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Coherent destruction of tunneling 
in two-level system driven across 
avoided crossing via photon 
statistics
Qiang Miao & Yujun Zheng

In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) 
for two-level system driven cross avoided crossing is investigated by employing the emitted photons 
〈N〉 and the Mandel’s Q parameter based on the photon counting statistics. An asymmetric feature of 
CDT is shown in the spectrum of Mandel’s Q parameter. Also, the CDT can be employed to suppress 
the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of 
monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively.

Two-level system (TLS) driven across avoided crossing is pervasive in physical problems. Despite its simplic-
ity, it is an important subject to investigate various fundamental phenomena and lay a rich basis for real-world 
technologies. Recently, TLS has obtained plenty of attention in quantum information processing (QIP) as well 
as fundamental studies for the single quantum system, such as superconductor qubit1–6, single spin or charge in 
quantum dots7–10 and trapped ion11. This progress provides an elementary building block in QIP and an ideal 
testing platform for probing single quantum phenomena.

For certain driving parameters, the TLS undergoes coherent destruction of tunneling (CDT) where the 
quantum tunneling is destroyed12–14. The initial quantum state is frozen, which happens at the crossing point of 
isolated quasi-energies levels. Besides, the strong driving can also lead to the multi-order transition at certain 
resonance condition. All these phenomena could be understood by Landau-Zener-Stückelberg (LZS) interfer-
ence8–10,15–19 around the avoided crossing point, in which sequential constructive or destructive interferences 
dominate the dynamical evolution. To analyze this interference pattern, several theoretical approaches have 
been developed, such as rotating-wave approximation (RWA) method1,19, Floquet formulation combining 
generalized Van Vleck (GVV) approximation method20,21, etc. The former method makes contributions to 
simplifying the TLS problem, and the latter sheds light on the understanding of the ac Stark level shift and 
CDT shift, etc.

In the realistic physical systems, the TLS has to be considered as a dissipative system. A bath-TLS 
coupling model has been investigated in refs 22–25 comprehensively, in which the dissipative rates are 
parameter-dependent. Alternatively, the optical TLS with phenomenological dissipation constants also shows its 
charm, e.g., a geometric phase-shift gate has been proposed based on the CDT effect in this case recently26. In the 
optical TLS, it could emit photons via inevitable spontaneous radiation. For each photon emission event, the TLS 
loses its memory and is reset back to ground state eventually. By monitoring the photon emission events, one can 
obtain more dynamical information of system, especially, as a secondary order moment, the Mandel’s Q param-
eter are much sensitive to the dynamics. Besides, the time waiting for spontaneous decay can be used to measure 
the ability of preserving memory, which is crucial in the quantum control.

By employing the photon counting statistics of generating function technique27–30, in this paper, we investigate 
the representation of CDT via photon emission from TLS, and test the new physics beyond the approximation 
methods mentioned above. We present the ac Stark shift and CDT shift in weak and moderate driving field where 
RWA approximation fails. We find the Mandel’s Q parameter is sensitive to detuning nearby CDT position and 
shows an asymmetric spectrum beyond GVV approximation. We show CDT can be employed to suppress photon 
emission, but it is also sensitive to disturbance from environment. The new nature of the destruction of CDT by 
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strong dissipation, the monotonicity or homogeneity pattern of photon emission, is presented using the emitted 
photons from the TLS.

This paper is organized as follows. Initially, we introduce the TLS Hamiltonian and its expressions under RWA 
and GVV approximations. Also, we review the theoretical framework of photon counting statistics by employing 
the generating function. Subsequently, we show the numerical results in different regimes: weak relaxation regime 
under moderate and fast driving; strong relaxation or pure dephasing regime under fast driving. The conclusion 
is given in the end.

Theoretical Framework
Model system and Hamiltonian.  General considerations.  We consider a two-level system (TLS) 
described by the Hamiltonian

ε σ σ= − − ∆H t1
2

( ) 1
2

, (1)z x

where ε(t) is the time-dependent tunable control parameter, Δ​ is the coupling strength between the ground 
state |g〉​ and excited state |e〉​. σx and σz are the Pauli matrices and we set ħ =​ 1 throughout this paper. The TLS 
Hamiltonian Eq. 1 has been employed to investigate various interesting questions1,2,8–10,19–21,26,31

In this paper, we consider the case that ε(t) is modulated by

ε ε ω= +t A t( ) cos( ), (2)0

where A is driving amplitude, ω denotes driving frequency and ε0 represents static detuning, respectively.
The TLS Hamiltonian Eq. 1 can, after considering Eq. 2, also be separated into two parts: time-independent 

component H0 and time-dependent component V(t), namely
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In the expression of Eq. 3, H0 is static configuration of TLS, and V(t) provides crucial driving parameters.

Hamiltonian in RWA form.  Following refs 1,19,31, we take the TLS Hamiltonian described by Eq. 3 in a rotating 
frame, making a transformation from laboratory frame by rotating operator W(t). The rotating operator W(t) is 
defined as follows
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The wave function in the rotating frame |ψ′​〉​ is given by

ψ ψ= ′W t( ) (5)

and the Schrödinger equation in rotating frame is
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where δω =​ ε0 −​ kω, ∆ = ∆
ω( )Jn n
A , and Jn(·) is the Bessel function of the first kind.

Under the condition of near k-th resonance (namely, δω ~ 0), and in fast driving regime ω ∆( ), Eq. 7 can be 
approximately expressed as follows
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where εr =​ δω and Δ​r =​ Δ​−k.
In this approximation, the Hamiltonian of Eq. 8 is valid for strong driving amplitude A20,21,31.

Hamiltonian in Floquet and GVV perturbation theory.  A system driven periodically could be treated by Floquet 
formalism, where a time-dependent problem can be transformed into an equivalent time-independent problem 
in the infinite dimensional Floquet states space. In the Floquet space, the quasi-energy of the infinite dimensional 
Hamiltonian is derived, and the resonance transition would occur nearby avoided crossing position of 
quasi-energy levels32,33. Also, the Van Vleck perturbation theory allows us to focus on near-degenerate state space 
and neglect other perturbative manifolds. By a unitary transformation up to a certain order perturbation, one can 
project the infinite Hamiltonian onto a simple effective one34. Here, the TLS Hamiltonian can be expanded by 
employing Floquet bases of |g, n〉​ and |e, n〉​ with quasi-energies ω−ε n

2
0 , and the effective Hamiltonian for k-th 

resonance up to the third-order perturbation Δ​/2 is given by20,21
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where εg =​ δω +​ δdia and Δ​g =​ Δ​−k +​ δoff, with
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Clearly, Hg for the first-order of Δ​/2 recovers the expression of RWA approximation. And the second-order 
amendment δdia represents the ac Stark level shift in diagonal term, leading to a shift of k-th resonance peak. In 
moderate or weak driving regime, namely ω ~ Δ​ or A ~ ω, the δdia is dominant. As for the third-order amendment 
δoff in off-diagonal term, it causes a CDT shift relative to the node of Bessel function Jn(A/ω). While in fast regime 
ω ∆( ), δoff and δdia can be neglected.

Dynamics and Generating functions.  In the dissipative case, the quantum system can be considered 
in Loiuville space via density matrix. The time evolution of density matrix ρ(t) of quantum system obeys the 
Liouville-von Neumann equation,

H Lρ ρ ρ∂
∂

= − +
t

t i t t( ) [ , ( )] ( ), (12)

where  is the superoperator including the spontaneous emission rate Γ​ and pure dephasing rate kp. Adopting 
general TLS Hamiltonian, the equations of density matrix Eq. 12 can also be written as follows34
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To present the dynamical behaviors of the CDT for TLS and corresponding properties via emitted photons, 
in this paper, we employ the theoretical framework of photon counting statistics by generating function. This 
approach has been employed to investigate the single-molecule stochastic kinetics; the control of few photons 
emission etc.27–30,35–39. The generating function of photon emission is defined by27–29

 ∑ρ=s t s( , ) ,
(14)ij

n
ij

n n( )

where ρ =i j e g( , , )ij
n( )  represents the portion of density matrix corresponding to that n photons have been spon-

taneously emitted. s is an auxiliary parameter counting the photon emission events.
The generating equations can, by employing Eqs 13 and 14, be written as follows27–29,
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By employing Bloch vector notation27–29,
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Eq. 15 can also be written as
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The statistical properties of photon emission can be extracted from  s t2 ( , ) as follows:
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where pn is the probability of n photons have been emitted in time interval [0, t], 〈​τ〉​ is average waiting time,  
〈​N〉​ (t) is first moment, namely average photon emission numbers and 〈​N2〉​ (t) is secondary moment. And, the 
Mandel’s Q parameter

=
−

−Q
N N

N
1,

(23)

2 2

follows immediately, which characterizes the statistical properties of emitted photons. The case of Q <​ 0 is called 
sub-Poissonian distribution (anti-bunching behavior) and Q >​ 0 is named super-Poissonian distribution (bunch-
ing behavior).

It is worth noting that we can employ the different expressions of Hamiltonian, such as Eq. 1 (exact), Eq. 8 
(RWA approximation) and Eq. 9 (GVV approximation) to show their different dynamical behaviors via emitted 
photons.

Numerical Results and Discussions
Based on the theoretical framework above, in this section, we explore the different dynamical properties of the 
resonance and CDT influences in weak relaxation regime by the three expressions of Eqs 1, 8 and 9 for the TLS 
system. The destruction of CDT by dissipative effect is also explored.

In our numerical calculations, we use scaled parameters, namely Δ​t→​t, ω/Δ​→​ω, Γ​/Δ​→​Γ​, and ε0/Δ​→​ε0.
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CDT effect via photon emission.  In this subsection, we focus on the CDT effect and the multi-order res-
onance in the weak relaxation Γ ∆( ). In the weak relaxation, the dynamics of system is dominated by Δ​ and 
driving parameters.

Moderate driving (ω ~ Δ).  δdia amendment in weak driving.  Figure 1 shows the population of excited state ρe, 
emitted photons 〈​N〉​ and the Mandel’s Q parameter as functions of time t close to the 2nd resonance for the short 
and long time scale.

As shown in Fig. 1, the overall dynamic oscillations are presented, especially in the short time scale. Besides, 
the fast driving-induced oscillation in population ρe is observed in the exact results, while it has been averaged 
by the effective Hamiltonian of GVV and RWA approximations. However, for the photon counting statistics of 
emitted photons 〈​N〉​ and the Mandel’s Q parameter, the fast driving-induced oscillation disappears. As shown in 
the figure, in this case, the GVV approximation is a good approximation but RWA approximation.

δoff amendment around CDT.  The contributions of δoff amendment around CDT are shown in Fig. 2 in the long 
time limits (t =​ 200). One can find the complete resonance peaks at ε0/ω =​ 0, 1, 3, 4. At these resonance peaks, 
the Mandel’s Q parameter is less than zero, showing sub-Poissonian distribution. And at off-resonance position, 
the emitted photons are super-Poissonian distribution since the Mandel’s parameter Q >​ 0. Besides, at the 2nd 
resonance position (ε0/ω =​ 2), the results of Q under RWA and the second-order GVV approximations are zero, 
showing a complete CDT occurs. Unfortunately, this is a wrong result, which ignores the CDT shift effect in the 
weak and moderate driving. By contrast, the exact results show that it is an incomplete CDT phenomenon. The 
big negative value of the Mandel’s Q parameter and its asymmetry (see the following discussion) could be noted as 
the characteristics of the incomplete CDT phenomenon. As a comparison, the results of the third-order of GVV 
approximation are also presented in the figure. As shown in the insets of Fig. 2, although the results of third-order 
of GVV approximation can present the roughly right status, they are different from the exact results.

Beyond the third amendment.  The results of RWA and GVV approximations present the symmetric feature in 
the spectra of emitted photons 〈​N〉​ and the Mandel’s Q parameter, since the Hamiltonian is symmetric in any k-th 
resonance vicinities under these approximations. However, this symmetric feature is not true except at 0th reso-
nance position (ε0 =​ 0). As shown in the inset of Fig. 2 (lower), the exact results indicate the asymmetric feature 
around the 2nd resonance position, where the 2nd resonance is too weak and dynamical behaviors are modified 

Figure 1.  Population ρe, photon emission 〈N〉 and the Mandel’s Q parameter as a function of time t. The 
parameters are ω =​ 2, A/ω =​ 1.5, ε0/ω =​ 1.9, Γ​ =​ 0.04, kp =​ 0. The red lines represent exact numerical results, 
green dash-dotted lines are the results of RWA approximation, and the blue dashed lines are the results of the 
second-order GVV approximation. The statistical behaviors of system for short time scale are shown in the left 
column and those for long time limit are shown in the right column, respectively.
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by nearby resonance peaks in deed. As shown in the figure, the third-order GVV approximation also cannot 
present this asymmetric feature.

Physically, this asymmetric feature shown in Q reflects the intrinsic property of quasi-energy spectrum. In 
Floquet space, the quasi-energy spectrum against ε0/ω is symmetric around 0th resonance position globally. 
However, for the k-th resonance, this quasi-energy spectrum is local symmetry. These local symmetries are pro-
tected by large tunneling Δ​k around resonance position. However, CDT can break this local symmetries, which 
is presented on the spectrum of the Mandel’s Q parameter significantly because of its sensitivity to the system 
dynamics.

Fast driving ω ∆( ).  The effect of CDT.  In Fig. 3, we present the effect of CDT at the 2nd resonance position 
against A/ω in fast regime ω ∆( ). In the weak driving regime (A ~ ω), the results of RWA deviate with the 
results of other approaches: the RWA predicts the bigger values of photon emission 〈​N〉​ than others, and shows 
strong sub-Poissonian distribution. In contrast, the exact numerical results and the results of the second-order 
GVV approximation indicate super-Poissonian distribution. The reason is, at weak driving regime, that the reso-
nance position is shifted by δdia.

However, because of fast driving, the results of RWA and the second-order GVV approximation agree with the 
results of exact numerical calculations at larger driving amplitude. Moreover, δoff becomes trivial in the node point 
where CDT occurs. The details around the node point are illustrated in the insets. In Fig. 3, the splitting behaviors 
of the Mandel’s Q parameter are observed. This is because along A/ω, the resonance oscillation frequency Δ​R 
passes through the value of Γ/ 2  twice, which leads to minimum value of Q =​ −​3/4.

We illustrate the photon emission pattern along A/ω and ε0/ω in Fig. 4 based on the exact numerical calcu-
lations. The top panel in the figure shows the emitted photons 〈​N〉​, presenting the same pattern with the LZS 
interference pattern. Meanwhile, the bottom panel in figure shows the Mandel’s Q parameter correspondingly. 
Figure 4 shows, in this weak relaxation regime, a sequence peaks of photon emission and the switches between 

Figure 2.  Photon emission 〈N〉 (upper) and the Mandel’s Q parameter (lower) in long time limit (t = 200) 
as functions of ε0/ω. The parameters are ω =​ 2 (moderate driving), A/ω =​ 5.1356 (node point of Bessel function 
J2(z)), Γ​ =​ 0.04, kp =​ 0, respectively. The red lines represent exact numerical results, green dash-dotted lines 
are RWA results, blue dashed lines are the results of the second-order GVV approximation and black lines are 
the results of the third-order GVV approximation. The insets show details about numerical results (red lines) 
and the results of the third-order GVV approximation (black lines) around the node point of Bessel function 
J2(A/ω =​ 5.1356) against ε0/ω. Because the approximations have the discrete effective Hamiltonian in each k-th 
resonance vicinity, the edges of curves at each resonance are discontinuous20.
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sub-Poissonian distribution and super-Poissonian distribution against ε0/ω due to k-th resonance in TLS. Also, 
the CDT phenomenon is presented, in the figure, via the photon emitting forbiddenness and splitting behavior of 
the Mandel’s Q parameter against A/ω at k-th resonance peaks.

The results of Fig. 4 clearly show us a widely controlling parameter space to switch off the photon emission 
process without turning off driving laser field by utilizing the CDT phenomenon. At the same time, this indicates 
that the maximal sub-Poissonian photon distribution can be obtained by setting appropriate A/ω around the CDT 
vicinity.

Waiting time in CDT position.  Due to the suppression effect of CDT, the waiting time of photon emission 
becomes much longer, preventing TLS from undergoing spontaneous decay. This allows us to manipulate quan-
tum system with more resilience against decoherence. In Table 1, we show the average waiting time of exact 
numerical results at CDT position in fast and moderate driving regime. One can find that the fast and strong 
driving regime will result in longer waiting time. Also we can notice the difference of CDT position between the 
fast and moderate driving regime due to the contributions of δoff.

The destruction of CDT.  As discussed above, the CDT phenomenon is sensitive to driving condition and 
only appears in a narrow driving parameter space. In this subsection, we show the CDT is also sensitive to its 
environment and can be destroyed by strong dissipative effect.

In strong dissipative regime, the TLS is affected by the environment strongly. According to Van Vleck per-
turbation theory, both inner-system and environment-system interactions are necessary to be considered34. 
However, in GVV approximation, only inner-system interaction is involved20,21. This indicates, in the case of 
strong dissipative regime, that the RWA and GVV approaches based on Eqs 8 and 9 do not apply. Since the 
dynamics of system is dominated by the periodical driving and dissipative rate together, it is convenient to meas-
ure dissipative rate in the order of driving frequency ω.

In the following, we employ the spectra of emitted photons and the Mandel’s Q parameter to present the effects 
of CDT under the case of strong dissipative regime.

Figure 3.  Photon emission 〈N〉 (upper) and the Mandel’s Q parameter (lower) in long time limit (t = 200) 
as functions of A/ω at the 2nd resonance. The red lines represent exact numerical results, the green dash-
dotted lines are the results of RWA approximation, the blue dashed lines are the results of the second-order 
GVV approximation, and the black lines are the results of the third-order GVV approximation. The insets 
show details around J2(A/ω =​ 5.1356) against A/ω in which the red lines have been covered by black lines. The 
parameters are ω =​ 5 (fast driving), ε0/ω =​ 2, Γ​ =​ 0.04, kp =​ 0.
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CDT destruction by strong relaxation.  In this subsection, we study the CDT destruction at the 0th resonance, 
and consider the TLS under the strong relaxation rate (Γ​ >​ ω) and fast driving regime ω ∆( ).

In strong relaxation regime, the number 〈​N〉​ of emitted photons from TLS is big, and the splitting behaviors 
of the Mandel’s Q parameter would disappear. As expected, the differences between exact numerical results and 
RWA and GVV results emerge in the panels (a) and (b) of Fig. 5. Further, when Γ​ is large enough, as shown in 
the panels of (c) and (d) of Fig. 5, the exact results show the photon emission patterns are monotonous with the 
increase of driving amplitude parameter A/ω. In this case, CDT is destroyed by strong relaxation. This differs 
from the RWA and GVV results significantly.

To understand the novel phenomena presented in Fig. 5, the transfer-matrix approach31 based on consecutive 
LZ transition picture illuminates this situation. In the fast-passage regime ω ∆A( )2 , it is convenient to use 
bases |g〉​ and |e〉​ for LZ transition calculation19. The consecutive LZ processes form an analog to Mach-Zehnder 
interferometry1. At the time t1 and t2 when passing through the avoided crossing (namely, ε(t1) =​ 0 and ε(t2) =​ 0), 
quantum state splits and then accumulates phase in each path consequently. In the case of resonance position, the 
quantum state will rotate around X-axis according to LZ transition probability (PLZ) at t1,2 and rotate around 
Z-axis according to accumulated phase between t1,2. For CDT, as shown in panel (a) of Fig. 6, the Z-axis rotation 
is (2n +​ 1)π, so in each periodical driving, assuming initial state is |g〉​, the final state is19

π θ π θ− + + = .Z n X Z n X g g( (2 1) ) ( ) ((2 1) ) ( )LZ LZ

In contrast, as shown in panel (b) of Fig. 6, if the Z-rotation is 2nπ, the final state will be

Figure 4.  The patterns of photon emission 〈N〉 (upper) and the Mandel’s Q parameter (lower) in long time 
limit (t = 200) along A/ω and ε0/ω in fast driving regime (exact numerical results). The parameters are ω =​ 5, 
Γ​ =​ 0.04, kp =​ 0.

CDT order

ω = 5 ω = 2

〈τ〉 A/ω 〈τ〉 A/ω

1 1288.9 5.1280 204.32 5.0864

2 2125.8 8.4122 341.37 8.3854

3 2856.6 11.617 448.63 11.599

4 3588.3 14.794 480.34 14.784

5 4390.1 17.958 573.17 17.951

Table 1.   Waiting time 〈τ〉 in several CDT positions in fast (ω = 5) and moderate driving (ω = 2) regime at 
the 2nd resonance position. Other parameters are Γ​ =​ 0.04, kp =​ 0.
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π θ π θ θ− =Z n X Z n X g X g( 2 ) ( ) (2 ) ( ) (2 ) ,LZ LZ LZ

the completed state reverse can occur after several driving period with rotating frequency Δ​R =​ |Δ​g|. While for 
the presence of Γ​ >​ ω, after each LZ transition, the quantum state will collapse to the ground state |g〉​ rapidly, and 

Figure 5.  Photon emission 〈N〉 and the Mandel’s Q parameter in long time limit (t = 200) as a function 
of A/ω. Panels of (a,b) are the results for Γ​/ω =​ 2 and panels of (c,d) are the results for Γ​/ω =​ 4. The other 
parameters are ω =​ 5, ε0 =​ 0, kp =​ 0. The exact numerical results are plotted using red line, and the results of 
third-order GVV approximation are plotted by black line. Because the results of RWA and second-order GVV 
approximations overlap with third-order GVV approximation almost, they are not shown.

Figure 6.  (a) Illustration of LZ transition model for CDT phenomenon. Quantum state |g〉​ in Z point rotates along 
longitude (red curve) to point A at time t1 and rotates around Z axis along blue curve to point B. Then, at time t2, 
quantum state comes back to |g〉​ in Z point and stays there during another Z rotation (black curve). (b) Illustration 
of LZ transition model for Z(2nπ) case. Quantum state reaches to point B in Bloch sphere after a full driving period. 
(c) ρe and (d) photon emission 〈​N〉​ of numerical results as a function of dimensionless time t for ω =​ 5, ε0 =​ 0, kp =​ 0, 
and Γ​/ω =​ 4. From upper to lower, each line represents amplitude parameter A/ω as 0 (red), 4 (blue), 8 (green) and 
16 (Black). One can find the up and down of ρe and the increasing ladders of N induced by diagonal driving.
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at that point of Bloch sphere, Z rotation fails. Thus, in each period T =​ 2π/ω, the population of excited state ρe 
raises up and drops down twice.

The panel (c) of Fig. 6 shows populations ρe as the function of evolution time t for the parameters of Γ​/ω =​ 4, 
ω =​ 5, ε0 =​ 0. Violent shakes are observed for each line with A/ω =​ 4, 8, 16, where the average population of |e〉​ 
increases due to LZ transition in t1,2 and decays subsequently due to strong Γ​. While, the upper line is monoto-
nous due to no LZ transition driving, reducing to conventional optical resonance process. Furthermore, accord-
ing to LZ formalism, the transition probability of |g〉​ to |e〉​ can be expressed as

π

=

= − − ∆

→P P

v1 exp( /2 ), (24)

g e LZ
2

where v is cross velocity. And at crossing time t1,2, the crossing velocity can be expressed by19

ω
ε

ω= −





 =v A

A
A1

(25)
0

2

Hence, Pg→e is a decreasing function of A. However, because of the strong effect of Γ, the average population ρe 
against A/ω shows the negative correlation property only, rather than strictly follows the formulas of Eqs 24 and 
25. Based on this tendency of ρe, the photon emission from ρe will show monotonous property as well.

Considering the population of excited state ρe is quite small, we plot the photon emission 〈​N〉​ in the panel (d) 
of Fig. 6, correspondingly. That shows LZ transition ladders induced by driving. Hence, in this strong relaxation 
regime, the driving behavior can be observed by photon emission, which differs from weak relaxation regime. In 
addition, the panel (d) of Fig. 6 also shows that stronger driving would suppress photon emission even though 
CDT has been destroyed.

CDT destruction by strong dephasing.  In this subsection, we consider the effect of pure dephasing rate kp at the 
0th resonance under Γ ∆  and fast driving regime. If the dephasing rate kp is much larger than relaxation, the 
CDT phenomenon could be destroyed by the dephasing rate kp and shows a different feature from relaxation 
effect.

Figure 7 shows the spectra of the Mandel’s Q parameter against A/ω with the parameters of ω =​ 5, ε0 =​ 0, 
Γ​ =​ 0.001 and the spectra of the emitted photons 〈​N〉​ in its insets. Based on the exact numerical calculations, 
one can observe that the big value of kp results in the disappearance of CDT at node point of J0(A/ω). No matter 
the spectra of emitted photons 〈​N〉​ or the Mandel’s Q parameter, they all become flat upon A/ω. Along with the 
decrease of kp, and at node point, the spectra of emitted photons 〈​N〉​ decreases from maximum to 0 gradually. 
Particularly, the spectra of the Mandel’s Q parameter recover the splitting behavior again. However, the results of 
GVV approximation always demonstrate CDT phenomenon.

In fact, strong dephasing destroys the interference pattern and all frequencies are involved in the node point. 
Also, the transfer-matrix approach provides strong support for this case. At each crossing time t1,2, the Bloch 

Figure 7.  The Mandel’s Q parameter (insets: the photon emission 〈​N〉​) in long time limit (t =​ 200) against 
A/ω for kp/ω =​ 0.02 (a), 0.1 (b), 0.4 (c) and 2 (d) with fixed parameters of ω =​ 5, ε0 =​ 0, Γ​ =​ 0.001. The exact 
numerical results are plotted using red lines, and the results of the third-order GVV approximation are plotted 
using black lines. As kp increases, even though the results of third-order GVV method broad gradually, the CDT 
behavior still exists which deviates from correct status.
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vector rotates around X-axis by θLZ. While, due to large kp, the vector transversely collapses to Z-axis during the 
interval of t1,2. After several similar steps, the vector collapses to the maximal mixed state and this process will not 
be affected by A and ω except the rotating angle θLZ. Hence, as shown in Fig. 7, the spectra of emitted photons 〈​N〉​ 
and the Mandel’s Q parameter are homogeneous against A/ω and CDT disappears in strong dephasing regime. In 
addition, due to the influence of small Γ​, the flatten lines only slope slightly.

Conclusion
In this paper, we studied the CDT nature for TLS driven across avoided crossing by employing the photon count-
ing statistics.

In weak relaxation regime, we showed the photon emission spectra calculated by exact numerical, RWA and 
GVV approximation methods, tested the validity of the approximation methods and explored the new physics 
beyond them. The asymmetric feature in the spectrum of Mandel’s Q parameters nearby CDT position releases an 
intrinsic asymmetric dynamics of TLS in moderate driving. Also, it is shown that the faster and stronger driving 
can suppress photon emission and prolong waiting time noticeably via CDT effect.

For the strong dissipative regime, the approximation methods do not apply. The exact numerical results are 
shown that the CDT is destroyed by strong dissipation. The emitted photons show the monotonicity or homoge-
neity against A/ω at resonance position in strong relaxation or dephasing regime.
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