stages. An important inquiry is how well the findings of animal models can 
be replicated in human cases. Here, a method is proposed based on PageRank scores of miRNA-
mRNA interaction network to select ischemic stroke biomarkers derived from rat brain samples, and 
biomarkers are validated with two human peripheral blood gene expression datasets. Hierarchical 
clustering results revealed that the achieved biomarkers clearly separate the blood gene expression of 
stroke patients and healthy people. Literature searches and functional analyses further validated the 
biological significance of these biomarkers. Compared to the traditional methods, such as differential 
expression, the proposed approach is more stable and accurate in detecting cross-species biomarkers 
with biological relevance, thereby suggesting an efficient approach of re-using gene biomarkers 
obtained from animal-model studies for human diseases.

With the advent of molecular biotechnology, investigations on the molecular mechanism of cerebrovascular acci-
dents are garnering increasing attention1–8. Through microarray analysis, recent studies have revealed that the 
genomic profile of human peripheral blood cells rapidly respond to cerebrovascular system damage9,10. Within 
the first 3 to 5 hours of stroke onset, a pervasive alternation of the gene expression profile can be observed from 
peripheral blood cells9, which affects multiple types of blood cells, including monocytes, polymorphonuclear 
leukocytes, neutrophils, and platelets11. Further investigations indicate that the impacts of cerebrovascular dam-
age on blood gene expressions are propagated through various pathways, including inflammatory and immune 
response, cell growth and differentiation, hypoxia, vascular repair, and altered cerebral microenvironment12. 
Moreover, the patterns of genomic alternation during stroke are clearly distinguishable from other types of vas-
cular diseases, such as myocardial infarction13. In addition to mRNA, former studies have also shown that many 
miRNAs were dysregulated in the brain and blood tissue of rodent ischemic stroke models14–16 by binding to 
their targets. Thus, investigating the gene regulation process of peripheral blood cells not only aids in exploring 
the molecular dynamics and physiological details during stroke development, but it also provides a promising 
approach for the etiology, pathology, early diagnosis, prognosis, and even prevention of the disease.

Nevertheless, sample collection poses a severe challenge to in-depth studies of human stroke genomics. 
Due to the suddenness of stroke onset, it is difficult to capture the blood sample of patients at the desired stage. 
Furthermore, for ethical reasons, it is essentially impossible to deliberately control the clinical status of a patient 
to observe the corresponding gene expression changes. Accordingly, rather than human subjects, animal models 
are then employed by many studies to infer the genomic mechanism of stroke and discover potential molecu-
lar biomarkers17–25. With animal models, researchers are given greater freedom to probe the physiological and 
molecular changes in various organs, such as brain tissues17, rather than in only blood cells. Furthermore, through 
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animal models, researchers are able to obtain a more comprehensive knowledge about vascular pathophysiology 
after stroke onset through different methods, such as gene regulation analyses18, erythropoietin- induced changes 
analyses19, biological factors (such as age)20, pathways21, stroke-related processes (such as neuronal injury)22, reac-
tive astrocytes23, immune responses to dying neurons, glia and vessels24, cell survival and death, and tissue repair 
and functional recovery25. Although there has been significant progress made in stroke genomics with the aid of 
animal model studies, an essential question is raised for this type of study, which is to what degree can the conclu-
sions generated from animal models be replicated in human cases? Most researchers usually use the biomarkers 
directly obtained from animal models and carry out experiments on human subjects in order to verify them. 
This approach, however, has a high chance of failure, even when the selected biomarkers are mutually expressed 
in humans and animals alike. Because the gene regulation mechanism involves a complex network interaction 
between genes, the fact that humans and animals share a mutual gene does not necessarily imply that this gene 
has equal informative value on the same disease. Therefore, a more sophisticated method should be developed so 
as to efficiently explore the results obtained in animal experiments and achieve gene biomarker models that are 
applicable to human cases.

In this paper, an approach to extract gene biomarkers and prediction models from the results of animal model 
experiments that can be reliably replicated on human subjects is proposed. The basic idea is to make use of the 
gene interaction information revealed in the development of the disease and identify hub genes that are essential 
in forming the gene interaction systems. In contrast to traditional differential expression analysis, this approach is 
more robust across platforms because hub genes are key components of the gene regulatory network that reflects 
the full picture of gene interaction, which is more stable across species as compared to individual genes. The tech-
nology is further applied to build a gene diagnosis model from the animal gene expression data and validate it 
on several human gene expression datasets of stroke patients. Due to the large number of differentially expressed 
mRNAs and the small number of training samples, it is impractical to construct a complete gene interaction net-
work. In taking advantage of the fact that miRNA has been discovered to play important regulatory roles in stroke 
development26, this study solely investigates miRNA-mRNA interactions for identifying mRNA biomarkers. A 
parallel miRNA-mRNA expression profile from rat brain tissue is used to construct a network based on negative 
correlation calculation. The PageRank27 algorithm is then used to calculate the importance of nodes including 
miRNAs and mRNAs and rank them in order so as to choose the important nodes as the featured biomarkers. 
Two datasets of human blood mRNA expression profiles are then used to test the biomarkers. The results demon-
strate that most of these markers are related to stroke, and they could clearly cluster different conditions. These 
results confirm the important value of animal stroke genomics studies on human stroke cases, and at the same 
time, the results emphasize the necessity of developing cross-species, cross-platform analysis technologies for this 
type of research.

Materials and Methods
Microarray datasets. The study involved two types of microarray datasets. The mRNA and miRNA expres-
sion profiles from manipulated rat samples were used for identifying stroke gene biomarkers. Then, two human 
mRNA expression profiles from healthy and stroke patients were used to validate the biomarkers discovered in 
the first stage.

Acute ischemic stroke expression profiles in rat model as the training set. Parallel miRNA-mRNA 
expression profiles of permanent focal ischemia that was induced by permanent occlusion of the left middle 
cerebral artery (MCA) using a sub-temporal approach28 in an in vivo male wistar rats model (GSE25676) were 
downloaded from NCBI GEO29,30.

The experimental group was treated as follows: (1) anesthetized rats with ketamine (75 mg/kg, intraperitoneal) 
and xylazine (10 mg/kg, intraperitoneal) and (2) exposed the MCA through a subtemporal craniectomy and cau-
terized it from the point proximal to its origin to the point where it intersected the inferior cerebral vein. Ischemic 
injury samples with i.c.v. injection of 80% DMSO and 30 mM ZM447439 in 80% DMSO were named as the vehi-
cle and treatment groups, respectively. The sham group was operated in the same way as the experimental group, 
just without the MCA occlusion. The RNA samples were collected from the right cortex of rats at 2 time-points 
(8-hour and 24-hour) for 3 experimental conditions (sham, vehicle, and treatment).

The dataset (GSE25676) was composed of two datasets: mRNA (GSE23651) and miRNA (GSE25556) 
expression profiles. The mRNA expression profiles (GSE23651) were performed on an Illumina ratRef-12 v1.0 
expression beadchip (GPL6101) with 22,524 probes for six conditions (the combination of 2 time-points and 
3 experimental conditions) including Sham-8 h (n =  4), Vehicle-8 h (n =  4), Treatment-8 h (n =  4), Sham-24 h 
(n =  4), Vehicle-24 h (n =  4), and Treatment-24 h (n =  4). The miRNA expression profiles (GSE25556) were per-
formed on a miRCURY LNA microRNA Array, 5th generation - hsa, mmu & rno (GPL11241) with 361 probes 
for the same samples as the mRNA expression profiles.

Ischemic stroke expression profiles in human blood as the test sets. Two ischemic stroke mRNA 
expression profiles were downloaded from the NCBI GEO database that involved ischemic stroke patients in 
either the acute or recovery stage, along with healthy controls. The GSE16561 dataset contained the mRNA 
expression profiles of 39 acute ischemic stroke patients and 24 control subjects with the total RNA extracted from 
the whole blood and analyzed on the platform of Illumina HumanRef-8 v3.0 expression beadchip (GPL6883)31 . 
The stroke patients were all older than 18 years old with an MRI diagnosed as ischemic stroke, and the controls 
were non-stroke neurologically-healthy people. There were 24,426 probes that could be mapped to 18,491 genes. 
The GSE22255 dataset contained the mRNA expression profiles of 20 ischemic stroke patients that had only 
suffered one stroke episode that had occurred at least 6 months before the blood collection and 20 sex- and 
age-matched control subjects that did not have a family history of stroke. The total RNAs were extracted from 
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PBMCs and were analyzed on the platform of the Affymetrix Human Genome U133 Plus 2.0 Array (GPL570)32. 
There were 54,676 probes that could be mapped to 20,284 genes.

Framework of Data Analyses. The systematical analyses were performed according to the following steps 
(see Fig. 1 for details):

Step 1 Data Pre-process and Gene Selection. In order to carry out cross-species and cross-platform analyses, 
gene mapping was performed on the three datasets and 11,400 genes were found to be mutually available across 
all three mRNA expression datasets and were used in the subsequent analyses. The expression value of a gene 
was the mean value of all of its probe sets because a gene may have a few transcripts due to alternative splicing or 
alternative promoters. For rat miRNA data, the 361 probes in the raw miRNA expression profiles were mapped 
to 279 mature miRNAs. Data normalization and gene selection were then carried out on the rat dataset. The 
mRNA dataset was normalized using median normalization, whereas the miRNA dataset was normalized using 
the global lowess regression algorithm. ANOVA was then performed for each gene mRNA expression profile 
among the 6 experiment conditions. Genes with a p-value of less than or equal to 0.05 were chosen as the differ-
ential expressed genes.

Step 2: Network Construction. It is been widely accepted that miRNAs normally regulate their targets in a neg-
ative way, which means their expression values are negatively correlated33,34. The parallel microRNA-mRNA rat 
expression profile data with rat brain samples were used to construct the negatively correlated network. All miR-
NAs and mRNAs with an ANOVA p-value less than or equal to 0.05 were chosen to calculate the expression 
relationships.

Step 3: Node Selection. The PageRank algorithm was used to find the important nodes in the network generated 
in Step1. The miRNAs and mRNAs were ranked separately, and the top ranked ones were chosen as the featured 
biomarkers.

Step 4: Human Data Validation. Two human blood mRNA expression profiles were used to test the classification 
ability of the mRNA biomarkers selected in Step2 based on the rat stroke model.

The details of Step 2 through Step 4 are described in the following subsections.

Network construction. After gene selection, 8885 mRNAs were chosen as differentially expressed genes 
(with p <  0.05), and they were used to construct a miRNA-mRNA interaction network by connecting them 
with all 279 miRNA profiles. The correlation score between each miRNA-mRNA pair was calculated using the 
Pearson’s correlation coefficient r, which is defined as the covariance of the two molecular variables divided by the 
product of their standard deviations as follows:
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where x represents one miRNA and y represents one mRNA. The range of r was [− 1, 1] with 0 indicating no cor-
relation, − 1 indicating a strong negative correlation, and 1 indicating a strong positive correlation. A statistical 
test was performed based on the Pearson’s product-moment correlation coefficient, and a p-value was given to 
show the significance of the r value. All the pairs with a p-value less than or equal to 0.05 and negative correlation 
scores (p <  0.05 and r <  0) were chosen to construct a weighted network. The nodes in the networks covered 

Figure 1. Framework of this study. 



www.nature.com/scientificreports/

4Scientific RepoRts | 6:29693 | DOI: 10.1038/srep29693

miRNAs and mRNAs, and each edge was weighted using the absolute value of the correlation score between the 
two nodes it connected.

It should be noted that, although only miRNA-mRNA links are considered in the network, due to the nature 
of statistical correlation, once a miRNA is involved in a signaling pathway, the mRNAs that directly interact with 
that miRNA as well as all of the mRNAs along the pathway will be assigned a score if the disturbances from other 
connections can be neglected. Thus, the method proposed in this paper will not only select genes that interact 
directly with many miRNAs, but it will also select hub genes that participate actively in various miRNA-mediated 
signaling pathways.

Node selection. The R package ‘igraph’35 was used to perform the Google PageRank27 analyses on the 
network using the Pearson’s correlation coefficient as edge weights. The PageRank algorithm has been used by 
Google Search to measure and rank the importance of website pages in search results by treating page links as a 
network and each web page as a node. With the underlying assumption that more important nodes are likely to 
have more links from other nodes, the algorithm counts the number and quality of links to a target node to make 
a rough estimate of the importance of that node. Initially, all nodes in the network are assigned an equal score. 
Then, the score of each node is transferred to its outbound connected neighbors in a strength proportion to the 
connection weights in each of the iteration, until a stable state is met. The final score is used to measure the impor-
tance of a node. A detailed description of the algorithm is available in ref. 36 PageRank and similar methods have 
been successfully used in gene expression analyses in recent years, including signaling crosstalk identification36, 
clinical outcome prediction37, miRNA-mRNA prediction38, and so on. As compared to traditional approaches, the 
aforementioned methods exhibit certain advantages, such as robustness and the ability to find potential impor-
tant biomarkers. In this study, this algorithm was used for the selection of mRNA biomarkers by measuring their 
importance in the miRNA-mRNA interaction network. PageRank was executed on the miRNA-mRNA bipartite 
network that was constructed in Step 2 described above. The miRNA and mRNA were ranked separately after 
each was assigned a score by calculation. The top-ranked mRNAs were chosen as biomarkers for validation (See 
Supplementary Table S1 for details). Due to the difficulties of achieving high-quality miRNA profiling with exist-
ing technology, miRNA biomarkers were not used for validation. Nevertheless, the top-rank miRNAs are listed 
in Supplementary Table S2 and their biological significance was validated on human subjects through literature 
search in the Result section.

Human Data Validation. Because the behavior of informative biomarkers may vary across species or dis-
ease stages even when the underlying mechanism is identical, it is not sufficient to directly test the cross-species 
replicates of the selected biomarkers using a prediction model built from animal samples. In order to validate 
the performance of the obtained gene biomarkers on human subjects, hierarchical clustering was carried out on 
the two human validation datasets in order to test whether these biomarkers could clearly separate healthy and 
stroke-afflicted people. The two test sets (IS expression profiles in human blood) were normalized using median 
normalization. The average-link hierarchical clustering was performed using function ‘heatmap.2’ in R package 
‘gplots’ using the selected top-ranked mRNA biomarkers. In the ideal case, stroke patients and healthy people 
would be clustered into two distinct clusters. The number of incorrectly clustered samples was used to evaluate 
the quality of the biomarkers.

Functional Annotation. In order to understand the biological role of the obtained gene biomarkers, func-
tional annotation analyses were performed on the top-ranked mRNAs using the DAVID functional annotation 
tool39,40. (DAVID Bioinformatics Resources 6.7, NIAID/NIH) based on integrated resources including disease, 
functional categories, Gene Ontology41,42, pathways, and so on. In addition to providing annotation query results, 
DAVID also performed a modified Fisher exact test to verify the statistical significance of the resulting function 
terms using the whole human genome as the background. A p-value was then assigned for each annotation term. 
By default, DAVID adopted a p-value threshold of < 0.1 and a hit count threshold of >  =  2 to include an annota-
tion term in the results. Moreover, function annotation clustering was carried out using fuzzy heuristic clustering 
to gather similar functions into clusters according to the degree of overlap between two annotations measured 
by the Kappa values. The geometric mean of the log-transformed p-values for all group members was used as the 
group enrichment score to measure the significance of the group.

Results
Selected Biomarkers and Validation. Table 1 lists the top 20 ranked mRNAs as selected by the PageRank 
scores according to the above described framework. The Student’s t-test results (p-values) between the stroke and 
healthy groups for each mRNA feature on the two human validation sets are also given. It can be seen that the 
vast majority of the selected genes remain highly informative on the human validation datasets, which confirms 
the idea that network analyses provide reliable results across species and microarray platforms. It can also be 
observed that all of the top 20 genes (and most of the top 100 genes) were consistently expressed in the stroke 
patients of the two validation sets. In addition, in the training samples, most of the top ranked genes were highly 
distinctive before and after the stroke, but they showed weak or no distinctions in the vehicle vs. treatment groups 
(p ~ 0.07 at 8 hour and p >  0.1 at 24 hours). Despite this, a significant number of genes can be found to be differen-
tially expressed between the two stages. Taking into considering our criteria of selecting marker genes, this may 
indicate that the altering of gene expression patterns in the acute stage of stroke is more collective and systematic 
as compared with the recovery stage. Furthermore, the above observations indicate that some of the gene expres-
sion changes brought on by stroke onset may be permanent to the suffering patient. A complete list of the top 100 
selected mRNA gene biomarkers and their description information is provided in Supplementary Table S1 in the 
appendix.
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To further demonstrate the gene selection performance, clustering analyses were carried out as proposed in 
the Methods section using the top three selected features of the two datasets. As is depicted in Figs 2 and 3, for 
dataset GSE16561, the top three features correctly clustered all patient and healthy samples, however, for dataset 
GSE22255, 90% accuracy was achieved with four healthy samples being misclassified into the patient group. The 
same separation can be observed using different numbers of marker genes (Fig. 4).

For comparison, a traditional differential expression (DE) analysis was also employed to select genes, and clus-
tering analyses was performed using the top genes. Figure 4 depicts the comparison of the clustering accuracy for 
both methods on the two human validation datasets with varied number of selected biomarkers (from top 2 to top 
100). It can be seen that the DE analysis can also pick out some genes that are replicable on human data; however, 
the clustering quality fluctuates with the different number of features used because the DE analysis produced a 
number of false gene biomarkers, which were uninformative on human data and degraded the overall perfor-
mance. This further confirms our suggestion that network analyses are more reliable in selecting cross-platform 
biomarkers than traditional approaches.

Functional analyses for top biomarkers. Among the top 100 genes and all of the 49 miRNAs in the 
network, 45 genes and 32 miRNAs were identified that have been reported to be involved in stoke through a lit-
erature search in NCBI PubMed and Google Scholar. As listed in Table 2, these biomarkers can be classified into 
the following groups: (1) biomarkers (genes) transcribed from stroke related genomic mutations (e.g., SNPs); (2) 
biomarkers (genes and miRNAs) involved in processes causing stroke onset and development (such as neuronal 
apoptosis, a rapid increase in excitatory neurotransmission, etc.); (3) biomarkers (genes and miRNAs) involved in 
biological processes accompanied with or after stroke (such as immune cell homeostasis, neuronal damage, etc.); 
(4) biomarkers (genes) involved in stroke recovery (such as the biosynthesis of N-acetylneuraminic acid, etc.); 
(5) potential stroke therapeutic targets (genes); (6) biomarkers (genes and miRNAs) that have been previously 
reported to be differentially expressed among stroke and healthy subjects or across stroke samples and subtypes 
(but without a clearly discovered mechanism); (7) biomarkers (genes and miRNAs) in the same family of known 
stroke-related markers, which can be inferred to also be likely stroke-related; and finally, (8) biomarkers (genes) 
interacting with/binding with/regulate stroke-related factors (such as p53, etc.). Furthermore, 15 of 45 genes and 
24 of 32 miRNAs were validated on human subjects, 19 of 45 genes and 4 of 32 miRNAs were validated on animal 
models, and 2 of 45 genes and 2 of 32 miRNAs were validated both on human and animal models, using various 
techniques such as RT-PCR, western blot, microarray, immunohistochemistry, and so on. The broad overlap 
between the top-ranked biomarkers and existing literature further justifies that the present method is capable of 
picking out biomarkers that are replicable and biologically relevant. The relationships among the top-ranked miR-
NAs and mRNAs were examined using multiple miRNA target computational algorithm prediction results43,44. 
These top miRNAs were shown to regulate 23.35 top genes while the top genes were shown to be regulated by 
11.44 miRNAs on average (see Supplementary Table S1 and Table S2 in the appendix for detail numbers of each 
top gene and miRNA). This indicates that the top biomarkers are closely related to each other which may explain 
the complex of IS to some degree.

Top mRNAs

Test set 1 Test set 2

p-value
Dys-regulate in stroke 

samples p-value
Dys-regulate in stroke 

samples

MAFK 8.97E-18 Up-regulated 7.79E-07 Up-regulated

TESC 4.09E-36 Down-regulated 3.02E-08 Down-regulated

SIK1 1.68E-15 Down-regulated 9.61E-05 Down-regulated

PER1 2.09E-17 Up-regulated 5.36E-06 Up-regulated

NUMB 4.76E-08 Up-regulated 0.702168172 Up-regulated

DMP1 2.51E-52 Up-regulated 4.66E-08 Up-regulated

JUN 2.80E-29 Down-regulated 0.000669585 Down-regulated

LIPE 7.75E-09 Up-regulated 1.03E-06 Up-regulated

PLAT 7.80E-39 Down-regulated 1.90E-08 Down-regulated

RTEL1 0.36504457 Up-regulated 0.8546838 Up-regulated

WDR91 6.70E-07 Up-regulated 0.007632295 Up-regulated

BTG2 1.70E-24 Down-regulated 0.000212577 Down-regulated

IQSEC3 4.52E-50 Up-regulated 1.09E-09 Up-regulated

NPAS4 3.98E-38 Down-regulated 1.15E-08 Down-regulated

CAMKK1 1.46E-20 Down-regulated 1.55E-06 Down-regulated

TTC22 1.62E-19 Down-regulated 3.46E-08 Down-regulated

ADRA1B 2.14E-34 Down-regulated 2.13E-08 Down-regulated

TCF25 0.001314673 Up-regulated 0.983744378 Up-regulated

CRHBP 6.78E-29 Up-regulated 1.13E-08 Up-regulated

SMOX 0.131954977 Up-regulated 0.386940958 Up-regulated

Table 1.  Top ranked mRNAs selected by the PageRank scores.
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Using DAVID, the gene functions of the top 100 genes were annotated and enrichment analyses were 
performed, as is shown in Supplementary Tables S3 and S4. The 100 enrichment terms were matched with a 
p-value <  0.1, and 12 genes were matched with known psychiatric diseases, which again justifies that the bio-
markers discovered in this paper are hub genes that are actively involved in key biological processes. By summa-
rizing the enrichment results, three core gene groups emerged (as is shown in Table 3), with most of the genes 
being previously known as stroke-related in literature. The first group contains 12 protein-kinase related genes 
(p =  0.0008), most of which are also involved in phosphorus metabolic processing (p =  0.0105) and ATP-binding 
(p =  0.0395). From among them, four genes (KCNH1, CAMK1G, CAMK2G, and CAMKK1) are related to 
calcium-calmodulin binding (p =  0.0002). This is consistent with previous findings that the dysregulation of pro-
tein kinase can be associated with stroke-induced injury45–50 and the finding that the inhibition of some protein 
kinases, especially calcium-calmodulin binding ones51,52 can be potential therapeutic targets53. The second group 
comprises 13 genes associated with cell cycles including proliferation, development, differentiation, and apoptosis 
following stress or stimulus responses, which reflects the compensatory reaction of the neural and cerebrovas-
cular systems following stroke onset. Notably, the intracellular signal pathways (p <  0.08), including the MAPK 
pathway and the p53 pathway, clearly bridge the two gene groups, which validates previous studies that protein 
kinases mediating extracellular stimulations to intracellular responses play essential roles in ischemic pathologic 
conditions and that inhibitors of these pathways would be promising therapeutic agents for stroke treatment54. 
Also, the dual role of the MAPK pathway55 which promotes both post-stroke damage and recovering was vali-
dated by the above grouping results. The third group is composed of nine genes (with two also in group 2) con-
cerning circadian rhythms (p <  0.0002) validated with previous literature56–58. Although the circadian rhythm of 
blood pressure is long known to be associate with stroke onset (e.g., ref. 59), the underlying molecular mechanism 
has not yet been well-studied, and the gene markers discovered here might provide valuable information for this 
topic.

Figure 2. GSE16561 cluster analyses using top three selected features. 
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Figure 3. GSE22255 cluster analyses using top three selected features. 

Figure 4. Comparison of clustering accuracy for both methods on test sets (a) GSE16561 (b) GSE22255.
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More than half (53) of the top 100 genes were found to be related to phosphoprotein, which is significantly 
enriched compared with normal backgrounds (p <  0.002). Although previous studies have discovered that some 
kinds of phosphor-proteins (such as VASP) are involved with brain-blood barrier damage or neural protections 
following stroke and other cerebral diseases60, the pervasive correlation between the stroke marker genes and 
phosphoproteins suggests that more investigations are merited regarding the role of phosphoproteins in stroke 
onset and development.

Discussion
Recently, there has been a growing interest in investigating the genetic and genomics factors of cerebrovascu-
lar and cardiovascular diseases. Genetic factors are suspected to contribute greatly to the onset of stroke since 

Classification Biomarker type mRNAs/miRNA (Rank) (Validated Species tissue)

Biomarkers transcribed from stroke 
related genomic mutations Gene PCSK2 (44) (human blood), LIMK1 (61) (human blood)

Biomarkers involved in processes causing 
stroke onset and development

Gene GADD45B (53) (rat brain), CYP46A1 (100) (rat/mouse brain)

miRNA miR-494-3p (18) (human blood)

Biomarkers involved in biological 
processes accompanied with or after stroke

Gene

LIPE (8) (human blood), CAMK1G (32) (mouse brain), ASPA (33) (-), 
NOTCH4 (36) (mouse brain/blood), PLA1A (38) (human blood), TYRO3 
(49) (human blood), CORO6 (71) (-), SIK1 (3) (-), SCG2 (24) (human/rat 
brain), CIRBP (27) (mouse brain), PGLYRP1 (30) (human blood), ARTN 
(34) (rat brain), COQ7 (62) (mouse brain), BAI1 (64) (-), TSPAN2 (69) (rat 
brain)

miRNA miR-129-5p (14) (human blood), miR-29a-5p (4) (-), miR-138-5p (36) (-)

Biomarkers involved in stroke recovery Gene NUMB (5) (human blood), GNE (23) (human cerebrospinal fluid), 
CAMK2G (48) (rat brain)

Potential stroke therapeutic targets Gene SIK1 (3) (-), BAI1 (64) (-), PLAT (9) (human blood), ADRA1B (17) (rat 
brain)

Biomarkers that have been previously 
reported to be differentially expressed 
among stroke and healthy subjects/across 
stroke samples and subtypes

Gene
PER1 (4) (-), BTG2 (12) (rat brain) NPAS4 (14) (rat brain), CRHBP (19) (rat 
brain), SMOX (20) (human blood), DUSP1 (75) (human blood), CRY1 (92) 
(human carotid plaques)

miRNA

miR-665 (1) (human blood), miR-21-5p (2) (human blood), miR-184 (5) 
(human blood), miR-877-5p (7) (human blood), miR-300-5p (9) (human 
blood), miR-130b-3p (11) (human blood), miR-223-3p (12) (human blood, 
mouse brain), miR-129-5p (14) (human blood), miR-494-3p (18) (human 
blood), miR-326 (20) (human blood), miR-30c-1-3p (21) (human blood), 
miR-551b-3p (23) (human blood), miR-200b-3p (24) (human blood), miR-
124-3p (26) (human blood), let-7b-5p (30) (human blood), let-7i-5p (33) 
(human blood), miR-125b-5p (34) (human blood, rat brain), let-7a-5p (35) 
(human blood), miR-134-5p (37) (mouse brain), miR-103a-3p (40) (human 
blood), miR-107 (41) (human blood), miR-106b-3p (43) (human blood), 
miR-125a-3p (44) (Human umbilical cord vessels), miR-144-3p (45) (human 
blood), miR-1224-5p (49) (rat brain)

Biomarkers in the same family of known 
stroke-related markers

Gene
CAMKK1 (15) (mouse brain), TTC22 (16) (human blood), TOB2 (22) 
(human brain), GADD45G (25) (rat brain), PDE4B (26) (mouse brain), 
ANXA11 (28) (mouse/rat brain, human blood)

miRNA miR-675-5p (3) (mouse-brain), miR-290-5p (6) (rat-brain), miR-483-3p (22) 
(human blood)

Biomarkers interacted with/binding with/
regulate stroke-related factors Gene

TESC (2) (-), NUMB (5) (human blood), JUN (7) (-), GNE (23) (human 
cerebrospinal fluid), GNL3 (29) (mouse brain), AZIN1 (31) (human brain), 
NFIL3 (35) (-), BHLHE40 (37) (-), CMIP (41) (mouse brain), MRPL41 (42) 
(rat brain)

Table 2.  Biological classification of selected features.

Core group Functional terms Genes

Protein kinase related genes

kinase/kinase activity KCNH1, CAMK2G, CAMK1G, CAMKK1, MAP3K6, MAPK8IP1, SIK1, 
MARK1, LIMK1, TYRO3, GNE, PFKP

phosphorus/-ate metabolic process CAMK2G, CAMK1G, CAMKK1, MAP3K6, MAPK8IP1, SIK1, MARK1, 
LIMK1, TYRO3

calmodulin-binding KCNH1, CAMK2G, CAMK1G, CAMKK1

Genes associated with cell cycles

developmental/differentiation NOTCH4, GADD45G, GADD45B, RTN4RL2, JUN, CREM

Apoptosis/cell death GADD45G, GADD45B, RTEL1, JUN

regulation of cell proliferation NOTCH4, SCG2, SESN1, BTG2, JUN

blood vessel morphogenesis/development ADRA1B, NOTCH4, SCG2, JUN

response to stress/abiotic stimulus ADRA1B, GADD45G, DUSP1, CIRBP, SESN1, BTG2, RTEL1, RTN4RL2, JUN

intracellular signaling ADRA1B, NOTCH4, SCG2, GADD45G, GADD45B, DUSP1, JUN, CREM

Circadian rhythms genes biological/circadian rhythms JUN, CREM, NFIL3, CRY1, PER1, BHLHE40, HS3ST2, CCRN4L, PGLYRP1

Table 3.  Core gene groups of selected features.
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traditional vascular risk factors, such as hypertension, cigarette smoking and diabetes mellitus may account for 
only about 30% of the population-attributable risk of IS. However, being an acquired disease, the pathology of 
how genetic risk factors turn into causes of stroke onset has not been well studied. Gene expression patterns may 
be the key to this question. On the other hand, it has been widely accepted that a prior history of stroke or tran-
sient ischemic attack (TIA) increases the risk of secondary stroke even when there is no observable sign of lasting 
damage. An investigation on the molecular-scale alternations following stroke or TIA would be a necessary step 
for revealing the underlying cause and exploring better therapeutic solutions. Despite the surging demands and 
the rapidly declining cost of gene expression profiling, molecular studies on human subjects are still very lim-
ited due to both technical and ethical difficulties. Animal models, under sophisticatedly designed experiment 
conditions, are still not a long-term substitutable platform for stroke genomics studies. An efficient method for 
translating the findings of animal experiments to human studies is an essential demand because human subjects 
are still rare, even if only used for validation purposes.

In this paper, a method was proposed of discovering cross-platform biomarkers by taking advantage of gene 
interactions that are relatively stable across species and tissues. The miRNAs can perform their regulatory roles on 
two molecular levels: the mRNA and protein levels. However, due to the limitations of current datasets, only the 
mRNA level was considered in this paper. As is demonstrated in the experiment results, the proposed approach 
not only generates more replicable biomarkers across species and tissues, but it also captures key genes that are 
actively involved in various biological signal pathways, which is more helpful for in-depth studies of post-stroke 
pathology. By applying the method to peripheral blood samples collected from human stroke patients of different 
stages, it was discovered that molecular signals representing stroke-induced damages and responses, which orig-
inate from cerebral tissues, propagate into peripheral blood, and the effects persist into the recovery stages. This 
not only justifies the possibility of an efficient early diagnosis and prognosis of ischemic stroke using peripheral 
blood sampling, but it also provides some clue for explaining the cause of elevated risk for stroke and TIA patients 
after recovery, suggesting the need of exploring molecular therapeutic targets that help with rebuilding the gene 
regulatory patterns and inhibiting detrimental molecular signals.

The fact that biomarkers derived from animal models can accurately indicate the stroke status of human 
subjects further validates the important value of molecular-level animal experiments in stroke studies. Currently, 
most animal studies are carried out with manipulated acute ischemic injuries, which may have some distinctions 
from human stroke in the real world. With future developments in experimental technologies, researchers would 
be able to emulate chronic stroke risk factors to obtain a more comprehensive knowledge of stroke pathology and 
prevention. In that situation, the present approach will be more advantageous in providing an efficient tool for 
exploring predictive biomarkers as well as biological pathways that can be easily translated to human patients, 
while also reducing the cost and time of the entire validation cycle.
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