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High Thermal Gradient in Thermo-
electrochemical Cells by Insertion 
of a Poly(Vinylidene Fluoride) 
Membrane
Syed Waqar Hasan1, Suhana Mohd Said1, Mohd Faizul Mohd Sabri2, Ahmad Shuhaimi Abu Bakar3, 
Nur Awanis Hashim4, Megat Muhammad Ikhsan Megat Hasnan1, Jennifer M. Pringle5 & 
Douglas R. MacFarlane6

Thermo-Electrochemical cells (Thermocells/TECs) transform thermal energy into electricity by means of 
electrochemical potential disequilibrium between electrodes induced by a temperature gradient (ΔT). 
Heat conduction across the terminals of the cell is one of the primary reasons for device inefficiency. 
Herein, we embed Poly(Vinylidene Fluoride) (PVDF) membrane in thermocells to mitigate the heat 
transfer effects - we refer to these membrane-thermocells as MTECs. At a ΔT of 12 K, an improvement 
in the open circuit voltage (Voc) of the TEC from 1.3 mV to 2.8 mV is obtained by employment of the 
membrane. The PVDF membrane is employed at three different locations between the electrodes i.e. 
x = 2 mm, 5 mm, and 8 mm where ‘x’ defines the distance between the cathode and PVDF membrane. 
We found that the membrane position at x = 5 mm achieves the closest internal ∆T (i.e. 8.8 K) to the 
externally applied ΔT of 10 K and corresponding power density is 254 nWcm−2; 78% higher than the 
conventional TEC. Finally, a thermal resistivity model based on infrared thermography explains mass 
and heat transfer within the thermocells.

Thermoelectricity, a phenomenon where a temperature gradient is converted into electricity, is a topic of intense 
research interest primarily for energy harvesting applications. A conventional thermoelectric (TE) module con-
sists of an array of p- and n- type semiconducting materials assembled between two electrodes maintained at 
different temperatures. The efficiency of a typical TE device is governed by the temperatures of the hot and cold 
electrodes (Th and Tc) as well as the intrinsic properties of TE materials. Thus, a dimensionless figure of merit 
(ZT) is defined by equation (1) as a quantitative measure of energy conversion capability of TE materials (p- and 
n- type materials).
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where “σ​” is electrical conductivity (S/m), “α​” is the thermoelectric, or “Seebeck”, coefficient (V/K), “T” is the 
absolute temperature (K) while Kelec and Klatt are the electronic and lattice contribution of thermal conductivity 
(W/m·K) of the material, respectively1–4. Therefore, the overall device efficiency (η) in the literature3–4 is expressed 
as:
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Researchers have subjected intensive efforts to attain higher ZT values through various routes1,2,5–9 but the 
highest value in bulk materials is around 1.4–1.66,7 which is still insufficient for large scale industrial applications. 
The foremost challenge to exceed the ZT value is to overcome the interdependency of electronic and thermal 
properties of the materials. Equation (1) suggests that a high ZT is dependent on high electrical conductivity (σ​)  
and Seebeck coefficient (α​), and low thermal conductivity (K). Furthermore, an increase in charge carrier con-
centration (n, cm−3) will have a proportional effect of increasing σ​, but decreasing α​. Thus, there is a significant 
tradeoff between the three key parameters σ​, α​ and K, where typically a material of high electrical conductivity 
will also have high thermal conductivity, but consequently low ZT. Strategies such as phonon glass electron crystal 
(PGEC) structures, quantum dots and superlattices have been devised in order to provide both high electrical 
conductivity and low thermal conductivity1,2,5–9.

In recent times, novel thermoelectric effects apart from the semiconductor-based Seebeck effect have been 
introduced, such as the Spin Seebeck effect10 and the electrochemical Seebeck effect. The electrochemical Seebeck 
effect arises in thermo-electrochemical cells, TECs, when a solution containing a redox couple is subjected to a 
temperature gradient. The temperature gradient between the electrodes disturbs the electrochemical potential 
equilibrium between the electrolyte and electrode surface causing the current to flow when the circuit is com-
plete11. This effect can result in significantly high Seebeck coefficients of redox electrolytes, which translate into 
potentially high power outputs. Furthermore, these solutions generally possess low thermal conductivity, which 
can contribute to a higher thermoelectric figure of merit.

TECs, traditionally known as thermo-galvanic cells, have been studied since the early 1980s12–14. TECs gen-
erate steady electric current by the virtue of a temperature gradient between the two electrodes placed in an 
electrolyte. Conventionally, characterization of the electrochemical Seebeck coefficient, Se, is conducted using a 
two-compartment setup, connected by a salt bridge, which allows a physical pathway for ion transfer between the 
two compartments. The two compartments are subjected to a temperature gradient (Δ​T), and ion migration is 
enabled from the hotter compartment to the colder compartment through the salt bridge (Fig. 1(a)). The resulting 
potential difference (Δ​V) is used as the basis for the calculation of Se (where Se =​ Δ​V/Δ​T)11,15.

For application of these devices, the TEC is used as a cell structure as shown in Fig. 1(b) where the electrolyte 
and both the electrodes are confined in a single chamber. The ion transport within the cell configuration is a com-
plex combination of natural convection, migration, thermal and chemical diffusion. Although, cell configuration 
is practically more applicable but maintaining the temperature gradient between electrodes is a key challenge 
which limits the performance of the TEC, as the thermal conductivity of the electrolyte solution will inevitably 
reduce Δ​T. On the contrary, the two-beaker setup (Fig. 1(a)) allows maintaining high temperature gradient as 
the two compartments are separated and can be easily maintained at different temperatures. Typical strategies to 
maintain the integrity of the temperature gradient in the “cell configuration” include an auxiliary cooling system 
on the cold side electrode, which adds complexity, cost and bulk to the overall system. In this work, we insert and 
optimize the position of a PVDF membrane within the TEC to maintain the temperature gradient without any 
need for an auxiliary cooling system. Hu et al.16 have utilized commercial glass-frits and NOMEX HT4848 (a 
nylon-based polymer separator commercially prepared by NOMEX, DuPont) in their thermocells as separators 
between their anode and cathode. They attributed the obtained high output power density of 1.8 W/m2, and cor-
responding Carnot efficiency of 1.4%, to high electron transfer rates between their novel carbon nanotube elec-
trodes and the electrolyte. Thus, the influence of the different separators on thermal gradient and electrochemical 
performance were not been studied in depth.

An ideal separator should be porous in order to allow ionic transport, yet highly thermal resistive in order to 
maintain a large temperature gradient between the electrodes. PVDF was chosen for this study as it is an excellent 
thermal insulator and is also highly chemically stable polymer, in particular with respect to the redox couple. 
Additionally, films of PVDF can be easily fabricated through facile methods such as phase inversion and electros-
pinning. PVDF has also been used in energy storage and conversion applications such as batteries and fuel cells17–19.  
For example, separators of PVDF-co-hexafluoropropylene (PVDF-HFP), sandwiched poly(m-phenylene isoph-
thalamide) (PMIA) between two PVDF layers (PVDF/PMIA/PVDF) and sandwiched PVDF layer between two 
poly(phthalazinone ether sulfone ketone) (PPESK) (PPESK/PVDF/PPESK) have been studied for Li-ion batteries17–19.  
Researchers have also explored PVDF membranes in fuel cells and piezoelectric devices20,21. However, to the best 
of our knowledge, PVDF membranes have not been studied for TEC applications.

Results
The electrochemical Seebeck coefficient (Se) for the 0.7 M I−/I3

− (aq) redox couple was 0.4 mV/K when tested in 
the two compartment cell (Fig. 1(a)). This is 0.13 mV/K less than the reported value of 0.53 ±​ 0.04 mV/K for 
a 0.4 M solution, consistent with the expectation that for this range of concentrations, an increase in molarity 
results in a decrease in Se

15,22,23. However, highly concentrated solutions are preferred for higher power outputs 
from the thermocells15,24,25. The designs of thermocells used in present work and the thermo-electrochemical 
performances of TECs (membrane less) and MTECs (membrane inserted TEC) are depicted in Fig. 2. The maxi-
mum open circuit voltage (Voc) generated by the conventional TEC is 1.3 mV at the temperature gradient of 12 K. 
However, the introduction of a PVDF membrane in the TEC significantly enhances the Voc to 2.7 mV for the 
case of x =​ 5 mm, at the same value of externally applied Δ​T (Fig. 2(a)). The details of open circuit voltages from 
the TEC and MTECs are given in Table 1. The origin of this higher performance is enhancement of the thermal 
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gradient between the two electrodes due to the presence of the PVDF membrane, which has the effect of decreas-
ing convective flow between the electrodes. By creating a thermal barrier between the two halves of the cell the 
temperature at the working surfaces of the electrodes are able to more closely approach the externally applied 
temperatures, thus maximizing the internal thermal gradient and achieving the maximum Voc. An illustration of 
the heat flow in a TEC and MTEC are presented in Fig. 3(a,c) and the thermal barrier is quantitatively expressed 
as a thermal resistivity (Fig. 3(b,d)).

Figure 1.  (a,b) Schematic illustration defining the working principle of thermo-electrochemical cells. In (a) 
a two compartment arrangement is shown where two electrodes are placed in two separate compartments 
with the same electrolyte. A temperature gradient between the two electrodes is created by heating one of 
the compartments while cooling or maintaining the other at room temperature. A salt bridge, containing the 
same electrolyte, is placed between the hot and cold compartment to allow movement of the redox species and 
counter-ions between the two electrodes. (b) Shows the TEC device design that is more realistic for practical 
applications. Rather than having separate compartments, the two electrodes and the electrolyte are assembled in 
a single cell. The orientation of the electrodes (either vertical or horizontal) and the heating scheme (heating the 
bottom electrode or the upper) can be varied and literature for all techniques is available. However, comparison 
between the heating schemes shows that heating from the bottom always produces better results. In both of 
the thermocell designs (a,b) the electrodes are connected with a digital multimeter to measure the open circuit 
voltage. The temperatures of the respective electrodes are measured through digital thermometers.
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In this paper, we first discuss the influence of PVDF membrane on the power generation characteristics of the 
TEC and MTECs. Then, visualisation of the mass and heat transport within the TEC and MTEC using infrared 
thermography allows insight into the role of the membrane separator in these cells.

Figure 2.  (a–e) Thermo-electrochemical performance of TECs and MTECs. The cell configuration thermocell (as 
shown in Fig. 1(b)) was assembled with two Graphite electrodes and I−/I3

− aqueous redox solution as the electrolyte. 
The open circuit voltage (Voc) was measured once the temperature gradient became stable. The temperature of 
bottom electrode was gradually increased while maintaining the upper electrode at room temperature. The best 
performance was observed when the membrane was held midway between the two electrodes (x =​ 5 mm, shown 
by the red line on the plot). The TEC and all MTECs exhibit a linear relation between the temperature gradient and 
the open circuit voltage. (b) Design specifications of TEC (when there is no membrane between the hot and cold 
electrode. (c–e) Design specifications of MTEC (when membrane is placed between the hot and cold electrode). 
The effect of membrane position is studied in this work. (c) When the membrane is closer to the cold electrode (i.e. 
x =​ 2 mm) (d) when membrane is in between the two electrodes (i.e. x =​ 5 mm) and (e) when membrane is closer to 
the hot electrode (i.e. x =​ 8 mm). In all the TEC and MTEC cases the distance between the electrodes and electrode 
surface area were kept constant to be 10 mm and 0.34 cm2, respectively.

Results summary

(a) Data from Fig. 2a 
(Electrochemical measurements) (b) Data from Fig. 4 (Power Curves)

(c) Data from Fig. 6 (Infra-
red thermal images)

Peak 1 Peak 2

Open Circuit Voltage (Voc, mV) 
@ 12 K)

Max. Cell 
Potential (V, mV)

Max. Power 
Output (nW/cm2)

Calc. Thermal 
gradient (ΔTcalc, K) Range ( °C) Range ( °C)

TEC No Membrane 1.3 1.1 54 2.7 30.4–31.8 –

MTEC

X =​ 2 mm 2.6 2.6 61 6.5 30.9–31.5 34.0–34.8

X =​ 5 mm 2.7 3.5 245 8.8 33.7–34.8 38.7–39.6

X =​ 8 mm 2.8 3.0 135 7.5 34.0–35.6 39.0–40.1

Table 1.   Summary of the TEC and MTEC results. The Se of the electrolyte was 0.4 mV/K. (a) The values of 
open circuit voltages are summarized from Fig. 2(a) when Thot =​ 37 °C and Tcold =​ 25 °C. (b) Data extracted 
from Fig. 4: Maximum cell potential and output power density. Calculated temperature gradient between the 
electrodes under load conditions, where Δ​Tcalc =​ V/Se. (c) Peak details of temperature histograms as shown in 
Fig. 6. For (b) and (c) all TEC and MTEC were maintained with Thot =​ 40 °C and Tcold =​ 30 °C.
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Figure 3.  (a–d) Illustration of heat propagation and thermal resistivity models for TEC and MTEC cases.  
(a) Shows the heat flow, represented by white arrows, in the form of natural convection. In (b) the different 
contribution to the total thermal resistivity of the TEC is estimated. The total thermal resistivity is 3.32 m.K.W−1.  
(c) Illustrates the heat flow in the MTEC when the membrane is placed equidistant between the two electrodes. 
The role of the PVDF membrane in the MTEC is to hinder the heat dissipation between the electrodes, keeping 
the electrodes closer to the actually applied external temperature values. The thermal resistivity model of the 
MTEC shown in (d) illustrates that owing to higher thermal resistivity of PVDF membrane i.e. 5.6 m.K.W−1, the 
overall thermal resistivity is increased to 10.8 m.K.W−1, decreasing the heat flow.
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Power Generation characteristics of TEC and MTEC.  Inserting the PVDF membrane into the TEC 
has the direct benefit of enhancing the temperature gradient, and hence the generated voltage, as illustrated in 
Fig. 2(a). These results are summarised in Table 1, where an improvement of 52% was achieved for the case of 
membrane at x =​ 5 mm compared to the TEC. Consequently, the overall thermo-electrochemical power gen-
eration of the MTEC is shown to be enhanced significantly compared to the TEC as expressed in Fig. 4. The 
maximum power density from the MTEC was 245 nWcm−2, achieved for the case of x =​ 5 mm, measured at tem-
perature gradient of 10 K, which is almost four times higher than the TEC maximum power density (54 nWcm−2).

It is to be noted that each membrane configuration in MTECs results in improved cell potential as compared 
to the TEC. In Table 1, the calculated thermal gradient between the electrodes is presented, using Δ​Tcalc =​ Δ​V/Se, 
where Se =​ 0.4 mV/K and Δ​V in each case is the open-circuit voltage recorded for the cases of x =​ 2 mm, 5 mm, 
and 8 mm respectively. Table 1 shows that a TEC is only able to provide a temperature gradient of 2.7 K between 
the electrodes, whereas the externally applied temperature gradient is 10 K. This observation further confirms the 
rapid heat flow in the TEC cases. In all the MTECs the thermal gradient between the electrodes is improved as 
compared to the TEC, reaching an optimal temperature gradient (8.8 K) for x =​ 5 mm. Consequently, this MTEC 
provides the best power performance. Additionally, the lowest power generation of 61 nWcm−2 was achieved with 
the x =​ 2 mm MTEC, when the membrane is closer to the cold electrode, which has the smallest thermal gradient 
amongst the membrane inserted cases.

Mass and heat transfer characteristics of the TEC.  Reduction, in the case of the (I−/I3
−) redox couple, 

occurs at the colder electrode (i.e. the cathode). The reduced species, migrate towards the anode where they 
oxidize; releasing the electrons13,14. This can be visualised in the infrared thermal images of the TECs in Fig. 5(I), 
where the convection effects coupled with the thermal diffusion allows fast equilibration of the temperature 
within the cell. After 29 mins of heating the average temperature of the redox solution was 26.7 °C (±​1 °C). Thus, 
in the case of the TEC the heat transfer through mass (fluid) flow rapidly diminishes the temperature gradient 
across the TEC that is critical to the its operation. The images of Fig. 5(I) indicated that after 34 and 38 mins the 
temperature of the solution has been increased to 28.4 °C (±​1 °C) and 31.0 °C (±​1 °C), and thus the tempera-
ture gradient across the vertical axis has been significantly reduced. The maximum temperature difference was 
achieved after 38 mins of heating, thus resulting in the maximum Voc. Figure 6 shows a quantitative representa-
tion of temperature distribution within the cell, extrapolated from Fig. 5 using thermal imaging software after 
38 mins of heating. In the histogram of the TEC, the temperature of the electrolyte is concentrated around ca. 
30.4–31.8  °C (±​1 °C) resulting in a unimodal distribution (Fig. 6(a)). The unimodal temperature distribution 
supports the weaker temperature gradient maintained between the electrodes of TEC.

Mass and heat transfer characteristics of the MTECs.  The effect of the insertion of a PVDF membrane 
on the heat flow is illustrated in Fig. 5(II,III,IV) for the cases of membrane position 2 mm, 5 mm, and 8 mm, 
respectively. The PVDF material is an efficient thermal insulator with thermal resistivity of ~6 mK W−1 26–28. 
The thermal resistive effects of PVDF in MTECs obstruct the heat flow between the electrodes creating distinct 

Figure 4.  Power curves for TEC and MTECs. TEC and MTECs were maintained at a temperature gradient of 
10 K and connected to an external load. Individual resistances (R, Ω) were applied and the corresponding cell 
potentials were recorded. Power outputs were calculated using Ohm’s law (P =​ V2/R). The black line shows the 
performance of the TEC, where the maximum power density was 54 nW/cm2. It was found that employment 
of the PVDF membrane significantly enhances the power output performance. Although the maximum power 
density is only slightly increased (i.e. 61 nW/cm2) when membrane is at x =​ 2 mm (i.e. closer to cold electrode), 
the cell open circuit potential is clearly improved, from 1.1 mV to 2.6 mV. Furthermore, the power generation 
from MTECs is related to the position of the membrane. The highest performance in terms of maximum power 
output and cell potential is observed when the membrane is held midway between the electrodes (i.e. x =​ 5 mm). 
The maximum power density in this case was 245 nW/cm2 and the cell potential was 3.5 mV. At x =​ 8 mm, 
when the membrane was placed closer to the hot electrode, the performance was reduced compared to the 
x =​ 5 mm case, but was still better than the TEC or x =​ 2 mm case. The power performance of MTECs is strongly 
dependent on the temperature gradient achieved in each case. The maximum temperature gradient is achieved 
at x =​ 5 mm and correspondingly the power density is the highest. Similarly, MTEC with x =​ 2 mm produces a 
lesser temperature gradient and thus has the lower performance.
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temperature zones, thus resulting in bimodal temperature distribution in MTECs, as shown in Fig. 6(b,c,d). 
In the TEC after heating for 38 mins the average temperature of the electrolyte was 31.0 °C (±​1 °C), whereas 
after the same heating time in the MTECs temperature zones of 31 °C and 35 °C (±​1 °C) in the x =​ 2 mm case, 

Figure 5.  Infrared thermography of TEC and MTECs. The series I, II, III, and IV represents no membrane, 
membrane closer to cold electrode, membrane at the center between the electrodes, and membrane closer to 
hot electrode respectively. Thermal images of each TEC and MTEC were taken after 24, 29, 34 and 38 minutes 
of heating. During the experiments the heating rate of the cells and ambient conditions were kept identical 
for all cases. The thermal images are consistent with the heat flow and thermal resistivity models in Fig. 3. In 
series I (i.e. no membrane), the temperature of the electrolyte overall increases but without maintaining any 
temperature gradient. However, in series II, III and IV the PVDF membrane creates distinct temperature zones 
with different temperatures, which ultimately improves the performance. The highest temperature gradient is 
created in series III when the membrane is place equidistant from the two electrodes thus it also has the highest 
electrochemical performance.
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34 °C and 39 °C (±​1 °C) in the x =​ 5 mm case, and 35 °C and 40 °C (±​1 °C) in the x =​ 8 mm case were observed 
(Fig. 6(b,c,d)). The details of the peak positions and breadths are given in Table 1. Therefore, in summary, the 
presence of the membrane acts as a thermal resistor to hinder heat flow. However, the improved open circuit volt-
age and maximum power density also indicate that ion transfer between the electrodes is not adversely affected 
by the PVDF barrier.

Thermal resistance model.  To further elucidate the effect of the PVDF membrane inclusion in the TEC, a 
thermal resistance model is proposed in Fig. 3(b,d). A temperature gradient is key to the voltage generation in a 
TEC, and in an ideal case this temperature gradient is maintained throughout the experiment and is equivalent to 
the difference in applied temperatures at the electrodes. However, more realistically, losses occur due to a number 
of factors: temperature gradients in the electrodes, heat lost to the environment, and convection and conduction 
within the solution. For TEC the equivalent thermal resistance circuit can be represented by Fig. 3(b). For the 
solution, the thermal resistance may be described in terms of its thermal conductivity and thermal mass transfer 
(predominantly convection). In this case, the relatively high convection of the solution can be represented by 
a low thermal resistance. As noted previously, it results in the solution reaching thermal equilibrium relatively 
quickly within the TEC, which significantly diminishes the temperature gradient and the power output to 2.7 K 
and 54 nWcm−2, respectively. In comparison, the equivalent thermal resistance of the MTEC is represented in 
Fig. 3(d), where the thermal resistance of the PVDF membrane is much larger than those of the solution or the 
electrodes. Furthermore, the presence of the membrane also has a direct impact on the thermal resistance of 
the solution: whilst the thermal conductivity may be assumed as constant, the thermal mass transfer effects (i.e. 
convection) is diminished as the volume is now physically divided into two half cells. Consequently, the thermal 
resistance of the solution is also increased prompting MTEC closer to the applied temperature gradient i.e. 8.8 K. 

Figure 6.  (a–d) Temperature histograms of the TEC and MTECs. The thermal imaging software InfRec 
Analyzer NS9500, was used to produce histograms for each TEC and MTECs maintained with the cold and hot 
electrode at 30 and 40 °C, respectively.
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Of further note is that the optimum performance of the cell (245 nWcm−2) is achieved at a membrane position 
of x =​ 5 mm, i.e. equidistant from both electrodes, where the power output in this configuration of membrane 
has provided 78% improvement to the performance of the TEC. This observation can also be explained within 
the context of limiting the convection within the half cells, as this configuration allows the minimum electrolyte 
volume on either side of the membrane.

Discussion
We have demonstrated here that a separator membrane significantly affected the operation of a thermo- 
electrochemical cell, by reducing the effect of convective currents in the electrolyte. A thermal resistance model 
shows that the dominant thermal resistance of the membrane reduces temperature drops in other parts of the cell, 
i.e. across the two electrolyte layers and across the electrode assembly. The findings of this work suggest that the 
insertion of the membrane at its optimum configuration is able to improve the temperature gradient by 70% and 
the resulting power density by 78%. These results will be useful to optimize the future performance of TECs when 
used in conjunction with the optimised formulations of redox couples for waste heat conversion into electricity.

Methods
Materials.  The iodide/triiodide (I−/I3

−) redox solution (0.7 M) was prepared in 50 ml distilled water by dis-
solution of Iodine (5 g, Sigma Aldrich; ≥​99.8%) and Potassium Iodide (10 g, Sigma Aldrich; ≥​99.5%). The solu-
tion was heated to 50 °C for 10 mins to ensure proper solubility. A 200 μ​m thick PVDF membrane was prepared 
by phase inversion method. Commercially available Poly(Vinylidene Fluoride) (PVDF, Kynar® K-761, molec-
ular weight of 440,000, density =​ 1.7 g/ml and melt temperature ~165 °C) powder was mixed with 1-Methyl-2-
Pyrrolidinone (NMP) in a ratio of 18% by wt. The solution was stirred for 24 hours at 60 °C. The polymer solution 
was then cast on a glass plate and the resultant flat sheet membranes were immediately immersed in a coagulation 
bath containing deionised water. The prepared PVDF membrane is porous with pore size ranging in several 
microns as shown in Fig. 7.

Measurement of the Seebeck coefficient of the I−/I3
− aqueous redox solution.  The prepared I−/I3

−  
aqueous redox solution was put in two compartments (Pyrex glass beakers), according to the schematic shown 
in Fig. 1(a). Each compartment contained a Pt electrode. The physical exchange of the solutions between the two 
compartments was established by providing a salt bridge containing the same solution. Pt electrodes were cleaned 
with concentrated HNO3 followed by methanol rinsing. The thermal gradient was created by heating one of the 

Figure 7.  (a,b) FE-SEM micrographs of PVDF membrane. (a) Low magnification. (b) High magnification 
shows the pore size ranges from 0.8 to 1.6 μ​m. The inset of (a) is the snapshot of the PVDF membrane used.
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compartments through an electrically operated heater at 0.2 °C/min rate while maintaining the other at room 
temperature (Fig. 1(a)).

Morphological and Heat Transfer Characterization.  The surface morphology of PVDF membrane 
was studied by FE-SEM (HITACHI SU8030). Infrared Thermography was carried out at the framerate of 8.5 Hz 
through R300SR-HB (Nippon Avionics Co. Ltd.) maintaining similar environmental conditions to comprehend 
the role of membranes in enhancing thermal gradient within the thermocells.

Thermo-Electrochemical Cell Fabrication and Measurements.  Thermo-electrochemical perfor-
mance of the redox solution with PVDF membranes was studied in a 13 mm diameter and 20 mm length cells 
(Fig. 2(b)). The two open ends of the thermocell were closed by rubber sealants to ensure no leakage and the 
redox solution was inserted through a syringe. The distance between the vertically positioned graphite electrodes 
were kept constant at 10 mm while the membrane positions (x) were altered between 2 mm, 5 mm and 8 mm away 
from the top (cold) electrode. For MTECs, a rubber O-ring (φ​out =​ 13 mm and φ​in =​ 10 mm) was used to hold 
the membrane in the intended positions (Fig. 2(c,d,e)). The reproducibility of the results was examined and the 
difference in Seebeck values, on average, was found to be ±​0.02 mV/K. The electrodes were cleaned by abrasive 
paper followed by ultrasonic cleaning with acetone. The thermocells were heated in cold-above-hot arrangement 
at 0.2–0.5 °C/min and the open circuit voltage (Voc) was measured by an Agilent 34461A 61/2 digital multimeter. 
The electrochemical Seebeck coefficient was evaluated by the slope of the linear fit between Voc and Δ​T. For power 
output measurements the TEC and MTECs were connected to a variable resistor box (Elenco RS-500), different 
resistive loads (R, Ω) were applied and the corresponding cell potentials (V, mV) were recorded. The Ohm’s law 
(P =​ V2/R) was used to calculate the power values.
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